
Research Article
A New Asymptotic Notation: Weak Theta

Andrei-Horia MogoG,1 Bianca MogoG,2 and Adina Magda Florea1

1Faculty of Automatic Control and Computers, University Politehnica of Bucharest, Romania
2Faculty of Mathematics and Computer Science, University of Bucharest, Romania

Correspondence should be addressed to Andrei-Horia Mogoş; andrei.mogos@cs.pub.ro

Received 30 July 2014; Accepted 3 October 2014

Academic Editor: Yudong Zhang

Copyright © 2015 Andrei-Horia Mogoş et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Algorithms represent one of the fundamental issues in computer science, while asymptotic notations arewidely accepted as themain
tool for estimating the complexity of algorithms. Over the years a certain number of asymptotic notations have been proposed. Each
of these notations is based on the comparison of various complexity functions with a given complexity function. In this paper, we
define a new asymptotic notation, called “Weak Theta,” that uses the comparison of various complexity functions with two given
complexity functions. Weak Theta notation is especially useful in characterizing complexity functions whose behaviour is hard
to be approximated using a single complexity function. In addition, in order to highlight the main particularities of Weak Theta,
we propose and prove several theoretical results: properties of Weak Theta, criteria for comparing two complexity functions, and
properties of a new set of complexity functions (also defined in the paper) based on Weak Theta. Furthermore, to illustrate the
usefulness of our notation, we discuss an application of WeakTheta in artificial intelligence.

1. Introduction

Computational complexity [1–6] is a very popular research
area in computer science that covers algorithm design [3, 4],
algorithm complexity [3, 4], asymptotic notations [3, 7–9],
complexity recurrences [3, 10, 11], classes of problems and
NP-completeness [12, 13], and heuristics and approximation
algorithms [13, 14].

Tools from computational complexity are intensively
used in various research areas such as computer networks
[15], operating systems [16], parallel and distributed comput-
ing [17], and artificial intelligence [18, 19]. Artificial intelli-
gence is particularly linked with computational complexity;
see swarm intelligence [20–25], multiagent systems [26–28],
machine learning [29, 30], and semantic web services [31, 32].

Algorithms represent one of the most important issues
in computer science, while asymptotic notations are consid-
ered to be the main tool for estimating the complexity of
algorithms. Several asymptotic notations have been proposed
in the literature. They are all based on the comparison of
various complexity functions with a given complexity func-
tion. Consequently, the main idea is to choose a complexity
function and then to see what is the relation between this

function and other complexity functions. Some of these
asymptotic notations provide relations that are too general,
while others offer relations that are too specific and therefore
not applicable for all the cases.

In this paper, we propose a new asymptotic notation that
aims to offer a solution for the problem discussed above.
It proposes the use of two given complexity functions to
construct the set of all complexity functions that can be
caught between these two given functions. The main advan-
tage of our asymptotic notation is the fact that it can be
used to describe the behaviour of a wide set of complexity
functions (some of them hard to be approximated using a
single complexity function). In this paper, we also propose
and prove several properties that characterize this new
asymptotic notation and outline its importance in the field
of computational complexity.

The paper is organized as follows. Section 2 contains
an overview on the asymptotic notations proposed in the
literature. In Section 3, we define an asymptotic notation,
called “Weak Theta,” we provide a motivation for the need
of this notation, and we discuss an application of “Weak
Theta” in artificial intelligence. In the end of this section, we
also present a brief description of the main symbols used in

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 912962, 15 pages
http://dx.doi.org/10.1155/2015/912962



2 Mathematical Problems in Engineering

the paper. In Section 4, we propose several relations between
“Weak Theta” and other asymptotic notations. In Section 5,
we develop some properties of “Weak Theta” related to
membership, inclusion, intersection, and union. In Section 6,
we discuss several criteria concerning the comparison of
two complexity functions. In Section 7, we define the set of
complexity functions comparable with two given complexity
functions and we propose several properties of this new set
of functions. Section 8 contains the conclusions of the paper.

2. Related Work

In this section, we present several asymptotic notations pro-
posed in the literature.

Definition 1 (see, e.g., [3, 6, 7]). A complexity function is a
function 𝑓 : N∗ → R∗

+
, where N∗ is the set of positive

integers and R∗
+
is the set of positive real numbers. One

denotes byF the set of complexity functions,F = {𝑓 : N∗ →
R∗
+
}.

Remark 2. In this paper, a function𝑓 ∈ Fwill be denoted by
𝑓(𝑛) whenever this function is in relation with a complexity
class that depends on a complexity function of the argument
𝑛 (e.g., 𝑓 ∈ F, but 𝑓(𝑛) ∈ Θ(𝑓(𝑛))).

Definition 3 (see, e.g., [3, 4, 6, 7, 33–36]). Let 𝑔 ∈ F, an
arbitrary fixed complexity function. The main asymptotic
notations used in the literature are defined as follows:
Θ(𝑔 (𝑛)) = {𝑓 ∈ F | ∃𝑐

1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔 (𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔 (𝑛) ,

∀𝑛 ≥ 𝑛
0
} ,

𝑂 (𝑔 (𝑛)) = {𝑓 ∈ F | ∃𝑐 ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑓 (𝑛) ≤ 𝑐 ⋅ 𝑔 (𝑛) ,

∀𝑛 ≥ 𝑛
0
} ,

Ω (𝑔 (𝑛)) = {𝑓 ∈ F | ∃𝑐 ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐 ⋅ 𝑔 (𝑛) ≤ 𝑓 (𝑛) ,

∀𝑛 ≥ 𝑛
0
} ,

𝑜 (𝑔 (𝑛)) = {𝑓 ∈ F | ∀𝑐 ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑓 (𝑛) < 𝑐 ⋅ 𝑔 (𝑛) ,

∀𝑛 ≥ 𝑛
0
} ,

𝜔 (𝑔 (𝑛)) = {𝑓 ∈ F | ∀𝑐 ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐 ⋅ 𝑔 (𝑛) < 𝑓 (𝑛) ,

∀𝑛 ≥ 𝑛
0
} .

(1)

Proposition 4 (see, e.g., [3, 6]). One has the following.
(a) Reflexivity. Let 𝑓 ∈ F. Then 𝑓(𝑛) ∈ Θ(𝑓(𝑛)), 𝑓(𝑛) ∈
𝑂(𝑓(𝑛)), and 𝑓(𝑛) ∈ Ω(𝑓(𝑛)).

(b) Transitivity. Let 𝑓, 𝑔, ℎ ∈ F. Then,

(b1) if 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) and 𝑔(𝑛) ∈ Θ(ℎ(𝑛)) then
𝑓(𝑛) ∈ Θ(ℎ(𝑛));

(b2) if 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) and 𝑔(𝑛) ∈ 𝑂(ℎ(𝑛)) then
𝑓(𝑛) ∈ 𝑂(ℎ(𝑛));

(b3) if 𝑓(𝑛) ∈ Ω(𝑔(𝑛)) and 𝑔(𝑛) ∈ Ω(ℎ(𝑛)) then
𝑓(𝑛) ∈ Ω(ℎ(𝑛));

(b4) if𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) and 𝑔(𝑛) ∈ 𝑜(ℎ(𝑛)) then𝑓(𝑛) ∈
𝑜(ℎ(𝑛));

(b5) if 𝑓(𝑛) ∈ 𝜔(𝑔(𝑛)) and 𝑔(𝑛) ∈ 𝜔(ℎ(𝑛)) then
𝑓(𝑛) ∈ 𝜔(ℎ(𝑛)).

(c) Symmetry. Let𝑓, 𝑔 ∈ F. If𝑓(𝑛) ∈ Θ(𝑔(𝑛)) then𝑔(𝑛) ∈
Θ(𝑓(𝑛)).

(d) Transpose Symmetry. Let be 𝑓, 𝑔 ∈ F. Then,

(d1) 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) if and only if 𝑔(𝑛) ∈ Ω(𝑓(𝑛));
(d2) 𝑓(𝑛) ∈ 𝑜(𝑔(𝑛)) if and only if 𝑔(𝑛) ∈ 𝜔(𝑓(𝑛)).

(e) Projection. Let 𝑓, 𝑔 ∈ F. Then 𝑓(𝑛) ∈ Θ(𝑔(𝑛)) if and
only if 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛)) and 𝑓(𝑛) ∈ Ω(𝑔(𝑛)).

Definition 5 (see [7]). Let 𝑔 ∈ F. The set of all complexity
functions comparable with 𝑔(𝑛) is defined as follows:

𝐶 (𝑔 (𝑛)) = Θ (𝑔 (𝑛)) ∪ 𝑂 (𝑔 (𝑛)) ∪ Ω (𝑔 (𝑛))

∪ 𝑜 (𝑔 (𝑛)) ∪ 𝜔 (𝑔 (𝑛)) .
(2)

Definition 6 (see [7]). Let 𝑔 ∈ F. The asymptotic notations
𝑜Θ(𝑔(𝑛)) and Θ𝜔 are defined as follows:

𝑜Θ (𝑔 (𝑛)) = 𝑂 (𝑔 (𝑛)) \ (𝑜 (𝑔 (𝑛)) ∪ Θ (𝑔 (𝑛))) ,

Θ𝜔 (𝑔 (𝑛)) = Ω (𝑔 (𝑛)) \ (Θ (𝑔 (𝑛)) ∪ 𝜔 (𝑔 (𝑛))) .
(3)

Proposition 7 (see [7]). Let 𝑔 ∈ F. Then

(a) 𝑂(𝑔(𝑛)) = 𝑜(𝑔(𝑛)) ∪ 𝑜Θ(𝑔(𝑛)) ∪ Θ(𝑔(𝑛));
(b) Ω(𝑔(𝑛)) = Θ(𝑔(𝑛)) ∪ Θ𝜔(𝑔(𝑛)) ∪ 𝜔(𝑔(𝑛)).

Proposition 8 (see [7]). Let 𝑔 ∈ F. Then,

(a) 𝐶(𝑔(𝑛)) = 𝑜(𝑔(𝑛))∪𝑜Θ(𝑔(𝑛))∪Θ(𝑔(𝑛))∪Θ𝜔(𝑔(𝑛))∪
𝜔(𝑔(𝑛));

(b) 𝑜(𝑔(𝑛)), 𝑜Θ(𝑔(𝑛)), Θ(𝑔(𝑛)), Θ𝜔(𝑔(𝑛)), and 𝜔(𝑔(𝑛))
are pairwise disjoint;

(c) 𝐶(𝑔(𝑛)) = 𝑂(𝑔(𝑛)) ∪ Ω(𝑔(𝑛)).

Other important asymptotic notations used in the literature
are the following: soft𝑂 [3, 8], softΘ [36, 37],Ω infinity [3, 9],
∼ [35, 38], and almost [35].

3. Weak Theta

In this section, we propose a new asymptotic notation called
“Weak Theta,” we present some motivation for using this
notation, and we discuss an application of “Weak Theta” in
artificial intelligence. In the end of the section we briefly
describe the main symbols used in the paper.



Mathematical Problems in Engineering 3

3.1. Definition of Weak Theta

Definition 9. Let 𝑔
1
, 𝑔
2
∈ F. One defines the asymptotic

notation WeakTheta, denoted by Θ, as follows:

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= {𝑓 ∈ F | ∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) ,

∀𝑛 ≥ 𝑛
0
} .

(4)

Remark 10. Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) represents the set of all complex-

ity functions that are bounded by the functions 𝑐
1
⋅ 𝑔
1
(𝑛) and

𝑐
2
⋅ 𝑔
2
(𝑛) for sufficiently large 𝑛.

Proposition 11. Let 𝑔
1
, 𝑔
2
∈ F. Then

(a) Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ̸= 0 if and only if 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛));

(b) Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ̸= 0 if and only if 𝑔

2
(𝑛) ∈ Ω(𝑔

1
(𝑛)).

Proof. (a) “⇒” Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). Then,

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(5)

It follows that

∃𝑐󸀠 =
𝑐
2

𝑐
1

∈ R∗
+
, ∃𝑛󸀠
0
= 𝑛
0
∈ N∗

such that 𝑔
1
(𝑛) ≤ 𝑐

󸀠 ⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(6)

Consequently,

𝑔
1
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) . (7)

“⇐” Consider that 𝑔
1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)); it follows that

∃𝑐 ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑔
1
(𝑛) ≤ 𝑐 ⋅ 𝑔

2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(8)

From (8), we obtain

∃c ∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 1 ⋅ 𝑔
1
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐 ⋅ 𝑔

2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(9)

So, we have

∃𝑐󸀠
1
= 1, 𝑐󸀠

2
= 𝑐 ∈ R∗

+
, ∃𝑛󸀠
0
= 𝑛
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(10)

Consequently,

𝑔
1
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (11)

(b) The result follows from (a) using the relation

𝑔
1
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) iff 𝑔

2
(𝑛) ∈ Ω (𝑔

1
(𝑛)) . (12)

Remark 12. In all situations in which a proposition or a
theorem has as a hypothesis a relation of the form 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)), one implicitly understands that Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ̸=

0.

3.2. Motivation. (a) The first use of our notation is for
describing complexity functions with complex behaviour
(i.e., functions difficult to be approximated by a single
elementary complexity function). As an example, let 𝑓 ∈ F
with the form

𝑓 (𝑛) =

{{{{
{{{{
{

𝑛2, 𝑛 = 3𝑘,

𝑛 lg 𝑛, 𝑛 = 3𝑘 + 1,

𝑛, 𝑛 = 3𝑘 + 2.

(13)

If we use the asymptotic notations from Definition 3, we
may obtain

𝑓 (𝑛) ∈ 𝑂 (𝑛
2) (14)

or

𝑓 (𝑛) ∈ Ω (𝑛) (15)

which are too general descriptions of the behavior of 𝑓(𝑛),
while the use of Θ is not appropriate.

If we use the new asymptotic notation proposed in
Definition 9, then we obtain

𝑓 (𝑛) ∈ Θ (𝑛, 𝑛
2) . (16)

(b) Usually, the best case, the worst case, and the average
case of the running time of an algorithm are described by
functions with different behaviours. Also, for all algorithms,
the average case is situated between the best case and the
worst case. For example, assume that for an algorithm 𝐴 the
best case is represented by 𝑓

1
(𝑛) = 𝑛2 lg 𝑛 + 𝑛 and the worst

case is represented by 𝑓
2
(𝑛) = 𝑛3 + 𝑛2.

Using Θ, we obtain that 𝑓
1
(𝑛) ∈ Θ(𝑛2 lg 𝑛) and 𝑓

2
(𝑛) ∈

Θ(𝑛3). This is a valid description of the two cases of the
algorithm, butwe need two complexity classes (Θ(𝑛2 lg 𝑛) and
Θ(𝑛3)) for this analysis.

If we use Θ, only one complexity class is necessary.
The running time of the algorithm 𝐴 is fully described by
Θ(𝑛2 lg 𝑛, 𝑛3).

3.3. An Application of Weak Theta in Artificial Intelligence.
In this subsection, we propose an artificial intelligence based
solution for the following problem denoted by 𝑃

1
. “Let SP =

{𝑝
1
, 𝑝
2
, . . . , 𝑝

𝑘
} be a set of software programs and 𝑃

2
a given

problem. Each program 𝑝
𝑖
, 𝑖 = 1, 𝑘, solves the problem 𝑃

2
.

We make the following assumptions: (1) each program 𝑝
𝑖
,

𝑖 = 1, 𝑘, terminates for each valid input; (2) for all programs
𝑝
𝑖
, 𝑖 = 1, 𝑘, the inputs have the same form; (3) the codes of

the programs are not available. One asks to find the fastest
program(s) from the set SP.”



4 Mathematical Problems in Engineering

The problem 𝑃
1
can be seen as an unsupervised classifi-

cation problem that can be solved in terms of “Weak Theta.”
In this framework, we propose an algorithm that aims to
solve the problem 𝑃

1
. This algorithm uses for the first two

steps a simple and common idea for estimating the running
time of a software program: “choose several inputs for the
program; for each input measure the corresponding running
time and then, using this information, find the function that
best estimates the running time of the program.”

The algorithm can be described as follows.

Step 1. Consider a set of inputs {input
1
, input

2
, . . . , input

𝑞
} of

sizes {𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑞
} (where 𝑠

𝑗
is the size of input input

𝑗
). We

run each program 𝑝
𝑖
, 𝑖 = 1, 𝑘, for all inputs and we obtain

the corresponding running times {𝑡𝑖
1
, 𝑡𝑖
2
, . . . , 𝑡𝑖

𝑞
}. In the end,

for each program 𝑝
𝑖
, 𝑖 = 1, 𝑘, we will have a set of pairs 𝑆𝑖 =

{(𝑠
1
, 𝑡𝑖
1
), (𝑠
2
, 𝑡𝑖
2
), . . . , (𝑠

𝑞
, 𝑡𝑖
𝑞
)}.

Step 2. For each program 𝑝
𝑖
, 𝑖 = 1, 𝑘, we use the data 𝑆𝑖 for

obtaining a complexity function 𝑔𝑖 that best approximates
the running time of the program. For this step we may use
estimation techniques.

Step 3. First, we choose a set of complexity functions {𝑓
1
, 𝑓
2
,

. . . , 𝑓
𝑟
} such that 𝑓

𝑗
(𝑛) ∈ 𝑂(𝑓

𝑗+1
(𝑛)), for all 𝑗 = 1, 𝑟 − 1;

from Proposition 11, we have Θ(𝑓
𝑗
(𝑛), 𝑓
𝑗+1
(𝑛)) ̸= 0, for all

𝑗 = 1, 𝑟 − 1. Next, for each program 𝑝
𝑖
, 𝑖 = 1, 𝑘, we find the

complexity class 𝐶
𝑗
(𝑛) = Θ(𝑓

𝑗
(𝑛), 𝑓
𝑗+1
(𝑛)) such that 𝑔𝑖(𝑛) ∈

𝐶
𝑗
(𝑛). Sometimes, the function 𝑔𝑖(𝑛) can be simultaneous

in two consecutive complexity classes 𝐶
𝑗
(𝑛) and 𝐶

𝑗+1
(𝑛)

(according to Proposition 20, 𝐶
𝑗
(𝑛) ∩ 𝐶

𝑗+1
(𝑛) = Θ(𝑓

𝑗+1
(𝑛)));

in such cases we consider that 𝑔𝑖(𝑛) is only in 𝐶
𝑗
(𝑛).

As a result of the method proposed above, we obtain a
classification of the programs from the set SP that offers a
solution for the problem 𝑃

1
. This classification is based on

the complexity classes Θ(𝑓
1
(𝑛), 𝑓
2
(𝑛)), Θ(𝑓

2
(𝑛), 𝑓
3
(𝑛)), . . . ,

Θ(𝑓
𝑟−1
(𝑛), 𝑓
𝑟
(𝑛)).

3.4. Main Symbols Used in the Paper. This subsection con-
tains a brief description of the main symbols used in the
paper. In Notations section, one can observe three types of
symbols: sets, asymptotic notations, and functions and num-
bers.

4. Relations between Weak Theta and Other
Asymptotic Notations

Proposition 13. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) . (17)

Proof. First, we prove the direct inclusion

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) . (18)

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(19)

From (19), we have that

∃𝑐󸀠 = 𝑐
1
∈ R∗
+
, ∃𝑛󸀠
0
= 𝑛
0
∈ N∗

such that 𝑐󸀠 ⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠 = 𝑐
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
= 𝑛
0
∈ N∗

such that 𝑓 (𝑛) ≤ 𝑐󸀠󸀠 ⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(20)

So, we have

𝑓 (𝑛) ∈ Ω (𝑔
1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) . (21)

Next, we prove the reverse inclusion

Ω(𝑔
1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (22)

Let 𝑓(𝑛) ∈ Ω(𝑔
1
(𝑛)) ∩ 𝑂(𝑔

2
(𝑛)). It follows that

∃𝑐󸀠 ∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠 ⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠 ∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑓 (𝑛) ≤ 𝑐󸀠󸀠 ⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(23)

From (23) we have that

∃𝑐
1
= 𝑐󸀠, 𝑐

2
= 𝑐󸀠󸀠 ∈ R∗

+
,

∃𝑛
0
= max (𝑛󸀠

0
, 𝑛󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(24)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) . (25)

Corollary 14. Let 𝑔 ∈ F. Then Θ(𝑔(𝑛), 𝑔(𝑛)) = Θ(𝑔(𝑛)).

Proof. From Proposition 13, we have that

Θ(𝑔 (𝑛) , 𝑔 (𝑛)) = Ω (𝑔 (𝑛)) ∩ 𝑂 (𝑔 (𝑛)) . (26)

Next, using the relation

Ω(𝑔 (𝑛)) ∩ 𝑂 (𝑔 (𝑛)) = Θ (𝑔 (𝑛)) , (27)

we obtain the result.

Proposition 15. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,



Mathematical Problems in Engineering 5

(a) Θ(𝑔
1
(𝑛)) = Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩ 𝑂(𝑔

1
(𝑛));

(b) Θ(𝑔
2
(𝑛)) = Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩ Ω(𝑔

2
(𝑛)).

Proof. (a) First, we prove that Θ(𝑔
1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩

𝑂(𝑔
1
(𝑛)). Let 𝑓(𝑛) ∈ Θ(𝑔

1
(𝑛)). It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(28)

From the hypothesis, we have that 𝑔
1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)). So we

have

∃𝑐󸀠 ∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑔
1
(𝑛) ≤ 𝑐

󸀠 ⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(29)

From (28) and (29), we obtain

∃𝑐󸀠󸀠
1
= 𝑐
1
, 𝑐󸀠󸀠
2
= 𝑐
2
⋅ 𝑐󸀠 ∈ R∗

+
,

∃𝑛󸀠󸀠
0
= max (𝑛

0
, 𝑛󸀠
0
) ∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(30)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) . (31)

Using (27), we have that

Θ(𝑔
1
(𝑛)) ⊆ 𝑂 (𝑔

1
(𝑛)) . (32)

From (31) and (32), we obtain the result.
We prove the reverse inclusion Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩

𝑂(𝑔
1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛)). Let 𝑓(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩ 𝑂(𝑔

1
(𝑛)).

It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
,

∃𝑐󸀠 ∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑓 (𝑛) ≤ 𝑐󸀠 ⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(33)

From (33), we obtain

∃𝑐󸀠󸀠
1
= 𝑐
1
, 𝑐󸀠󸀠
2
= 𝑐󸀠 ∈ R∗

+
,

∃𝑛󸀠󸀠
0
= max (𝑛

0
, 𝑛󸀠
0
) ∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(34)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛)) . (35)

(b) For the proof, one can follow the same idea used for
proving (a) and the definition ofΩ.

Corollary 16. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

(a) Θ(𝑔
1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛));

(b) Θ(𝑔
2
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)).

Proof. The proof follows easily using Proposition 15.

Proposition 17. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) = Θ(𝑔

1
(𝑛)) = Θ(𝑔

2
(𝑛)) if and only if

𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)).

Proof. “⇒” From the hypothesis, we have

𝑔
1
(𝑛) ∈ Θ (𝑔

1
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

2
(𝑛)) . (36)

“⇐” We consider that 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)). It follows that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
2
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(37)

FromCorollary 16 and the relation 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)), we have

that

Θ(𝑔
1
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ,

Θ (𝑔
2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) .

(38)

We have to prove that

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛)) , (39)

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ Θ (𝑔

2
(𝑛)) . (40)

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). It follows that

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.
(41)

Using (37), we have that

∃𝑐󸀠󸀠󸀠
1
=
1

𝑐󸀠
1

∈ R∗
+
, ∃𝑛󸀠󸀠󸀠
0
= 𝑛󸀠
0
∈ N∗

such that 𝑔
2
(𝑛) ≤ 𝑐

󸀠󸀠󸀠

1
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠󸀠

0
.

(42)

From (41) and (42), we obtain that

∃𝑐
1
= 𝑐󸀠󸀠
1
, 𝑐
2
= 𝑐󸀠󸀠
2
⋅ 𝑐󸀠󸀠󸀠
1
∈ R∗
+
,

∃𝑛
0
= max (𝑛󸀠󸀠

0
, 𝑛󸀠󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(43)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛)) . (44)

The other inclusion, from (40), can be proved using the same
idea.



6 Mathematical Problems in Engineering

Proposition 18. Let 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)) and 𝑔

3
(𝑛) ∈ 𝑂(𝑔

4
(𝑛)). Then Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) =

Θ(𝑔
3
(𝑛), 𝑔
4
(𝑛)) if and only if 𝑔

1
(𝑛) ∈ Θ(𝑔

3
(𝑛)) and 𝑔

2
(𝑛) ∈

Θ(𝑔
4
(𝑛)).

Proof. “⇒” From the hypothesis and Corollary 16, we have
that

𝑔
1
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) ,

𝑔
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) .

(45)

From (45) and Proposition 13, we obtain that

𝑔
1
(𝑛) ∈ Ω (𝑔

3
(𝑛)) ,

𝑔
2
(𝑛) ∈ 𝑂 (𝑔

4
(𝑛)) .

(46)

From the hypothesis and Corollary 16, we have that

𝑔
3
(𝑛) ∈ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ,

𝑔
4
(𝑛) ∈ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) .

(47)

From (47) and Proposition 13, we obtain that

𝑔
3
(𝑛) ∈ Ω (𝑔

1
(𝑛)) ,

𝑔
4
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) .

(48)

Next, from (48), we have

𝑔
1
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛)) ,

𝑔
2
(𝑛) ∈ Ω (𝑔

4
(𝑛)) .

(49)

From (46) and (49), we deduce that

𝑔
1
(𝑛) ∈ Θ (𝑔

3
(𝑛))

𝑔
2
(𝑛) ∈ Θ (𝑔

4
(𝑛)) .

(50)

“⇐” Consider that 𝑔
1
(𝑛) ∈ Θ(𝑔

3
(𝑛)) and 𝑔

2
(𝑛) ∈

Θ(𝑔
4
(𝑛)). It follows that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛
01
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
3
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
3
(𝑛) , ∀𝑛 ≥ 𝑛

01
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛
02
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
4
(𝑛) ≤ 𝑔

2
(𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛

02
.

(51)

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). It follows that

∃𝑐󸀠
3
, 𝑐󸀠
4
∈ R∗
+
, ∃𝑛
03
∈ N∗

such that 𝑐󸀠
3
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

4
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

03
.
(52)

Using (51) and (52), we have

∃𝑐󸀠󸀠
3
= 𝑐󸀠
1
⋅ 𝑐󸀠
3
, 𝑐󸀠󸀠
4
= 𝑐󸀠
4
⋅ 𝑐󸀠󸀠
2
∈ R∗
+
,

∃𝑛
04
= max (𝑛

01
, 𝑛
02
, 𝑛
03
) ∈ N∗

such that 𝑐󸀠󸀠
3
⋅ 𝑔
3
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

4
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛

04
.

(53)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
3
(𝑛) , 𝑔

4
(𝑛)) . (54)

The other inclusion, Θ(𝑔
3
(𝑛), 𝑔
4
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)), can

be proved using a similar idea.

Proposition 19. Let 𝑔
1
, 𝑔
2
∈ F. Then,

𝑔
1
(𝑛) ∈ Θ (𝑔

2
(𝑛))

iff Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

2
(𝑛) , 𝑔

1
(𝑛)) ̸= 0.

(55)

Proof. “⇒” Consider that 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)). We prove that

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ Θ (𝑔

2
(𝑛) , 𝑔

1
(𝑛)) . (56)

Since 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)), it follows that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Consequently, we obtain the relation Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ̸= 0.

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(57)

From the relation 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)), we have

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
2
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(58)

Next, using the relation

𝑔
1
(𝑛) ∈ Θ (𝑔

2
(𝑛)) iff 𝑔

2
(𝑛) ∈ Θ (𝑔

1
(𝑛)) , (59)

we obtain that

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑔

2
(𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(60)

From (57), (58), and (60), we have that

∃𝑐
1
= 𝑐
1
⋅ 𝑐󸀠
1
, 𝑐
2
= 𝑐
2
⋅ 𝑐󸀠󸀠
2
∈ R∗
+
,

∃𝑛
0
= max (𝑛

0
, 𝑛󸀠
0
, 𝑛󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑔
2
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(61)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
2
(𝑛) , 𝑔

1
(𝑛)) . (62)



Mathematical Problems in Engineering 7

The proof of Θ(𝑔
2
(𝑛), 𝑔
1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) follows the

same idea used for the first inclusion.
“⇐” We consider that Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) = Θ(𝑔

2
(𝑛),

𝑔
1
(𝑛)) ̸= 0.
Let 𝑓(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) = Θ(𝑔

2
(𝑛), 𝑔
1
(𝑛)). It follows

that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
2
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(63)

From (63), we obtain

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑔
1
(𝑛) ≤

𝑐󸀠
2

𝑐󸀠
1

⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that
𝑐󸀠󸀠
1

𝑐󸀠󸀠
2

⋅ 𝑔
2
(𝑛) ≤ 𝑔

1
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(64)

Using (64), we have

∃𝑐
1
=
𝑐󸀠󸀠
1

𝑐󸀠󸀠
2

, 𝑐
2
=
𝑐󸀠
2

𝑐󸀠
1

∈ R∗
+
,

∃𝑛
0
= max (𝑛󸀠

0
, 𝑛󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑔
2
(𝑛) ≤ 𝑔

1
(𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(65)

Consequently,

𝑔
1
(𝑛) ∈ Θ (𝑔

2
(𝑛)) . (66)

5. Membership, Inclusion, Intersection,
and Union

Proposition 20. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). Then,

(a) Θ(𝑔
1
(𝑛), 𝑓(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛));

Θ(𝑓(𝑛), 𝑔
2
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛));

(b) Θ(𝑔
1
(𝑛), 𝑓(𝑛)) ∩ Θ(𝑓(𝑛), 𝑔

2
(𝑛)) = Θ(𝑓(𝑛));

(c) Θ(𝑔
1
(𝑛), 𝑓(𝑛)) ∪ Θ(𝑓(𝑛), 𝑔

2
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)).

Proof. (a) Let ℎ(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑓(𝑛)). It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
1
(𝑛) ≤ ℎ (𝑛) ≤ 𝑐

2
⋅ 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛

0
.

(67)

From the relation 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)), we have

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(68)

From (68), we obtain

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐
2
⋅ 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑐

2
⋅ 𝑓 (𝑛) ≤ 𝑐

2
⋅ 𝑐󸀠
2
⋅ 𝑔
2
(𝑛) ,

∀𝑛 ≥ 𝑛󸀠
0
.

(69)

Using (67) and (69), we have that

∃𝑐󸀠󸀠
1
= 𝑐
1
, 𝑐󸀠󸀠
2
= 𝑐
2
⋅ 𝑐󸀠
2
∈ R∗
+
,

∃𝑛󸀠󸀠
0
= max (𝑛

0
, 𝑛󸀠
0
) ∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
1
(𝑛) ≤ ℎ (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(70)

Consequently,

ℎ (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) . (71)

For proving that Θ(𝑓(𝑛), 𝑔
2
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)), one can

follow the same idea used for the first relation of (a).
(b) From Corollary 16, it follows that

Θ(𝑓 (𝑛)) ⊆ Θ (𝑔
1
(𝑛) , 𝑓 (𝑛)) ∩ Θ (𝑓 (𝑛) , 𝑔

2
(𝑛)) . (72)

Let ℎ(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑓(𝑛)) ∩ Θ(𝑓(𝑛), 𝑔

2
(𝑛)). It follows that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ ℎ (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑓 (𝑛) ≤ ℎ (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(73)

From (73), we obtain

∃𝑐
1
= 𝑐󸀠󸀠
1
, 𝑐
2
= 𝑐󸀠
2
∈ R∗
+
,

∃𝑛
0
= max (𝑛󸀠

0
, 𝑛󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑓 (𝑛) ≤ ℎ (𝑛) ≤ 𝑐

2
⋅ 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛

0
.

(74)

Consequently,

ℎ (𝑛) ∈ Θ (𝑓 (𝑛)) . (75)

(c) The proof follows from (a).

Proposition 21. Let 𝑔
1
, 𝑔
2
, 𝑔
3
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)) and 𝑔

2
(𝑛) ∈ 𝑂(𝑔

3
(𝑛)). Then,

(a) Θ(𝑔
1
(𝑛), 𝑔
3
(𝑛)) ̸= 0,

(b) 𝑔
2
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
3
(𝑛)).



8 Mathematical Problems in Engineering

Proof. (a) We use the transitivity of the complexity class “𝑂”
(see Proposition 4), described as

if 𝑔
1
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) , 𝑔

2
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛))

then 𝑔
1
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛)) .

(76)

Hence, from the hypothesis and (76), we have

𝑔
1
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛)) . (77)

Next, using (77) and Proposition 11(a), we obtain that

Θ(𝑔
1
(𝑛) , 𝑔

3
(𝑛)) ̸= 0. (78)

(b) Using the hypothesis and Proposition 4(d), we have
that

𝑔
2
(𝑛) ∈ Ω (𝑔

1
(𝑛)) . (79)

Consequently, using (79) and the hypothesis, we have

𝑔
2
(𝑛) ∈ Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

3
(𝑛)) . (80)

From (80) and Proposition 13, we have that

𝑔
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) . (81)

Proposition 22. Let 𝑔
1
, 𝑔
2
, 𝑔
3
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)) and 𝑔

2
(𝑛) ∈ 𝑂(𝑔

3
(𝑛)). Let 𝑓

1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)),

𝑓
2
(𝑛) ∈ Θ(𝑔

2
(𝑛), 𝑔
3
(𝑛)), and 𝑓 ∈ F with the form

𝑓 (𝑛) =
{
{
{

𝑓
1
(𝑛) , if 𝑛 ∈ 𝑀

1

𝑓
2
(𝑛) , if 𝑛 ∈ 𝑀

2
,

(82)

where𝑀
1
and𝑀

2
are two infinite subsets of N∗ such that𝑀

1
∪

𝑀
2
= N∗ and𝑀

1
∩𝑀
2
= 0. Then 𝑓(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
3
(𝑛)).

Proof. Using the hypothesis and Proposition 21, we have that

𝑔
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) . (83)

Also, from the hypothesis and Proposition 4(b), we obtain

𝑔
1
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛)) . (84)

From (84), (83), and Proposition 20, we have

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) ,

Θ (𝑔
2
(𝑛) , 𝑔

3
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) .

(85)

Using (85) and the hypothesis, we obtain that

𝑓
1
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) ,

𝑓
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

3
(𝑛)) .

(86)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

3
(𝑛)) . (87)

Proposition 23. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)). Then,

(a) if 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛)) or 𝑓(𝑛) ∈ Θ(𝑔

2
(𝑛)), then

Θ(𝑔
1
(𝑛) , 𝑓 (𝑛)) ∪ Θ (𝑓 (𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ;

(88)

(b) if Θ(𝑔
1
(𝑛), 𝑓(𝑛)) ∪ Θ(𝑓(𝑛), 𝑔

2
(𝑛)) = Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)),

then

𝑓 (𝑛) ∉ 𝜔 (𝑔
1
(𝑛)) or 𝑓 (𝑛) ∉ 𝑜 (𝑔

2
(𝑛)) . (89)

Proof. (a) Consider the following.

Case 1. Consider 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛)). From Proposition 17, we

have that

Θ(𝑔
1
(𝑛) , 𝑓 (𝑛)) = Θ (𝑓 (𝑛)) . (90)

From (90) and Corollary 16, we have that

Θ(𝑔
1
(𝑛) , 𝑓 (𝑛)) ⊆ Θ (𝑓 (𝑛) , 𝑔

2
(𝑛)) . (91)

Next, from the relation 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛)) and Proposition 18,

we have that

Θ(𝑓 (𝑛) , 𝑔
2
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (92)

Case 2. Consider𝑓(𝑛) ∈ Θ(𝑔
2
(𝑛)).The proof follows the same

idea used for proving Case 1.
(b) Suppose for a contradiction that 𝑓(𝑛) ∈ 𝜔(𝑔

1
(𝑛)) and

𝑓(𝑛) ∈ 𝑜(𝑔
2
(𝑛)).

Let ℎ ∈ F such that

ℎ (𝑛) =
{
{
{

𝑔
1
(𝑛) , if 𝑛 ∈ 𝑀

1

𝑔
2
(𝑛) , if 𝑛 ∈ 𝑀

2
,

(93)

where 𝑀
1
and 𝑀

2
are infinite subsets of N∗ such that

𝑀
1
∪ 𝑀
2
= N∗ and 𝑀

1
∩ 𝑀
2
= 0. From the relations

𝑔
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑓(𝑛)) and 𝑔

2
(𝑛) ∈ Θ(𝑓(𝑛), 𝑔

2
(𝑛)) and from

Proposition 22 we have that

ℎ (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) . (94)

Since

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = Θ (𝑔

1
(𝑛) , 𝑓 (𝑛)) ∪ Θ (𝑓 (𝑛) , 𝑔

2
(𝑛)) ,

(95)

then

ℎ (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑓 (𝑛)) (96)

or

ℎ (𝑛) ∈ Θ (𝑓 (𝑛) , 𝑔
2
(𝑛)) . (97)



Mathematical Problems in Engineering 9

Case 1. Consider ℎ(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑓(𝑛)).

From (93) and the relation ℎ(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑓(𝑛)), we have

that

∃𝑐
1
∈ R∗
+
, ∃𝑛
01
∈ N∗

such that 𝑔
2
(𝑛) ≤ 𝑐

1
⋅ 𝑓 (𝑛) , ∀𝑛 ∈ 𝑀

2
, 𝑛 ≥ 𝑛

01
.

(98)

Using the relation 𝑓(𝑛) ∈ 𝑜(𝑔
2
(𝑛)), it follows that

∀𝑐󸀠 ∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑓 (𝑛) < 𝑐󸀠 ⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(99)

We take in (99) 𝑐󸀠 = 1/𝑐
1
and we obtain that

∃𝑛
02
∈ N∗ such that 𝑓 (𝑛) < 1

𝑐
1

⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

02
. (100)

From (98), (100), and the fact that𝑀
2
is an infinite subset of

N∗, we obtain that

∃𝑛
0
= max (𝑛

01
, 𝑛
02
) , ∃𝑛 ∈ 𝑀

2
, 𝑛 ≥ 𝑛

0

such that 𝑔
2
(𝑛) ≤ 𝑐

1
⋅ 𝑓 (𝑛) < 𝑔

2
(𝑛)

(101)

which is a contradiction.
Case 2. Consider ℎ(𝑛) ∈ Θ(𝑓(𝑛), 𝑔

2
(𝑛)).

From (93) and the relation ℎ(𝑛) ∈ Θ(𝑓(𝑛), 𝑔
2
(𝑛)), we have

that

∃𝑐󸀠
1
∈ R∗
+
, ∃𝑛󸀠
01
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑓 (𝑛) ≤ 𝑔

1
(𝑛) , ∀𝑛 ∈ 𝑀

1
, 𝑛 ≥ 𝑛󸀠

01
.

(102)

Using the relation 𝑓(𝑛) ∈ 𝜔(𝑔
1
(𝑛)), it follows that

∀𝑐󸀠󸀠 ∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠 ⋅ 𝑔
1
(𝑛) < 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(103)

We take in (103) 𝑐󸀠󸀠 = 1/𝑐󸀠
1
and we obtain that

∃𝑛󸀠
02
∈ N∗ such that 1

𝑐󸀠
1

⋅ 𝑔
1
(𝑛) < 𝑓 (𝑛) , ∀𝑛 ≥ 𝑛󸀠

02
. (104)

From (102), (104), and the fact that𝑀
1
is an infinite subset of

N∗, we obtain that

∃𝑛󸀠
0
= max (𝑛󸀠

01
, 𝑛󸀠
02
) , ∃𝑛 ∈ 𝑀

1
, 𝑛 ≥ 𝑛󸀠

0

such that 𝑔
1
(𝑛) < 𝑐

󸀠

1
⋅ 𝑓 (𝑛) ≤ 𝑔

1
(𝑛)

(105)

which is a contradiction.

Proposition 24. Let 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)) and 𝑔

3
(𝑛) ∈ 𝑂(𝑔

4
(𝑛)). Then,

(a) if 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛)), then

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛))

= Θ (𝑔
2
(𝑛)) = Θ (𝑔

3
(𝑛)) ;

(106)

(b) if 𝑔
2
(𝑛) ∈ 𝑜(𝑔

3
(𝑛)), then

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = 0; (107)

(c) if 𝑔
2
(𝑛) ∈ 𝜔(𝑔

3
(𝑛)), 𝑔

2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)), and

𝑔
3
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)), then

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = Θ (𝑔

3
(𝑛) , 𝑔

2
(𝑛)) ,

(108)

where 𝑔
3
(𝑛) ∉ Θ(𝑔

2
(𝑛)).

Proof. (a) The relation

Θ(𝑔
2
(𝑛)) = Θ (𝑔

3
(𝑛)) (109)

is obvious from 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛)). We prove that

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = Θ (𝑔

2
(𝑛)) . (110)

(i) From the hypothesis, one can easily obtain that
Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) ̸= 0.

Let 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)). It follows

that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛
01
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

01
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛
02
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
3
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛

02
.

(111)

From the relation 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛)), we have that

∃𝑐󸀠󸀠󸀠
1
, 𝑐󸀠󸀠󸀠
2
∈ R∗
+
, ∃𝑛
03
∈ N∗

such that 𝑐󸀠󸀠󸀠
1
⋅ 𝑔
3
(𝑛) ≤ 𝑔

2
(𝑛) ≤ 𝑐

󸀠󸀠󸀠

2
⋅ 𝑔
3
(𝑛) , ∀𝑛 ≥ 𝑛

03
.

(112)

From (112), we have that

∃𝑐
3
=
1

𝑐󸀠󸀠󸀠
2

∈ R∗
+
, ∃𝑛
04
= 𝑛
03
∈ N∗

such that 𝑐
3
⋅ 𝑔
2
(𝑛) ≤ 𝑔

3
(𝑛) , ∀𝑛 ≥ 𝑛

04
.

(113)

Using (111) and (113), we obtain

∃𝑐
4
= 𝑐󸀠󸀠
1
⋅ 𝑐
3
, 𝑐
5
= 𝑐󸀠
2
∈ R∗
+
, ∃𝑛
05
= max (𝑛

01
, 𝑛
02
, 𝑛
04
) ∈ N∗

such that 𝑐
4
⋅ 𝑔
2
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

5
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

05
.

(114)

Consequently,

𝑓 (𝑛) ∈ Θ (𝑔
2
(𝑛)) . (115)

(ii) From Corollary 16, we have

Θ(𝑔
2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (116)



10 Mathematical Problems in Engineering

From (109) and Corollary 16, we have

Θ(𝑔
2
(𝑛)) = Θ (𝑔

3
(𝑛)) ⊆ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) . (117)

Using (116) and (117), we obtain that

Θ(𝑔
2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) . (118)

(b) Suppose for a contradiction that there exists 𝑓 ∈ F

such that 𝑓(𝑛) ∈ Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)). It follows

that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛
01
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

01
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛
02
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
3
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛

02
.

(119)

From the relation 𝑔
2
(𝑛) ∈ 𝑜(𝑔

3
(𝑛)), we have that

∀𝑐󸀠󸀠󸀠
1
∈ R∗
+
, ∃𝑛󸀠󸀠󸀠
0
∈ N∗

such that 𝑔
2
(𝑛) < 𝑐

󸀠󸀠󸀠

1
⋅ 𝑔
3
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠󸀠

0
.

(120)

We take in (120) 𝑐󸀠󸀠󸀠
1
= 𝑐󸀠󸀠
1
/𝑐󸀠
2
and we obtain that

∃𝑛
03
∈ N∗ such that 𝑐󸀠

2
⋅ 𝑔
2
(𝑛) < 𝑐

󸀠󸀠

1
⋅ 𝑔
3
(𝑛) , ∀𝑛 ≥ 𝑛

03
.

(121)

From (119) and (121), we have that

∃𝑛
0
= max (𝑛

01
, 𝑛
02
, 𝑛
03
) ∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓 (𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) < 𝑐

󸀠󸀠

1
⋅ 𝑔
3
(𝑛)

≤ 𝑓 (𝑛) ≤ 𝑐
󸀠󸀠

2
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛

0

(122)

which is a contradiction.
We conclude that

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) = 0. (123)

(c) From relation 𝑔
2
(𝑛) ∈ 𝜔(𝑔

3
(𝑛)), we have that

𝑔
2
(𝑛) ∈ Ω (𝑔

3
(𝑛)) . (124)

Thus, from Proposition 11, it follows that

Θ(𝑔
3
(𝑛) , 𝑔

2
(𝑛)) ̸= 0. (125)

Furthermore, we prove that 𝑔
3
(𝑛) ∉ Θ(𝑔

2
(𝑛)). Suppose for a

contradiction that 𝑔
3
(𝑛) ∈ Θ(𝑔

2
(𝑛)). It follows that

∃𝑐
1
, 𝑐
2
∈ R∗
+
, ∃𝑛
0
∈ N∗

such that 𝑐
1
⋅ 𝑔
2
(𝑛) ≤ 𝑔

3
(𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.
(126)

Thus, from (126), we have that

∃𝑐
1
=
1

𝑐
1

∈ R∗
+
, ∃𝑛
0
= 𝑛
0
∈ N∗

such that 𝑔
2
(𝑛) ≤ 𝑐

1
⋅ 𝑔
3
(𝑛) , ∀𝑛 ≥ 𝑛

0
.

(127)

From 𝑔
2
(𝑛) ∈ 𝜔(𝑔

3
(𝑛)), we have that

∀𝑐󸀠 ∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠 ⋅ 𝑔
3
(𝑛) < 𝑔

2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
.

(128)

We take in (128) 𝑐󸀠 = 𝑐
1
and we obtain that

∃𝑛
󸀠

0
∈ N∗ such that 𝑐

1
⋅ 𝑔
3
(𝑛) < 𝑔

2
(𝑛) , ∀𝑛 ≥ 𝑛

󸀠

0
. (129)

From (127) and (129), we obtain that

∃𝑛
0
= max (𝑛

0
, 𝑛
󸀠

0
) ∈ N∗

such that 𝑔
2
(𝑛) ≤ 𝑐

1
⋅ 𝑔
3
(𝑛) < 𝑔

2
(𝑛) , ∀𝑛 ≥ 𝑛

0

(130)

which is a contradiction. Consequently, we have 𝑔
3
(𝑛) ∉

Θ(𝑔
2
(𝑛)).

Now, we prove that Θ(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) =

Θ(𝑔
3
(𝑛), 𝑔
2
(𝑛)).

(i) First, we prove thatΘ(𝑔
1
(𝑛), 𝑔
2
(𝑛))∩Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) ⊆

Θ(𝑔
3
(𝑛), 𝑔
2
(𝑛)).

From the hypothesis one can easily obtain that Θ(𝑔
1
(𝑛),

𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) ̸= 0.

Let 𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)). It follows

that

∃𝑐󸀠
1
, 𝑐󸀠
2
∈ R∗
+
, ∃𝑛󸀠
0
∈ N∗

such that 𝑐󸀠
1
⋅ 𝑔
1
(𝑛) ≤ 𝑓

1
(𝑛) ≤ 𝑐

󸀠

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛󸀠

0
,

∃𝑐󸀠󸀠
1
, 𝑐󸀠󸀠
2
∈ R∗
+
, ∃𝑛󸀠󸀠
0
∈ N∗

such that 𝑐󸀠󸀠
1
⋅ 𝑔
3
(𝑛) ≤ 𝑓

1
(𝑛) ≤ 𝑐

󸀠󸀠

2
⋅ 𝑔
4
(𝑛) , ∀𝑛 ≥ 𝑛󸀠󸀠

0
.

(131)

From (131), we obtain that

∃𝑐
1
= 𝑐󸀠󸀠
1
, 𝑐
2
= 𝑐󸀠
2
∈ R∗
+
, ∃𝑛
0
= max (𝑛󸀠

0
, 𝑛󸀠󸀠
0
) ∈ N∗

such that 𝑐
1
⋅ 𝑔
3
(𝑛) ≤ 𝑓

1
(𝑛) ≤ 𝑐

2
⋅ 𝑔
2
(𝑛) , ∀𝑛 ≥ 𝑛

0
.
(132)

Consequently,

𝑓
1
(𝑛) ∈ Θ (𝑔

3
(𝑛) , 𝑔

2
(𝑛)) . (133)

(ii) We prove that Θ(𝑔
3
(𝑛), 𝑔
2
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) ∩

Θ(𝑔
3
(𝑛), 𝑔
4
(𝑛)).

Let𝑓
2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
2
(𝑛)). FromProposition 13,we have

𝑓
2
(𝑛) ∈ Ω (𝑔

3
(𝑛)) , (134)

𝑓
2
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) . (135)



Mathematical Problems in Engineering 11

From the hypothesis and Proposition 13, we have
𝑔
2
(𝑛) ∈ Ω (𝑔

3
(𝑛)) ∩ 𝑂 (𝑔

4
(𝑛)) , (136)

𝑔
3
(𝑛) ∈ Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) . (137)

From (134), (137), and Proposition 4 (transitivity of Ω), we
have that

𝑓
2
(𝑛) ∈ Ω (𝑔

1
(𝑛)) . (138)

From (135), (136), and Proposition 4 (transitivity of 𝑂), we
have that

𝑓
2
(𝑛) ∈ 𝑂 (𝑔

4
(𝑛)) . (139)

Using (135), (138), and Proposition 13, we have

𝑓
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (140)

Using (134), (139), and Proposition 13, we have

𝑓
2
(𝑛) ∈ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) . (141)

Consequently,

𝑓
2
(𝑛) ∈ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ∩ Θ (𝑔

3
(𝑛) , 𝑔

4
(𝑛)) . (142)

Proposition 25. Let 𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑘
∈ F such that 𝑔

𝑖
(𝑛) ∈

𝑂(𝑔
𝑖+1
(𝑛)), ∀𝑖 = 1, 2, . . . , 𝑘 − 1. Then

(a) Θ(𝑔
𝑖
(𝑛), 𝑔
𝑖+1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
𝑘
(𝑛)), ∀𝑖 = 1, 2, . . . , 𝑘 −

1;

(b) Θ(𝑔
𝑖
(𝑛), 𝑔
𝑖+1
(𝑛)) ∩ Θ(𝑔

𝑖+1
(𝑛), 𝑔
𝑖+2
(𝑛)) = Θ(𝑔

𝑖+1
(𝑛)),

∀𝑖 = 1, 2, . . . , k − 2;

(c) ⋃𝑘−1
𝑖=1
Θ(𝑔
𝑖
(𝑛), 𝑔
𝑖+1
(𝑛)) ⊆ Θ(𝑔

1
(𝑛), 𝑔
𝑘
(𝑛)).

Proof. (a) Let 𝑖 ∈ {1, 2, . . . , 𝑘 − 1} arbitrarily fixed.
From the hypothesis and Proposition 4 (transitivity of𝑂),

we have
𝑔
1
(𝑛) ∈ 𝑂 (𝑔

𝑖
(𝑛)) , (143)

𝑔
𝑖+1
(𝑛) ∈ 𝑂 (𝑔

𝑘
(𝑛)) . (144)

Let 𝑓(𝑛) ∈ Θ(𝑔
𝑖
(𝑛), 𝑔
𝑖+1
(𝑛)). Then, using Proposition 13, we

have
𝑓 (𝑛) ∈ Ω (𝑔

𝑖
(𝑛)) , (145)

𝑓 (𝑛) ∈ 𝑂 (𝑔
𝑖+1
(𝑛)) . (146)

From (143) and Proposition 4 (transpose symmetry), we have
𝑔
𝑖
(𝑛) ∈ Ω (𝑔

1
(𝑛)) . (147)

Thus, from (145), (147), and Proposition 4 (transitivity ofΩ),
we obtain

𝑓 (𝑛) ∈ Ω (𝑔
1
(𝑛)) . (148)

From (146), (144), and Proposition 4 (transitivity of 𝑂), we
obtain

𝑓 (𝑛) ∈ 𝑂 (𝑔
𝑘
(𝑛)) . (149)

Using (148), (149), and Proposition 13, we have that

𝑓 (𝑛) ∈ Θ (𝑔
1
(𝑛) , 𝑔

𝑘
(𝑛)) . (150)

(b) Let 𝑖 ∈ {1, 2, . . . , 𝑘 − 2} arbitrarily fixed. Since

𝑔
𝑖
(𝑛) ∈ 𝑂 (𝑔

𝑖+1
(𝑛)) (𝑔

𝑖+1
(𝑛) ∈ Ω (𝑔

𝑖
(𝑛))) ,

𝑔
𝑖+1
(𝑛) ∈ 𝑂 (𝑔

𝑖+2
(𝑛)) ,

(151)

we obtain, using Proposition 13, the relation

𝑔
𝑖+1
(𝑛) ∈ Θ (𝑔

𝑖
(𝑛) , 𝑔

𝑖+2
(𝑛)) . (152)

Next, using Proposition 20(b), we obtain that

Θ(𝑔
𝑖
(𝑛) , 𝑔

𝑖+1
(𝑛)) ∩ Θ (𝑔

𝑖+1
(𝑛) , 𝑔

𝑖+2
(𝑛)) = Θ (𝑔

𝑖+1
(𝑛)) .

(153)

(c) The proof results easily from (a).

6. Some Relations between
Complexity Functions

Proposition 26. Let 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)) and 𝑔

3
(𝑛) ∈ 𝑂(𝑔

4
(𝑛)). Let 𝑓

1
, 𝑓
2
∈ F such that

𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) and 𝑓

2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)). Then,

(a) if 𝑔
2
(𝑛) ∈ 𝑂(𝑔

3
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛));

(b) if 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛));

(c) if 𝑔
2
(𝑛) ∈ 𝑜(𝑔

3
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛));

(d) if 𝑔
2
(𝑛) ∈ 𝑜Θ(𝑔

3
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛)).

Proof. (a) From the hypothesis and Proposition 13, we have
that

𝑓
1
(𝑛) ∈ Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛)) ,

𝑓
2
(𝑛) ∈ Ω (𝑔

3
(𝑛)) ∩ 𝑂 (𝑔

4
(𝑛)) .

(154)

It follows that
𝑓
1
(𝑛) ∈ 𝑂 (𝑔

2
(𝑛)) ,

𝑔
3
(𝑛) ∈ 𝑂 (𝑓

2
(𝑛)) .

(155)

Next, using the relation 𝑔
2
(𝑛) ∈ 𝑂(𝑔

3
(𝑛)) and Proposition 4

(the transitivity of 𝑂), we obtain the relation

𝑓
1
(𝑛) ∈ 𝑂 (𝑓

2
(𝑛)) . (156)

In the end, using Definition 5, we obtain that

𝑓
1
(𝑛) ∈ 𝐶 (𝑓

2
(𝑛)) . (157)

((b), (c), and (d)) The proof follows from (a) using the
relations

Θ(𝑔
3
(𝑛)) ⊆ 𝑂 (𝑔

3
(𝑛)) ,

𝑜 (𝑔
3
(𝑛)) ⊆ 𝑂 (𝑔

3
(𝑛)) ,

𝑜Θ (𝑔
3
(𝑛)) ⊆ 𝑂 (𝑔

3
(𝑛)) .

(158)



12 Mathematical Problems in Engineering

Proposition 27. Let 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
∈ F such that 𝑔

1
(𝑛) ∈

𝑂(𝑔
2
(𝑛)), 𝑔

2
(𝑛) ∈ 𝜔(𝑔

3
(𝑛)), 𝑔

3
(𝑛) ∈ 𝑂(𝑔

4
(𝑛)), 𝑔

2
(𝑛) ∈

Θ(𝑔
3
(𝑛), 𝑔
4
(𝑛)), and 𝑔

3
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)). Let 𝑓

1
, 𝑓
2
∈ F

such that 𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)) and 𝑓

2
(𝑛) ∈ Θ(𝑔

3
(𝑛),

𝑔
4
(𝑛)). Then,

(a) if 𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
3
(𝑛)) and 𝑓

2
(𝑛) ∈ Θ(𝑔

3
(𝑛),

𝑔
2
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛));

(b) if 𝑓
1
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
2
(𝑛)) and 𝑓

2
(𝑛) ∈ Θ(𝑔

2
(𝑛),

𝑔
4
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛));

(c) if 𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
3
(𝑛)) and 𝑓

2
(𝑛) ∈ Θ(𝑔

2
(𝑛),

𝑔
4
(𝑛)), then 𝑓

1
(𝑛) ∈ 𝐶(𝑓

2
(𝑛)).

Proof. (a) Since 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) then, from

Proposition 13, we have that

𝑔
2
(𝑛) ∈ Ω (𝑔

3
(𝑛)) . (159)

Next, from Proposition 11, we have that

Θ(𝑔
3
(𝑛) , 𝑔

2
(𝑛)) ̸= 0. (160)

From 𝑓
1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
3
(𝑛)), 𝑓

2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
2
(𝑛)), and

Proposition 13, we obtain that

𝑓
1
(𝑛) ∈ 𝑂 (𝑔

3
(𝑛)) ,

𝑔
3
(𝑛) ∈ 𝑂 (𝑓

2
(𝑛)) .

(161)

Thus, from Proposition 4 (the transitivity of 𝑂), we have

𝑓
1
(𝑛) ∈ 𝑂 (𝑓

2
(𝑛)) . (162)

Consequently,

𝑓
1
(𝑛) ∈ 𝐶 (𝑓

2
(𝑛)) . (163)

((b) and (c))The proof follows the same idea used for (a).

Remark 28. In Proposition 27, the hypothesis 𝑔
2
(𝑛) ∈

𝜔(𝑔
3
(𝑛)) is not used in the proof.The purpose of this hypoth-

esis is to emphasize that Propositions 26 and 27 discuss
disjoint cases.

Proposition 29. There exist 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
, 𝑓
1
, 𝑓
2
∈ F with

the following properties: (i1) 𝑔
1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)), (i2) 𝑔

2
(𝑛) ∈

𝜔(𝑔
3
(𝑛)), (i3) 𝑔

3
(𝑛) ∈ 𝑂(𝑔

4
(𝑛)), (i4) 𝑔

3
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)),

(i5) 𝑔
2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)), (i6)𝑓

1
(𝑛) ∈ Θ(𝑔

1
(𝑛), 𝑔
2
(𝑛)), and

(i7) 𝑓
2
(𝑛) ∈ Θ(𝑔

3
(𝑛), 𝑔
4
(𝑛)) such that 𝑓

1
(𝑛) ∉ 𝐶(𝑓

2
(𝑛)).

Proof. Let 𝑔
1
(𝑛) = 𝑛, 𝑔

2
(𝑛) = 𝑛7, 𝑔

3
(𝑛) = 𝑛2, and 𝑔

4
(𝑛) = 𝑛9.

The properties (i1)–(i5) are easily verified since 𝑛 ∈ 𝑂(𝑛7),
𝑛7 ∈ 𝜔(𝑛2), 𝑛2 ∈ 𝑂(𝑛9), 𝑛2 ∈ Θ(𝑛, 𝑛7), and 𝑛7 ∈ Θ(𝑛2, 𝑛9).

Let

𝑓
1
(𝑛) = 𝑛

5,

𝑓
2
(𝑛) =

{
{
{

𝑛4, if 𝑛 ∈ 𝑀
1

𝑛6, if 𝑛 ∈ 𝑀
2
,

(164)

where 𝑀
1
and 𝑀

2
are two infinite subsets of N∗ such that

𝑀
1
∪𝑀
2
= N∗ and𝑀

1
∩𝑀
2
= 0. One can easily verify that

𝑓
1
(𝑛) ∈ Θ (𝑛, 𝑛

7) ,

𝑓
2
(𝑛) ∈ Θ (𝑛

2, 𝑛9) .

(165)

For proving that𝑓
1
(𝑛) ∉ 𝐶(𝑓

2
(𝑛)), we start from the following

relation (see Proposition 8):

𝐶 (𝑓
2
(𝑛)) = 𝑂 (𝑓

2
(𝑛)) ∪ Ω (𝑓

2
(𝑛)) . (166)

Suppose for a contradiction that

𝑓
1
(𝑛) ∈ 𝑂 (𝑓

2
(𝑛)) . (167)

It follows that

∃𝑐
1
∈ R∗
+
, ∃𝑛
01
∈ N∗

such that 𝑓
1
(𝑛) ≤ 𝑐

1
⋅ 𝑓
2
(𝑛) , ∀𝑛 ≥ 𝑛

01
.

(168)

Using (168) for 𝑛 ∈ {𝑚 ∈ 𝑀
1
| 𝑚 ≥ 𝑛

01
}, we obtain

𝑛5 ≤ 𝑐
1
⋅ 𝑛4 (169)

which is false for 𝑛 > 𝑐
1
. We know that there exists 𝑛 > 𝑐

1
,

𝑛 ∈ 𝑀
1
, because𝑀

1
is an infinite subset ofN∗. Consequently,

𝑓
1
(𝑛) ∉ 𝑂 (𝑓

2
(𝑛)) . (170)

Using the same idea one can prove that

𝑓
1
(𝑛) ∉ Ω (𝑓

2
(𝑛)) . (171)

From (170) and (171), it follows that

𝑓
1
(𝑛) ∉ 𝐶 (𝑓

2
(𝑛)) . (172)

7. The Set of Complexity Functions
Comparable with Two
Given Complexity Functions

Definition 30. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)). We

define the set of complexity functions comparable with 𝑔
1
(𝑛)

and 𝑔
2
(𝑛), denoted by 𝐶(𝑔

1
(𝑛), 𝑔
2
(𝑛)), as follows:

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= 𝑜 (𝑔
1
(𝑛)) ∪ 𝑜Θ (𝑔

1
(𝑛)) ∪ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛))

∪ Θ𝜔 (𝑔
2
(𝑛)) ∪ 𝜔 (𝑔

2
(𝑛)) .

(173)



Mathematical Problems in Engineering 13

Proposition 31. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= 𝑂 (𝑔
1
(𝑛)) ∪ (Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛))) ∪ Ω (𝑔

2
(𝑛)) .

(174)

Proof. From Definition 30, we have

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= 𝑜 (𝑔
1
(𝑛)) ∪ 𝑜Θ (𝑔

1
(𝑛))

∪ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ∪ Θ𝜔 (𝑔

2
(𝑛)) ∪ 𝜔 (𝑔

2
(𝑛)) .

(175)

From Corollary 16, we have that

Θ(𝑔
1
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ,

Θ (𝑔
2
(𝑛)) ⊆ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) .

(176)

It follows that

Θ(𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= Θ (𝑔
1
(𝑛)) ∪ Θ (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) ∪ Θ (𝑔

2
(𝑛)) .

(177)

Consequently, we obtain

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= (𝑜 (𝑔
1
(𝑛)) ∪ 𝑜Θ (𝑔

1
(𝑛)) ∪ Θ (𝑔

1
(𝑛)))

∪ Θ (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

∪ (Θ (𝑔
2
(𝑛)) ∪ Θ𝜔 (𝑔

2
(𝑛)) ∪ 𝜔 (𝑔

2
(𝑛))) .

(178)

Next, using Propositions 7 and 13, we have that

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= 𝑂 (𝑔
1
(𝑛)) ∪ (Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛))) ∪ Ω (𝑔

2
(𝑛)) .

(179)

Proposition 32. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

(a) 𝐶(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ⊆ 𝐶(𝑔

1
(𝑛));

(b) if 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)), then 𝐶(𝑔

1
(𝑛), 𝑔
2
(𝑛)) = 𝐶(𝑔

1
(𝑛)).

Proof. (a) From Proposition 31 it follows that

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ 𝑂 (𝑔

1
(𝑛)) ∪ Ω (𝑔

1
(𝑛)) ∪ Ω (𝑔

2
(𝑛)) .

(180)

Since 𝑔
1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)), we have that

Ω(𝑔
2
(𝑛)) ⊆ Ω (𝑔

1
(𝑛)) . (181)

From (180), (181), and Proposition 8, we obtain that

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) ⊆ 𝑂 (𝑔

1
(𝑛)) ∪ Ω (𝑔

1
(𝑛)) = 𝐶 (𝑔

1
(𝑛)) .

(182)

(b) Since 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)), one can easily prove that

𝑂 (𝑔
1
(𝑛)) = 𝑂 (𝑔

2
(𝑛)) ,

Ω (𝑔
1
(𝑛)) = Ω (𝑔

2
(𝑛)) .

(183)

Using (183) and Proposition 31, we have

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛))

= 𝑂 (𝑔
1
(𝑛)) ∪ (Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

1
(𝑛))) ∪ Ω (𝑔

1
(𝑛)) .

(184)

Next, from Proposition 4(e) we obtain that

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = 𝑂 (𝑔

1
(𝑛)) ∪ Θ (𝑔

1
(𝑛)) ∪ Ω (𝑔

1
(𝑛)) .

(185)

Consequently,

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = 𝑂 (𝑔

1
(𝑛)) ∪ Ω (𝑔

1
(𝑛)) . (186)

Thus, from Proposition 8, it follows that

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = 𝐶 (𝑔

1
(𝑛)) . (187)

Proposition 33. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

(a) 𝐶(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ⊆ 𝐶(𝑔

2
(𝑛));

(b) if 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)) then 𝐶(𝑔

1
(𝑛), 𝑔
2
(𝑛)) = 𝐶(𝑔

2
(𝑛)).

Proof. The proof follows the same idea used for proving
Proposition 32.

Proposition 34. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

(a) 𝐶(𝑔
1
(𝑛), 𝑔
2
(𝑛)) ⊆ 𝐶(𝑔

1
(𝑛)) ∪ 𝐶(𝑔

2
(𝑛));

(b) if 𝑔
1
(𝑛) ∈ Θ(𝑔

2
(𝑛)) then 𝐶(𝑔

1
(𝑛), 𝑔
2
(𝑛)) = 𝐶(𝑔

1
(𝑛)) ∪

𝐶(𝑔
2
(𝑛)).

Proof. The proof follows easily using Propositions 32 and 33.

Proposition 35. Let 𝑔
1
, 𝑔
2
∈ F such that 𝑔

1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)).

Then,

𝐶 (𝑔
1
(𝑛) , 𝑔

2
(𝑛)) = 𝐶 (𝑔

1
(𝑛)) ∩ 𝐶 (𝑔

2
(𝑛)) . (188)



14 Mathematical Problems in Engineering

Proof. Using Proposition 8, we have that

𝐶 (𝑔
1
(𝑛)) ∩ 𝐶 (𝑔

2
(𝑛))

= (𝑂 (𝑔
1
(𝑛)) ∪ Ω (𝑔

1
(𝑛))) ∩ (𝑂 (𝑔

2
(𝑛)) ∪ Ω (𝑔

2
(𝑛))) .

(189)

From (189), using the distributivity of intersection over
union, we obtain

𝐶 (𝑔
1
(𝑛)) ∩ 𝐶 (𝑔

2
(𝑛))

= (𝑂 (𝑔
1
(𝑛)) ∩ (𝑂 (𝑔

2
(𝑛)) ∪ Ω (𝑔

2
(𝑛))))

∪ (Ω (𝑔
1
(𝑛)) ∩ (𝑂 (𝑔

2
(𝑛)) ∪ Ω (𝑔

2
(𝑛))))

= (𝑂 (𝑔
1
(𝑛)) ∩O (𝑔

2
(𝑛))) ∪ (𝑂 (𝑔

1
(𝑛)) ∩ Ω (𝑔

2
(𝑛)))

∪ (Ω (𝑔
1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛))) ∪ (Ω (𝑔

1
(𝑛)) ∩ Ω (𝑔

2
(𝑛))) .

(190)

Next, using the relations 𝑔
1
(𝑛) ∈ 𝑂(𝑔

2
(𝑛)) and 𝑂(𝑔

1
(𝑛)) ∩

Ω(𝑔
2
(𝑛)) ⊆ 𝑂(𝑔

1
(𝑛)), we obtain that

𝐶 (𝑔
1
(𝑛)) ∩ 𝐶 (𝑔

2
(𝑛))

= 𝑂 (𝑔
1
(𝑛)) ∪ (Ω (𝑔

1
(𝑛)) ∩ 𝑂 (𝑔

2
(𝑛))) ∪ Ω (𝑔

2
(𝑛)) .

(191)

Consequently, using Proposition 31, we have

𝐶 (𝑔
1
(𝑛)) ∩ 𝐶 (𝑔

2
(𝑛)) = 𝐶 (𝑔

1
(𝑛) , 𝑔

2
(𝑛)) . (192)

8. Conclusions

In this paper, we defined a new asymptotic notation based on
two given complexity functions and then we proposed and
proved several properties of this new notation, classified in
the following four categories:

(i) relations between “WeakTheta” and other asymptotic
notations;

(ii) properties concerning membership, inclusion, inter-
section, and union;

(iii) some relations between complexity functions;

(iv) properties related to “Weak Theta” and the set of
complexity functions comparable with two given
complexity functions.

The main benefit of this new asymptotic notation is the
possibility to characterize a complexity function by catching
it between two given complexity functions, thus allowing
approximation of functions with complex behaviours that are
hard to be analyzed using other existent asymptotic notations.

Notations

N∗: The set of positive integers
R∗
+
: The set of positive real

numbers
F: The set of complexity

functions (see Definition 1)
𝑀
1
,𝑀
2
: Subsets of N∗

Θ,𝑂,Ω, 𝑜, 𝜔: The main asymptotic
notations used in the
literature (see Definition 3)

𝐶, 𝑜Θ,Θ𝜔: Other asymptotic notations
used in this paper (see
Definitions 5 and 6)

Θ : The new asymptotic
notation weak theta
defined in this paper (see
Definition 9)

𝑓, 𝑔, ℎ, 𝑓
1
, 𝑓
2
, 𝑔
1
, 𝑔
2
, 𝑔
3
, 𝑔
4
,

𝑔
1
, 𝑔
2
, . . . , 𝑔

𝑘
, 𝑔
𝑖
, 𝑔
𝑖+1
, 𝑔
𝑖+2

:
Complexity functions

𝑐, 𝑐󸀠, 𝑐󸀠󸀠, 𝑐󸀠, 𝑐
1
, 𝑐󸀠
1
, 𝑐󸀠󸀠
1
, 𝑐󸀠󸀠󸀠
1
, 𝑐
1
,

𝑐
1
, 𝑐
2
, 𝑐󸀠
2
, 𝑐󸀠󸀠
2
, 𝑐󸀠󸀠󸀠
2
, 𝑐
2
, 𝑐
3
, 𝑐󸀠
3
, 𝑐󸀠󸀠
3
,

𝑐
4
, 𝑐󸀠
4
, 𝑐󸀠󸀠
4
, 𝑐
5
:

Positive real constants

𝑛
0
, 𝑛󸀠
0
, 𝑛󸀠󸀠
0
, 𝑛󸀠󸀠󸀠
0
, 𝑛
0
, 𝑛󸀠
0
, 𝑛
0
, 𝑛
󸀠

0
,

𝑛
01
, 𝑛󸀠
01
, 𝑛
02
, 𝑛󸀠
02
, 𝑛
03
, 𝑛
04
,

𝑛
05
:

Positive integer constants

𝑛: The argument of the
complexity functions,
positive integer.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The work has been funded by the Sectoral Operational
Programme Human Resources Development 2007–2013 of
the Ministry of European Funds through the Financial
Agreement POSDRU/159/1.5/S/132397.

References

[1] S. Arora and B. Barak, ComplexityTheory: A Modern Approach,
Cambridge University Press, Cambridge, UK, 2008.

[2] O. Goldreich, Computational Complexity: A Conceptual Per-
spective, Cambridge University Press, Cambridge, UK, 2008.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Intro-
duction to Algorithms, MIT Press, Cambridge, Mass, USA, 2nd
edition, 2001.

[4] D. E. Knuth, The Art of Computer Programming, Vol. 1: Funda-
mental Algorithms, Addison-Wesley, Reading, Mass, USA, 3rd
edition, 1975.

[5] R. Greenlaw and H. Hoover, Fundamentals of the Theory
of Computation: Principles and Practice, Morgan Kaufmann
Publishers, San Francisco, Calif, USA, 1998.



Mathematical Problems in Engineering 15

[6] C. A. Giumale, Introduction to the Analysis of Algorithms:
Theory and Application, Polirom, Bucharest, Romania, 2004
(Romanian).

[7] A. H. Mogos and A. M. Florea, “A method to compare two
complexity functions using complexity classes,” UPB Scientific
Bulletin, Series A: Applied Mathematics and Physics, vol. 72, no.
2, pp. 69–84, 2010.

[8] J. H. Davenport, “Nauseating Notation Very Much in Draft,”
August 2013, http://staff.bath.ac.uk/masjhd/Drafts/Notation
.pdf.

[9] G. Brassard, “Crusade for a better notation,” ACM SIGACT
News, vol. 17, no. 1, pp. 60–64, 1985.

[10] M. Akra and L. Bazzi, “On the solution of linear recurrence
equations,” Computational Optimization and Applications, vol.
10, no. 2, pp. 195–210, 1998.

[11] S. Roura, “Improved master theorems for divide-and-conquer
recurrences,” Journal of the ACM, vol. 48, no. 2, pp. 170–205,
2001.

[12] O. Goldreich, P, NP, and NP-Completeness: The Basics of Com-
plexity Theory, Cambridge University Press, 2010.

[13] F. D. Lewis, Solving NP-Complete Problems, University of
Kentucky, 2013.

[14] V. V. Vazirani, Approximation Algorithms, Springer, New York,
NY, USA, 2003.

[15] A. S. Tanenbaum and D. J. Wetherall, Computer Networks,
Prentice Hall, 5th edition, 2011.

[16] A. S. Tanenbaum,Modern Operating Systems, Prentice Hall, 3rd
edition, 2008.

[17] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Princi-
ples and Paradigms, Prentice Hall, 2nd edition, 2007.

[18] S. Russell and P. Norvig, Artificial Intelligence: A Modern
Approach, Prentice-Hall, Upper Saddle River, NJ, USA, 3rd
edition, 2009.

[19] Y. Zhang, S. Balochian, P. Agarwal, V. Bhatnagar, and O. J.
Housheya, “Artificial intelligence and its applications,” Mathe-
matical Problems in Engineering, vol. 2014, Article ID 840491,
10 pages, 2014.

[20] Y. Zhang, P. Agarwal, V. Bhatnagar, S. Balochian, and X. Zhang,
“Swarm intelligence and its applications 2014,” The Scientific
World Journal, vol. 2014, Article ID 204294, 4 pages, 2014.

[21] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence,
Morgan Kaufmann Publishers, 2001.

[22] S.-C. Chu and P.-W. Tsai, “Computational intelligence based
on the behavior of cats,” International Journal of Innovative
Computing, Information and Control, vol. 3, no. 1, pp. 163–173,
2007.

[23] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim,
and M. Zaidi, “The bees algorithm, a novel tool for complex
optimisation problems,” in Proceedings of the 2nd International
Virtual Conference on Intelligent Production Machines and
Systems (IPROMS '06), pp. 454–459, July 2006.

[24] D. Karaboga and B. Basturk, “A powerful and efficient algo-
rithm for numerical function optimization: artificial bee colony
(ABC) algorithm,” Journal of Global Optimization, vol. 39, no. 3,
pp. 459–471, 2007.

[25] Y. Zhang, S.Wang, Y. Sun,G. Ji, P. Phillips, andZ.Dong, “Binary
structuring elements decomposition based on an improved
recursive dilation-union model and RSAPSO method,” Math-
ematical Problems in Engineering, vol. 2014, Article ID 272496,
12 pages, 2014.

[26] M. Wooldridge, An Introduction to MultiAgent Systems, John
Wiley & Sons, 2002.

[27] S. Li, H. Du, and X. Lin, “Finite-time consensus algorithm for
multi-agent systems with double-integrator dynamics,” Auto-
matica, vol. 47, no. 8, pp. 1706–1712, 2011.

[28] Q. Liu, J. Ma, and W. Xie, “Multiagent reinforcement learning
with regret matching for robot soccer,” Mathematical Problems
in Engineering, vol. 2013, Article ID 926267, 8 pages, 2013.

[29] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern
Analysis, Cambridge University Press, 2004.

[30] A. Smola and S. V. N. Vishwanathan, Introduction to Machine
Learning, Cambridge University Press, 2008.

[31] R. Studer, S. Grimm, and A. Abecker, Eds., Semantic Web Ser-
vices: Concepts, Technologies and Applications, Springer, New
York, NY, USA, 2007.

[32] A. H. Mogoş and A. M. Florea, “Classification and comparison
of several semantic web services composition methods,” in
Proceedings of the 13th International Conference on Informatics
in Economy (IE '14), pp. 690–697, Bucharest, Romania, May
2014.

[33] R. R. Howell, “On asymptotic notation with multiple vari-
ables,” Tech. Rep. 2007-4, 2008, http://people.cis.ksu.edu/∼
rhowell/asymptotic.pdf.

[34] A.-H. Mogos, “Three variants of the master theorem,” in Pro-
ceedings of the 19th International Conference on Control Systems
and Computer Science (CSCS ’13), pp. 162–166, Bucharest,
Romania, May 2013.

[35] N. Mondal and P. P. Ghosh, Another Asymptotic Notation:
‘Almost’, Cornell University Library, 2013, http://arxiv.org/pdf/
1304.5617.pdf.

[36] Q. F. Stout, “Standard Computer Science Notation and Mathe-
matics,” 2014, http://web.eecs.umich.edu/∼qstout/notation.pdf.

[37] Q. F. Stout, “Isotonic regression for multiple independent
variables,” Algorithmica, 2013.

[38] G. H. Hardy and E. M. Wright, An Introduction to the Theory
of Numbers, Oxford University Press, Oxford, UK, 6th edition,
2008.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


