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We are interested in the numerical solution of mean-reverting CEV processes that appear in financial mathematics models and
are described as nonnegative solutions of certain stochastic differential equations with sublinear diffusion coefficients of the form
(𝑥

𝑡
)
𝑞
, where 1/2 < 𝑞 < 1. Our goal is to construct explicit numerical schemes that preserve positivity. We prove convergence of the

proposed SD scheme with rate depending on the parameter 𝑞. Furthermore, we verify our findings through numerical experiments
and compare with other positivity preserving schemes. Finally, we show how to treat the two-dimensional stochastic volatility
model with instantaneous variance process given by the above mean-reverting CEV process.

1. Introduction

Consider the following stochastic models in Itô form:

𝑆
𝑡
= 𝑆

0
+ ∫

𝑡

0

𝜇 ⋅ 𝑆
𝑢
𝑑𝑢 + ∫

𝑡

0

(𝑉
𝑢
)
𝑝

⋅ 𝑆
𝑢
𝑑𝑊

𝑢
, 𝑡 ∈ [0, 𝑇] ,

𝑉
𝑡
= 𝑉

0
+ ∫

𝑡

0

(𝑘
1

− 𝑘
2
𝑉
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑘
3
(𝑉

𝑠
)
𝑞

𝑑�̃�
𝑠

𝑡 ∈ [0, 𝑇] ,

(1)

where 𝑆
𝑡
represents the underlying financially observable

variable, 𝑉
𝑡
is the instantaneous volatility when 𝑝 = 1 or

the instantaneous variance when 𝑝 = 1/2, and the Wiener
processes (𝑊

𝑡
), (�̃�

𝑡
) have correlation 𝜌.

We assume that (𝑉
𝑡
) is a mean-reverting CEV process of

the above form, with the coefficients 𝑘
𝑖

> 0 for 𝑖 = 1, 2, 3

and 𝑞 > 1/2, since the process (𝑉
𝑡
) has to be nonnegative. To

be more precise the above restriction on 𝑞 implies that (𝑉
𝑡
)

is positive; that is, 0 is unattainable, as well as nonexplosive;
that is, ∞ is unattainable, as can be verified by Feller’s
classification of boundaries [17, Proposition 5.22] (see also
Appendix A).The steady-state level of𝑉

𝑡
is 𝑘

1
/𝑘

2
and the rate

of mean-reversion is 𝑘
2
.

System (1) for 𝑝 = 𝑞 = 1/2 is the Heston model. When
𝑞 = 1 we get the Brennan-Schwartz model [2, Section II] that

despite its simple form cannot provide analytical expressions
for 𝑆

𝑡
.

Process (𝑉
𝑡
) for 𝑞 = 1/2, also known as the CIR process

[6, (13)], by the initials of the authors that proposed it for the
term structure of interest rates, has received a lot of attention
and we just mention the latest two contributions to the study
of such processes (see [4, 5] and references therein).

Process (𝑉
𝑡
) for 1/2 ≤ 𝑞 ≤ 1 has been also considered

for the dynamics of the short-term interest rate [3, (1)]. The
stationary distribution of the process has also been derived in
[7, Proposition 2.2].

We aim for a positivity preserving scheme for the process
(𝑉

𝑡
). The scheme that we propose and denote as semidiscrete

(SD) preserves the analytical property of (𝑉
𝑡
) staying positive.

The idea of the semidiscrete method is that we discretize a
part of the original SDE and then apply Itô’s formula (cf.
[8] where the method originally appeared and [5, 9, 23]).
The explicit Euler scheme fails to preserve positivity, as well
as the standard Milstein scheme. We intend to apply the
semidiscretemethod for the numerical approximation of (𝑉

𝑡
)

in model (1) with 1/2 < 𝑞 < 1 and compare with other
positivity preserving methods such as the balanced implicit
method (BIM) (introduced by [11, (3.2)] with the positivity
preserving property [25, Section 5] and its stability properties
[13]; see also [14] for an extended balanced method with
better stability behavior) and the balanced Milstein method
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(BMM) [25,Theorem 5.9] (we give in Appendix B the form of
all the above schemes for the approximation of (𝑉

𝑡
)). Finally,

we approximate the stochastic volatility model (1) with 𝑝 =

1/2. In [15] a thorough treatment can be found, where also
another stochastic volatility model is suggested.

Section 2 provides the setting and the main results,Theo-
rems 1 and 2, concerning theL2-convergence of the proposed
semidiscrete method to the true solution of mean-reverting
CEV processes of the form of the stochastic volatility in
(1). The rate of mean-square convergence in Theorem 1 is
logarithmic and inTheorem 2 is polynomial with magnitude
(1/2)(𝑞−1/2).Themain ingredient of the approach we adopt,
inspired by [16], is a change of the initial Brownian motion
(𝑊

𝑡
) to another Brownian motion (�̂�

𝑡
) justified by Lévy’s

martingale characterization of Brownian motion.
Section 3 is devoted to the logarithmic rate of conver-

gence of the proposed semidiscrete scheme, while Section 4
concerns the proof of the polynomial rate of convergence.
In Section 5 we briefly discuss the case where we do not
alter the initial Brownian motion (𝑊

𝑡
). This approach pro-

duces reduced convergence rate. Finally, Section 6 presents
illustrative figures where the behavior of the proposed
scheme, regarding the order of convergence, is shown and
a comparison with BIM and BMM schemes is given. In
Section 7 we treat the full model (1) for a special case.
Concluding remarks are in Section 8 and in Appendix B we
briefly present numerical schemes for the integration of the
variance-volatility process (𝑉

𝑡
).

2. The Setting and the Main Results

We consider the following SDE:

𝑥
𝑡
= 𝑥

0
+ ∫

𝑡

0

(𝑘
1

− 𝑘
2
𝑥
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑘
3
(𝑥

𝑠
)
𝑞

𝑑𝑊
𝑠
,

𝑡 ∈ [0, 𝑇] ,

(2)

where 𝑘
1
, 𝑘

2
, 𝑘

3
are positive and 1/2 < 𝑞 < 1. Then, Feller’s

test implies that there is a unique strong solution such that
𝑥
𝑡
> 0 a.s. when 𝑥

0
> 0 a.s. Let

𝑓
𝜃
(𝑥, 𝑦)

= 𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑥 − ((𝑘

3
)
2

/4 (1 + 𝑘
2
𝜃Δ)) 𝑥

2𝑞−1
− 𝑘

2
𝜃𝑦⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
1
(𝑥,𝑦)

+ ((𝑘
3
)
2

/4 (1 + 𝑘
2
𝜃Δ)) 𝑥

2𝑞−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑓
2
(𝑥)

,

(3)

𝑔 (𝑥, 𝑦) = 𝑘
3
𝑥
𝑞−1/2

√𝑦, (4)

where 𝑓(𝑥, 𝑥) = 𝑎(𝑥) = 𝑘
1

− 𝑘
2
𝑥 and 𝑔(𝑥, 𝑥) = 𝑏(𝑥) = 𝑘

3
𝑥𝑞.

Let the partition 0 = 𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑁

= 𝑇withΔ = 𝑇/𝑁

and consider the following process:

𝑦
SD
𝑡

(𝑞) = 𝑦
𝑡
𝑛

+ 𝑓
1
(𝑦

𝑡
𝑛

, 𝑦
𝑡
) ⋅ Δ + ∫

𝑡

𝑡
𝑛

𝑓
2
(𝑦

𝑡
𝑛

) 𝑑𝑠

+ ∫
𝑡

𝑡
𝑛

sgn (𝑧
𝑠
) 𝑔 (𝑦

𝑡
𝑛

, 𝑦
𝑠
) 𝑑𝑊

𝑠
,

(5)

with 𝑦
0

= 𝑥
0
a.s. or more explicitly

𝑦
SD
𝑡

(𝑞) = 𝑦
𝑡
𝑛

+ (𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑡
𝑛

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛

)
2𝑞−1

− 𝑘
2
𝜃𝑦

𝑡
) ⋅ Δ

+ ∫
𝑡

𝑡
𝑛

(𝑘
3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛

)
2𝑞−1

𝑑𝑠 + 𝑘
3
(𝑦

𝑡
𝑛

)
𝑞−1/2

⋅ ∫
𝑡

𝑡
𝑛

sgn (𝑧
𝑠
) √𝑦

𝑠
𝑑𝑊

𝑠
,

(6)

for 𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

], where 𝜃 ∈ [0, 1] represents the level of
implicitness and

𝑧
𝑡
= √𝑦

𝑛
+

𝑘
3

2 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛

)
𝑞−1/2

(𝑊
𝑡
− 𝑊

𝑡
𝑛

) , (7)

with

𝑦
𝑛
fl𝑦

𝑡
𝑛

(1 −
𝑘
2
Δ

1 + 𝑘
2
𝜃Δ

) +
𝑘
1
Δ

1 + 𝑘
2
𝜃Δ

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

2
(𝑦

𝑡
𝑛

)
2𝑞−1

Δ.

(8)

Process (6) is well defined when 𝑦
𝑛

≥ 0 and this is true
when (1/(1 + 𝑘

2
𝜃Δ))(𝑘

3
)
2

≤ 4(𝑘
2

∧ 𝑘
1
) and Δ(2 − 𝜃) ≤ 1/𝑘

2
.

Furthermore, (6) has jumps at nodes 𝑡
𝑛
. Solving for𝑦

𝑡
, we end

up with the following explicit scheme:

𝑦
SD
𝑡

(𝑞) = 𝑦
𝑛

+ ∫
𝑡

𝑡
𝑛

(𝑘
3
)
2

4 (1 + 𝑘
2
𝜃Δ)

2
(𝑦

𝑡
𝑛

)
2𝑞−1

𝑑𝑠

+
𝑘
3

1 + 𝑘
2
𝜃Δ

(𝑦
𝑡
𝑛

)
𝑞−1/2

∫
𝑡

𝑡
𝑛

sgn (𝑧
𝑠
) √𝑦

𝑠
𝑑𝑊

𝑠
,

(9)

with solution in each step given by [1, (4.39), page 123]

𝑦
SD
𝑡

(𝑞) = (𝑧
𝑡
)
2

, (10)

which has the pleasant feature 𝑦SD
𝑡

(𝑞) ≥ 0.

Inspired by [16] we remove the term sgn(𝑧
𝑠
) from (6) by

considering the process

�̃�
𝑡
= ∫

𝑡

0

sgn (𝑧
𝑠
) 𝑑𝑊

𝑠
, (11)

which is a martingale with quadratic variation ⟨�̃�
𝑡
, �̃�

𝑡
⟩ = 𝑡

and thus a standard Brownian motion with respect to its own



Journal of Probability and Statistics 3

filtration, justified by Lévy’s theorem [17, Theorem 3.16, page
157]. Therefore, the compact form of (6) becomes

𝑦
SD
𝑡

= 𝑥
0

+ ∫
𝑡

0

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑠
− 𝑘

2
𝜃𝑦

𝑠
) 𝑑𝑠

+ ∫
𝑡
𝑛+1

𝑡

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑡
𝑛

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛

)
2𝑞−1

− 𝑘
2
𝜃𝑦

𝑡
) 𝑑𝑠

+ 𝑘
3
∫
𝑡

0

(𝑦
𝑠
)
𝑞−1/2

√𝑦
𝑠
𝑑�̃�

𝑠
,

(12)

for 𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] where

𝑠 = 𝑡
𝑗
, 𝑠 ∈ (𝑡

𝑗
, 𝑡
𝑗+1

] , 𝑗 = 0, . . . , 𝑛,

𝑠 =
{

{

{

𝑡
𝑗+1

, for 𝑠 ∈ [𝑡
𝑗
, 𝑡
𝑗+1

] ,

𝑡, for 𝑠 ∈ [𝑡
𝑛
, 𝑡]

𝑗 = 0, . . . , 𝑛 − 1.

(13)

Consider also the process

𝑥
𝑡
= 𝑥

0
+ ∫

𝑡

0

(𝑘
1

− 𝑘
2
𝑥
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑘
3
(𝑥

𝑠
)
𝑞

𝑑�̃�
𝑠
,

𝑡 ∈ [0, 𝑇] .

(14)

The process (𝑥
𝑡
) of (2) and the process (𝑥

𝑡
) of (14) have

the same distribution. We show in the following that
E sup

0≤𝑡≤𝑇
|𝑦SD
𝑡

(𝑞) − 𝑥
𝑡
|2 → 0 as Δ ↓ 0; thus the same holds

for the unique solution of (2); that is, E sup
0≤𝑡≤𝑇

|𝑦SD
𝑡

(𝑞) −

𝑥
𝑡
|2 → 0 as Δ ↓ 0. To simplify notation we write �̃�, (𝑥

𝑡
)

as 𝑊, (𝑥
𝑡
). We end up with the following explicit scheme:

𝑦
SD
𝑡

(𝑞) = 𝑦
𝑛

+ ∫
𝑡

𝑡
𝑛

(𝑘
3
)
2

4 (1 + 𝑘
2
𝜃Δ)

2
(𝑦

𝑡
𝑛

)
2𝑞−1

𝑑𝑠

+
𝑘
3

1 + 𝑘
2
𝜃Δ

(𝑦
𝑡
𝑛

)
𝑞−1/2

∫
𝑡

𝑡
𝑛

√𝑦
𝑠
𝑑𝑊

𝑠
,

(15)

where 𝑦
𝑛
is as in (8).

AssumptionA. Let the parameters 𝑘
1
, 𝑘

2
, 𝑘

3
be positive such

that (1/(1+𝑘
2
𝜃Δ))(𝑘

3
)
2

≤ 4(𝑘
2
∧𝑘

1
) and consider Δ > 0 such

that Δ(2 − 𝜃) < 1/𝑘
2
, for 𝜃 ∈ [0, 1]. Moreover assume 𝑥

0
≥ 0

a.s. and E(𝑥
0
)
𝑝

< 𝐴 for some 𝑝 ≥ 4.

Theorem 1 (logarithmic rate of convergence). Let Assump-
tion A hold. The semidiscrete scheme (15) converges to the true
solution of (2) in the mean-square sense with rate given by

E sup
0≤𝑡≤𝑇


𝑦
𝑆𝐷

𝑡
(𝑞) − 𝑥

𝑡



2

≤
𝐶

√ln (Δ)
−1

, (16)

where 𝐶 is independent of Δ and given by

𝐶fl32√
6

𝜖
(𝑘

3
)
4

𝑇
2
𝑒
6𝑇
2
(𝑘
2
)
2
+𝑘
2
𝑇
, (17)

where 0 < 𝜖 < 𝑞 − 1/2.

Assumption B. Let Assumption A hold where now 𝑥
0

∈ R

and 𝑥
0

> 0.

Theorem 2 (polynomial rate of convergence). Let Assump-
tion B hold. Then the semidiscrete scheme (15) converges to the
true solution of (2) in the mean-square sense with rate given by

E sup
0≤𝑡≤𝑇


𝑦
𝑆𝐷

𝑡
(𝑞) − 𝑥

𝑡



2

≤ 𝐶Δ
(𝑞−1/2)

, (18)

where

𝐶fl16 (𝑘
3
)
2

𝑇√𝐴
2
(𝑥

0
+ 𝑘

1
𝑇)

2
√𝐴

4𝑞−2
(2𝑒

6(𝑘
2
)
2
𝑇
2

+
𝐶
𝐻𝐾

𝜖 − 1
(𝑥

0
)
(1−𝑞)](𝜆)

) ,

(19)

and 𝐶
𝐻𝐾

is the constant described in (83) and 𝜆 is an
appropriately chosen positive parameter which satisfies (84)
and always exists, ](𝜆)fl𝜆/2(1 − 𝑞)

2
(𝑘

3
)
2

− 1, and 𝜖 > 1.

In the following sections we write for simplicity 𝑦SD
𝑡

or 𝑦
𝑡

for 𝑦SD
𝑡

(𝑞).

3. Logarithmic Rate of Convergence

3.1. Moment Bounds

Lemma 3 (moment bound for SD approximation). It holds
that

E sup
0≤𝑡≤𝑇

(𝑦
𝑡
)
𝑝

≤ 𝐴
𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

, (20)

for any 𝑝 > 2, where 𝐴
𝑝
flexp{(𝑝(𝑝 − 1)/2)(𝑘

3
)
2
((𝑝 − 1)/2𝑝 +

2𝑝−1/𝑝)𝑇}.

Proof of Lemma 3. Wefirst observe that (𝑦
𝑡
) is bounded in the

following way:

0 ≤ 𝑦
𝑡
≤ 𝑥

0
+ ∫

𝑡

0

𝑘
1
𝑑𝑠 + 𝑘

3
∫
𝑡

0

(𝑦
𝑠
)
𝑞−1/2

√𝑦
𝑠
𝑑𝑊

𝑠

≤ 𝑥
0

+ 𝑘
1
𝑇 + 𝑘

3
∫
𝑡

0

(𝑦
𝑠
)
𝑞−1/2

√𝑦
𝑠
𝑑𝑊

𝑠
fl𝑢

𝑡
,

(21)

a.s., where the lower bound comes from the construction
of (𝑦

𝑡
) and the upper bound follows from a comparison

theorem.Wewill bound (𝑢
𝑡
) and therefore (𝑦

𝑡
), since 0 ≤ 𝑦

𝑡
≤

𝑢
𝑡
a.s. Set the stopping time 𝜏

𝑅
fl inf{𝑡 ∈ [0, 𝑇] : 𝑢

𝑡
> 𝑅}, for

𝑅 > 0 with the convention inf 0 = ∞. Application of Itô’s
formula on (𝑢

𝑡∧𝜏
𝑅

)
𝑝 implies

(𝑢
𝑡∧𝜏
𝑅

)
𝑝

= (𝑥
0

+ 𝑘
1
𝑇)

𝑝

+
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

⋅ ∫
𝑡∧𝜏
𝑅

0

(𝑢
𝑠
)
𝑝−2

(𝑦
𝑠
)
2𝑞−1

𝑦
𝑠
𝑑𝑠

+ 𝑝𝑘
3
∫
𝑡∧𝜏
𝑅

0

(𝑢
𝑠
)
𝑝−1

(𝑦
𝑠
)
𝑞−1/2

√𝑦
𝑠
𝑑𝑊

𝑠
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≤ (𝑥
0

+ 𝑘
1
𝑇)

𝑝

+
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

⋅ ∫
𝑡∧𝜏
𝑅

0

(𝑢
𝑠
)
𝑝−1

(𝑦
𝑠
)
2𝑞−1

𝑑𝑠 + 𝑀
𝑡
≤ (𝑥

0
+ 𝑘

1
𝑇)

𝑝

+
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

⋅ ∫
𝑡∧𝜏
𝑅

0

(
𝑝 − 1

2𝑝
(𝑢

𝑠
)
𝑝

+
2𝑝−1

𝑝
(𝑦

𝑠
)
(2𝑞−1)𝑝

) 𝑑𝑠 + 𝑀
𝑡

≤ (𝑥
0

+ 𝑘
1
𝑇)

𝑝

+
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

(
𝑝 − 1

2𝑝
+

2
𝑝−1

𝑝
)

⋅ ∫
𝑡∧𝜏
𝑅

0

(𝑢
𝑠
)
𝑝

𝑑𝑠 + 𝑀
𝑡
,

(22)

where in the second step we have used the fact that 0 ≤

𝑦
𝑡

≤ 𝑢
𝑡
, in the third step the inequality 𝑥𝑝−1𝑦 ≤ 𝜖((𝑝 −

1)/𝑝)𝑥𝑝 + (1/𝑝𝜖𝑝−1)𝑦𝑝, valid for 𝑥 ∧ 𝑦 ≥ 0 and 𝑝 > 1

with 𝜖 = 1/2, and in the final step the fact that 1/2 <

𝑞 < 1 and 𝑀
𝑡
fl𝑝𝑘

3
∫
𝑡∧𝜏
𝑅

0
(𝑢

𝑠
)
𝑝−1

(𝑦
𝑠
)
𝑞−1/2

√𝑦
𝑠
𝑑𝑊

𝑠
. Taking

expectations in the above inequality and using that 𝑀
𝑡
is a

local martingale vanishing at 0, we get

E (𝑢
𝑡∧𝜏
𝑅

)
𝑝

≤ E (𝑥
0

+ 𝑘
1
𝑇)

𝑝

+
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

⋅ (
𝑝 − 1

2𝑝
+

2
𝑝−1

𝑝
) ∫

𝑡

0

E (𝑢
𝑠∧𝜏
𝑅

)
𝑝

𝑑𝑠

≤ E (𝑥
0

+ 𝑘
1
𝑇)

𝑝

⋅ exp{
𝑝 (𝑝 − 1)

2
(𝑘

3
)
2

(
𝑝 − 1

2𝑝
+

2
𝑝−1

𝑝
) 𝑇}

≤ 𝐴
𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

,

(23)

where we have applied the Gronwall inequality [18, (7)]. We
have that

(𝑦
𝑡∧𝜏
𝑅

)
𝑝

= (𝑦
𝜏
𝑅

)
𝑝

I
{𝜏
𝑅
≤𝑡}

+ (𝑦
𝑡
)
𝑝

I
{𝑡<𝜏
𝑅
}
≥ (𝑦

𝑡
)
𝑝

I
{𝑡<𝜏
𝑅
}
. (24)

Thus taking expectations in the above inequality and using
the estimated upper bound for E(𝑢

𝑡∧𝜏
𝑅

)
𝑝 we arrive at

E (𝑦
𝑡
)
𝑝

I
{𝑡<𝜏
𝑅
}
≤ E (𝑦

𝑡∧𝜏
𝑅

)
𝑝

≤ E (𝑢
𝑡∧𝜏
𝑅

)
𝑝

≤ 𝐴
𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

,

(25)

and, taking the limit as 𝑅 → ∞, we get

lim
𝑅→∞

E (𝑦
𝑡
)
𝑝

I
{𝑡<𝜏
𝑅
}
≤ 𝐴

𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

. (26)

Let us fix 𝑡. The sequence of stopping times 𝜏
𝑅
is increasing

in 𝑅 and 𝑡 ∧ 𝜏
𝑅

→ 𝑡 as 𝑅 → ∞, and thus the sequence
(𝑦

𝑡
)
𝑝
I
{𝑡<𝜏
𝑅
}
is nondecreasing in 𝑅 and (𝑦

𝑡
)
𝑝
I
{𝑡<𝜏
𝑅
}

→ (𝑦
𝑡
)
𝑝 as

𝑅 → ∞.Application of the monotone convergence theorem
implies

E (𝑦
𝑡
)
𝑝

≤ 𝐴
𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

, (27)

for any 𝑝 > 2. Using again Itô’s formula on (𝑢
𝑡
)
𝑝, taking

the supremum, and then using Doob’s martingale inequality
on the diffusion term we bound E sup

0≤𝑡≤𝑇
(𝑢

𝑡
)
𝑝 and thus

E sup
0≤𝑡≤𝑇

(𝑦
𝑡
)
𝑝
.

Lemma 4 (error bound for SD scheme). Let 𝑛
𝑠
be an integer

such that 𝑠 ∈ [𝑡
𝑛
𝑠

, 𝑡
𝑛
𝑠
+1

]. Then

E
𝑦𝑠 − 𝑦

𝑠


𝑝

≤ 𝐴
𝑝
Δ
𝑝/2

,

E
𝑦𝑠 − 𝑦

𝑠


𝑝

< 𝐴
𝑝
Δ
𝑝/2

,

(28)

for any 𝑝 > 0, where the positive quantities 𝐴
𝑝
, 𝐴

𝑝
do not

depend on Δ.

Proof of Lemma 4. First we take a 𝑝 > 2. We get that

𝑦𝑠 − 𝑦
𝑠


𝑝

=



∫
𝑠

𝑡
𝑛𝑠

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

�̂�
− 𝑘

2
𝜃𝑦

�̃�
) 𝑑𝑢

+ ∫
𝑡
𝑛𝑠+1

𝑡
𝑛𝑠

𝑘
2
𝜃𝑦

𝑠
𝑑𝑢 − ∫

𝑡
𝑛𝑠+1

𝑠

𝑘
2
𝜃𝑦

𝑠
𝑑𝑢

+ ∫
𝑡
𝑛𝑠

𝑠

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑡
𝑛𝑠

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛𝑠

)
2𝑞−1

) 𝑑𝑢

+ 𝑘
3
∫
𝑠

𝑡
𝑛𝑠

(𝑦
�̂�
)
𝑞−1/2

√𝑦
𝑢
𝑑𝑊

𝑢



𝑝

≤ 5
𝑝−1

(


∫
𝑠

𝑡
𝑛𝑠

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

�̂�
− 𝑘

2
𝜃𝑦

�̃�
) 𝑑𝑢



𝑝

+ (𝑘
2
)
𝑝

𝜃
𝑝

(𝑦
𝑠
)
𝑝

(𝑡
𝑛
𝑠
+1

− 𝑡
𝑛
𝑠

)
𝑝

+ (𝑘
2
)
𝑝

𝜃
𝑝

(𝑦
𝑠
)
𝑝

(𝑡
𝑛
𝑠
+1

− 𝑠)
𝑝

+



∫
𝑡
𝑛𝑠

𝑠

(𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑡
𝑛𝑠

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛𝑠

)
2𝑞−1

) 𝑑𝑢



𝑝

+ (𝑘
3
)
𝑝


∫
𝑠

𝑡
𝑛𝑠

(𝑦
�̂�
)
𝑞−1/2

√𝑦
𝑢
𝑑𝑊

𝑢



𝑝

)

≤ 5
𝑝−1

(

𝑡
𝑛
𝑠

− 𝑠


𝑝−1

∫
𝑠

𝑡
𝑛𝑠

𝑘1 − 𝑘
2
(1 − 𝜃) 𝑦

�̂�
− 𝑘

2
𝜃𝑦

�̃�


𝑝

𝑑𝑢

+ (𝑘
2
)
𝑝

𝜃
𝑝

((𝑦
𝑠
)
𝑝

+ (𝑦
𝑠
)
𝑝

) Δ
𝑝

+



𝑘
1

− 𝑘
2
(1 − 𝜃) 𝑦

𝑡
𝑛𝑠

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

(𝑦
𝑡
𝑛𝑠

)
2𝑞−1



𝑝

Δ
𝑝

+ (𝑘
3
)
𝑝


∫
𝑠

𝑡
𝑛𝑠

(𝑦
�̂�
)
𝑞−1/2

√𝑦
𝑢
𝑑𝑊

𝑢



𝑝

) ,

(29)

where we have used the Cauchy-Schwarz inequality. Taking
expectations in the above inequality and using Lemma 3
and Doob’s martingale inequality on the diffusion term we
conclude

E
𝑦𝑠 − 𝑦

𝑠


𝑝

≤ 𝐴
𝑝
Δ
𝑝/2

, (30)
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where the positive quantity 𝐴
𝑝
, except on 𝑝, depends also on

the parameters 𝑘
1
, 𝑘

2
, 𝑘

3
, 𝜃, 𝑞, but not on Δ. Now, for 0 <

𝑝 < 2, we get

E
𝑦𝑠 − 𝑦

𝑠


𝑝

≤ (E
𝑦𝑠 − 𝑦

𝑠


2

)
𝑝/2

≤ 𝐴
𝑝
Δ
𝑝/2

, (31)

where we have used Jensen’s inequality for the concave
function 𝜙(𝑥) = 𝑥

𝑝/2
. Following the same lines, we can show

that

E
𝑦𝑠 − 𝑦

𝑠


𝑝

≤ 𝐴
𝑝
Δ
𝑝/2

, (32)

for any 0 < 𝑝, where the positive quantity 𝐴
𝑝
, except on 𝑝,

depends also on the parameters 𝑘
1
, 𝑘

2
, 𝑘

3
, 𝜃, 𝑞, but not on

Δ.

For the rest of this section we rewrite again the compact
form of (12) in the following way:

𝑦
SD
𝑡

= 𝑥
0

+ ∫
𝑡

0

𝑓
𝜃
(𝑦

𝑠
, 𝑦

𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) 𝑑𝑊

𝑠
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

ℎ
𝑡

+ ∫
𝑡
𝑛+1

𝑡

𝑓
1
(𝑦

𝑡
𝑛

, 𝑦
𝑡
) 𝑑𝑠,

(33)

where 𝑓
𝜃
(⋅, ⋅) is given by (3) and the auxiliary process (ℎ

𝑡
) is

close to (𝑦
𝑡
) as shown in the next result.

Lemma 5 (moment bounds involving the auxiliary process).
For any 𝑠 ∈ [0, 𝑇] it holds that

E
ℎ𝑠 − 𝑦

𝑠


𝑝

≤ 𝐶
𝑝
Δ
𝑝
,

E
ℎ𝑠


𝑝

≤ 𝐶
ℎ
,

(34)

and for 𝑠 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] one has that

E
ℎ𝑠 − 𝑦

𝑠


𝑝

≤ 𝐶
𝑝
Δ
𝑝/2

,

E
ℎ𝑠 − 𝑦

𝑠


𝑝

≤ 𝐶
𝑝
Δ
𝑝/2

,

(35)

for any 𝑝 > 0, where the positive quantities 𝐶
𝑝
, 𝐶

𝑝
, 𝐶

𝑝
, 𝐶

ℎ

do not depend on Δ.

Proof of Lemma 5. We have that

ℎ𝑠 − 𝑦
𝑠


𝑝

=

∫
𝑡
𝑛+1

𝑠

𝑓
1
(𝑦

𝑡
𝑛

, 𝑦
𝑠
) 𝑑𝑢



𝑝

≤
𝑡𝑛+1 − 𝑠


𝑝 

𝑓
1
(𝑦

𝑡
𝑛

, 𝑦
𝑠
)


𝑝

,

(36)

for any 𝑝 > 0, where we have used (33). Using Lemma 3 we
get the left part of (34). Now for 𝑝 > 2 and noting that

E
ℎ𝑠


𝑝

≤ 2
𝑝−1

E
ℎ𝑠 − 𝑦

𝑠


𝑝

+ 2
𝑝−1

E
𝑦𝑠


𝑝

≤ 2
𝑝−1

𝐶
𝑝
Δ
𝑝

+ 2
𝑝−1

𝐴
𝑝
E (𝑥

0
+ 𝑘

1
𝑇)

𝑝

≤ 𝐶
ℎ
,

(37)

we get the right part of (34), where we have used Lemma 3.
The case 0 < 𝑝 < 2 follows by Jensen’s inequality as in
Lemma 4.

Furthermore, for 𝑠 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] and 𝑝 > 2, we derive that

E
ℎ𝑠 − 𝑦

𝑠


𝑝

≤ 2
𝑝−1

E
ℎ𝑠 − 𝑦

𝑠


𝑝

+ 2
𝑝−1

E
𝑦𝑠 − 𝑦

𝑠


𝑝

≤ 2
𝑝−1

𝐶
𝑝
Δ
𝑝

+ 2
𝑝−1

𝐴
𝑝
Δ
𝑝/2

≤ 𝐶
𝑝
Δ
𝑝/2

,

(38)

where we have used (30) and in the same manner

E
ℎ𝑠 − 𝑦

𝑠


𝑝

≤ 2
𝑝−1

𝐶
𝑝
Δ
𝑝

+ 2
𝑝−1

𝐴
𝑝
Δ
𝑝/2

≤ 𝐶
𝑝
Δ
𝑝/2

. (39)

The case 0 < 𝑝 < 2 follows by Jensen’s inequality.

3.2. Convergence of the Auxiliary Process (ℎ
𝑡
) to (𝑥

𝑡
) in L1.

We will use the representation (33) and write

ℎ
𝑡
− 𝑥

𝑡
= ∫

𝑡

0

(𝑓
𝜃
(𝑦

𝑠
, 𝑦

𝑠
) − 𝑓

𝜃
(𝑥

𝑠
, 𝑥

𝑠
)) 𝑑𝑠

+ ∫
𝑡

0

(𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)) 𝑑𝑊

𝑠
.

(40)

Proposition 6. Let Assumption A hold. Then one has

sup
0≤𝑡≤𝑇

E
ℎ𝑡 − 𝑥

𝑡

 ≤ (𝐽
3

Δ𝑞−1/2

𝑚𝑒
𝑚

+ 2 (𝑘
3
)
2

𝑇
1

𝑚
) 𝑒

𝑘
2
𝑇
, (41)

for any 𝑚 > 1, where 𝑒
𝑚

= 𝑒
−𝑚(𝑚+1)/2 and

𝐽
3
fl2 (𝑘

3
)
2

𝑇√𝐴
2
E (𝑥

0
+ 𝑘

1
𝑇)

2
√𝐴

4𝑞−2
. (42)

Proof of Proposition 6. Let the nonincreasing sequence
{𝑒
𝑚

}
𝑚∈N with 𝑒

𝑚
= 𝑒−𝑚(𝑚+1)/2 and 𝑒

0
= 1. We introduce the

following sequence of smooth approximations of |𝑥| (method
of Yamada and Watanabe [19]):

𝜙
𝑚

(𝑥) = ∫
|𝑥|

0

𝑑𝑦 ∫
𝑦

0

𝜓
𝑚

(𝑢) 𝑑𝑢, (43)

where the existence of the continuous function 𝜓
𝑚

(𝑢) with
0 ≤ 𝜓

𝑚
(𝑢) ≤ 2/(𝑚𝑢) and support in (𝑒

𝑚
, 𝑒
𝑚−1

) is justified
by ∫

𝑒
𝑚−1

𝑒
𝑚

(𝑑𝑢/𝑢) = 𝑚. The following relations hold for 𝜙
𝑚

∈

C2(R,R) with 𝜙
𝑚

(0) = 0,

|𝑥| − 𝑒
𝑚−1

≤ 𝜙
𝑚

(𝑥) ≤ |𝑥| ,


𝜙


𝑚
(𝑥)


≤ 1,

𝑥 ∈ R,


𝜙


𝑚
(𝑥)


≤

2

𝑚 |𝑥|
, when 𝑒

𝑚
< |𝑥| < 𝑒

𝑚−1
,


𝜙


𝑚
(𝑥)


= 0 otherwise.

(44)

We have that

E
ℎ𝑡 − 𝑥

𝑡

 ≤ 𝑒
𝑚−1

+ E𝜙
𝑚

(ℎ
𝑡
− 𝑥

𝑡
) . (45)
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Moreover we find that

𝑓
𝜃
(𝑦

𝑠
, 𝑦

𝑠
) − 𝑓

𝜃
(𝑥

𝑠
, 𝑥

𝑠
) = (𝑘

1
− 𝑘

2
(1 − 𝜃) 𝑦

𝑠
− 𝑘

2
𝜃𝑦

𝑠
)

− (𝑘
1

− 𝑘
2
𝑥
𝑠
) = −𝑘

2
(1 − 𝜃) (𝑦

𝑠
− 𝑥

𝑠
)

− 𝑘
2
𝜃 (𝑦

𝑠
− 𝑥

𝑠
) = 𝑘

2
(1 − 𝜃) (ℎ

𝑠
− 𝑦

𝑠
)

+ 𝑘
2
𝜃 (ℎ

𝑠
− 𝑦

𝑠
) − 𝑘

2
(ℎ

𝑠
− 𝑥

𝑠
) ,

(46)

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)

2

=

𝑘
3
(𝑦

𝑠
)
𝑞−1/2

√𝑦
𝑠
− 𝑘

3
(𝑥

𝑠
)
𝑞


2

≤ (𝑘
3
)
2

⋅ (√𝑦
𝑠
((𝑦

𝑠
)
𝑞−1/2

− (𝑦
𝑠
)
𝑞−1/2

) + ((𝑦
𝑠
)
𝑞

− (𝑥
𝑠
)
𝑞

))
2

≤ 2 (𝑘
3
)
2

⋅ (𝑦
𝑠
((𝑦

𝑠
)
𝑞−1/2

− (𝑦
𝑠
)
𝑞−1/2

)
2

+ ((𝑦
𝑠
)
𝑞

− (𝑥
𝑠
)
𝑞

)
2

)

≤ 2 (𝑘
3
)
2

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+ (√𝑦𝑠 − 𝑥
𝑠

)
2

)

≤ 2 (𝑘
3
)
2

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+
ℎ𝑠 − 𝑦

𝑠

 +
ℎ𝑠 − 𝑥

𝑠

) ,

(47)

where we have used properties of Hölder continuous func-
tions and, namely, the fact that 𝑥𝑞 is 𝑞-Hölder continuous for
𝑞 ≤ 1, that is, |𝑥𝑞 − 𝑦𝑞| ≤ |𝑥 − 𝑦|𝑞, and that 𝑥𝑞 is 1/2-Hölder
continuous since 𝑞 > 1/2. Application of Itô’s formula to the
sequence {𝜙

𝑚
}
𝑚∈N implies

𝜙
𝑚

(ℎ
𝑡
− 𝑥

𝑡
) = ∫

𝑡

0

𝜙


𝑚
(ℎ

𝑠
− 𝑥

𝑠
) (𝑓

𝜃
(𝑦

𝑠
, 𝑦

𝑠
)

− 𝑓
𝜃
(𝑥

𝑠
, 𝑥

𝑠
)) 𝑑𝑠 + 𝑀

𝑡
+

1

2
∫
𝑡

0

𝜙


𝑚
(ℎ

𝑠
− 𝑥

𝑠
)

⋅ (𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
))
2

𝑑𝑠

≤ ∫
𝑡

0

(𝑘
2
(1 − 𝜃)

ℎ𝑠 − 𝑦
𝑠

 + 𝑘
2
𝜃

ℎ𝑠 − 𝑦
𝑠



+ 𝑘
2

ℎ𝑠 − 𝑥
𝑠

) 𝑑𝑠 + 𝑀
𝑡
+ 2 (𝑘

3
)
2

⋅ ∫
𝑡

0

1

𝑚
ℎ𝑠 − 𝑥

𝑠


(𝑦

𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+
ℎ𝑠 − 𝑦

𝑠



+
ℎ𝑠 − 𝑥

𝑠

) 𝑑𝑠 ≤ 𝑘
2
(1 − 𝜃) ∫

𝑡

0

ℎ𝑠 − 𝑦
𝑠

 𝑑𝑠

+ 𝑘
2
𝜃 ∫

𝑡

0

ℎ𝑠 − 𝑦
𝑠

 𝑑𝑠 +
2 (𝑘

3
)
2

𝑚𝑒
𝑚

∫
𝑡

0

ℎ𝑠 − 𝑦
𝑠

 𝑑𝑠

+ 𝑘
2
∫
𝑡

0

ℎ𝑠 − 𝑥
𝑠

 𝑑𝑠 + 𝑀
𝑡
+

2 (𝑘
3
)
2

𝑚𝑒
𝑚

∫
𝑡

0

𝑦
𝑠

𝑦𝑠

− 𝑦
𝑠


2𝑞−1

𝑑𝑠 +
2 (𝑘

3
)
2

𝑇

𝑚
,

(48)

where in the second step we have used (46) and (47) and the
properties of 𝜙

𝑚
and

𝑀
𝑡
fl∫

𝑡

0

𝜙


𝑚
(ℎ

𝑢
− 𝑥

𝑢
) (𝑔 (𝑦

�̂�
, 𝑦

�̃�
) − 𝑔 (𝑥

𝑢
, 𝑥

𝑢
)) 𝑑𝑊

𝑢
. (49)

Taking expectations in the above inequality yields

E𝜙
𝑚

(ℎ
𝑡
− 𝑥

𝑡
)

≤ 𝑘
2
(1 − 𝜃) ∫

𝑡

0

E
ℎ𝑠 − 𝑦

𝑠

 𝑑𝑠

+ 𝑘
2
𝜃 ∫

𝑡

0

E
ℎ𝑠 − 𝑦

𝑠

 𝑑𝑠

+
2 (𝑘

3
)
2

𝑚𝑒
𝑚

∫
𝑡

0

E
ℎ𝑠 − 𝑦

𝑠

 𝑑𝑠

+
2 (𝑘

3
)
2

𝑚𝑒
𝑚

∫
𝑡

0

E𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

𝑑𝑠 +
2 (𝑘

3
)
2

𝑇

𝑚

+ 𝑘
2
∫
𝑡

0

E
ℎ𝑠 − 𝑥

𝑠

 𝑑𝑠

≤ 𝑘
2
(1 − 𝜃) 𝑇𝐶

1
√Δ + 𝑘

2
𝜃𝑇𝐶

1
√Δ

+
2 (𝑘

3
)
2

𝑇𝐶
1

𝑚𝑒
𝑚

Δ + 𝑘
2
∫
𝑡

0

E
ℎ𝑠 − 𝑥

𝑠

 𝑑𝑠

+
2 (𝑘

3
)
2

𝑚𝑒
𝑚

∫
𝑡

0

√E (𝑦s)
2√E

𝑦𝑠 − 𝑦
𝑠


4𝑞−2

𝑑𝑠

+
2 (𝑘

3
)
2

𝑇

𝑚

≤ 𝑘
2
𝑇 ((1 − 𝜃) 𝐶

1
+ 𝜃𝐶

1
) √Δ +

2 (𝑘
3
)
2

𝑇𝐶
1

𝑚𝑒
𝑚

Δ

+ 𝑘
2
∫
𝑡

0

E
ℎ𝑠 − 𝑥

𝑠

 𝑑𝑠

+
2 (𝑘

3
)
2

𝑇

𝑚𝑒
𝑚

√𝐴
2
E (𝑥

0
+ 𝑘

1
𝑇)

2
√𝐴

4𝑞−2
Δ
𝑞−1/2

+
2 (𝑘

3
)
2

𝑇

𝑚
,

(50)

where we have used Lemma 5 in the second step and the
Hölder inequality and Lemmas 3 and 4 in the third step
and the fact that E𝑀

𝑡
= 0 (the function 𝑑(𝑢) = 𝜙

𝑚
(ℎ

𝑢
−

𝑥
𝑢
)(𝑔(𝑦

�̂�
, 𝑦

�̃�
) − 𝑔(𝑥

𝑢
, 𝑥

𝑢
)) belongs to the space M2([0, 𝑡];R)

of real-valued measurable F
𝑡
-adapted processes such that

E∫
𝑡

0
|𝑑(𝑢)|2𝑑𝑢 < ∞; thus [20, Theorem 1.5.8] implies E𝑀

𝑡
=

0). Thus (45) becomes

E
ℎ𝑡 − 𝑥

𝑡

 ≤ 𝑒
𝑚−1

+ 𝐽
1
√Δ + 2 (𝑘

3
)
2

𝑇𝐶
1

Δ

𝑚𝑒
𝑚

+ 𝐽
3

Δ𝑞−1/2

𝑚𝑒
𝑚

+ 2 (𝑘
3
)
2

𝑇
1

𝑚
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+ 𝑘
2
∫
𝑡

0

E
ℎ𝑠 − 𝑥

𝑠

 𝑑𝑠

≤ 𝐽
3

Δ𝑞−1/2

𝑚𝑒
𝑚

+ 2 (𝑘
3
)
2

𝑇
1

𝑚

+ 𝑘
2
∫
𝑡

0

E
ℎ𝑠 − 𝑥

𝑠

 𝑑𝑠

≤ (𝐽
3

Δ𝑞−1/2

𝑚𝑒
𝑚

+ 2 (𝑘
3
)
2

𝑇
1

𝑚
) 𝑒

𝑘
2
𝑡
,

(51)

where in the second step we have used the asymptotic
relations Δ𝜅 = 𝑜(Δ𝑞−1/2) as Δ ↓ 0 for any 𝜅 ≥ 1/2, 𝑒

𝑚−1
=

𝑜(1/𝑚) as 𝑚 → ∞, √Δ = 𝑜(Δ𝜅/𝑚𝑒
𝑚

) for any 𝜅 ≤ 1

as 𝑚 → ∞; in the last step we have used the Gronwall
inequality and 𝐽

3
is as defined in Proposition 6 while

𝐽
1
fl𝑘

2
𝑇 ((1 − 𝜃) 𝐶

1
+ 𝜃𝐶

1
) . (52)

Taking the supremum over all 0 ≤ 𝑡 ≤ 𝑇 gives (41).

3.3. Convergence of the Auxiliary Process (ℎ
𝑡
) to (𝑥

𝑡
) inL2

Proposition 7. Let Assumption A hold. Then one has

E sup
0≤𝑡≤𝑇

ℎ𝑡 − 𝑥
𝑡


2

≤
𝐶
𝜖

√ln (Δ)
−1

, (53)

where 𝐶
𝜖

is independent of Δ and given by
𝐶
𝜖
fl32√3/2𝜖(𝑘

3
)
4
𝑇2𝑒6𝑇

2
(𝑘
2
)
2
+𝑘
2
𝑇, where 0 < 𝜖 < 𝑞 − 1/2.

Proof of Proposition 7. We estimate the difference |E
𝑡
|2fl|ℎ

𝑡
−

𝑥
𝑡
|2. It holds that

E𝑡


2

=

∫
𝑡

0

(𝑓
𝜃
(𝑦

𝑠
, 𝑦

𝑠
) − 𝑓

𝜃
(𝑥

𝑠
, 𝑥

𝑠
)) 𝑑𝑠

+ ∫
𝑡

0

(𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)) 𝑑𝑊

𝑠



2

≤ 2𝑇 ∫
𝑡

0

(𝑘
2
(1 − 𝜃)

ℎ𝑠 − 𝑦
𝑠

 + 𝑘
2
𝜃

ℎ𝑠 − 𝑦
𝑠



+ 𝑘
2

E𝑠

)
2

𝑑𝑠 + 2
𝑀𝑡


2

≤ 6𝑇 (𝑘
2
)
2

(1 − 𝜃)
2

⋅ ∫
𝑡

0

ℎ𝑠 − 𝑦
𝑠


2

𝑑𝑠 + 6𝑇 (𝑘
2
)
2

𝜃
2
∫
𝑡

0

ℎ𝑠 − 𝑦
𝑠


2

𝑑𝑠

+ 6𝑇 (𝑘
2
)
2

∫
𝑡

0

E𝑠


2

𝑑𝑠 + 2
𝑀𝑡


2

,

(54)

where in the second step we have used the Cauchy-Schwarz
inequality and (46) and

𝑀
𝑡
fl∫

𝑡

0

(𝑔 (𝑦
�̂�
, 𝑦

�̃�
) − 𝑔 (𝑥

𝑢
, 𝑥

𝑢
)) 𝑑𝑊

𝑢
. (55)

Taking the supremum over all 𝑡 ∈ [0, 𝑇] and then expecta-
tions we have

E sup
0≤𝑡≤𝑇

E𝑡


2

≤ 6𝑇 (𝑘
2
)
2

(1 − 𝜃)
2
∫
𝑇

0

E
ℎ𝑠 − 𝑦

𝑠


2

𝑑𝑠

+ 6𝑇 (𝑘
2
)
2

𝜃
2
∫
𝑇

0

E
ℎ𝑠 − 𝑦

𝑠


2

𝑑𝑠

+ 6𝑇 (𝑘
2
)
2

∫
𝑇

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

+ 2E sup
0≤𝑡≤𝑇

𝑀𝑡


2

≤ 6𝑇
2
(𝑘

2
)
2

(1 − 𝜃)
2
𝐴
2
Δ

+ 6𝑇
2
(𝑘

2
)
2

𝜃
2
𝐴
2
Δ

+ 6𝑇 (𝑘
2
)
2

∫
𝑇

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

+ 8E
𝑀𝑇


2

,

(56)

where in the second step we have used Lemma 4 and Doob’s
martingale inequality with 𝑝 = 2, since 𝑀

𝑡
is an R-valued

martingale that belongs toL2. We find that

E
𝑀𝑇


2flE


∫
𝑇

0

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)
 𝑑𝑊

𝑠



2

= E(∫
𝑇

0

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)

2

𝑑𝑠) ≤ 2 (𝑘
3
)
2

⋅ E(∫
𝑇

0

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+
ℎ𝑠 − 𝑦

𝑠



+
ℎ𝑠 − 𝑥

𝑠

) 𝑑𝑠) ≤ 2 (𝑘
3
)
2

∫
𝑇

0

E (𝑦
𝑠

𝑦𝑠

− 𝑦
𝑠


2𝑞−1

) 𝑑𝑠 + 2 (𝑘
3
)
2

∫
𝑇

0

E
ℎ𝑠 − 𝑦

𝑠

 𝑑𝑠

+ 2 (𝑘
3
)
2

∫
𝑇

0

E
E𝑠

 𝑑𝑠,

(57)

where we have used (47). Now, Lemmas 3, 4, and 5 imply

E
𝑀𝑇


2

≤ 𝐽
6
√Δ2𝑞−1 + 2 (𝑘

3
)
2

𝑇𝐶
1
Δ

+ 2 (𝑘
3
)
2

∫
𝑇

0

E
E𝑠

 𝑑𝑠

≤ 𝐽
6
Δ
𝑞−1/2

+ 2 (𝑘
3
)
2

∫
𝑇

0

E
E𝑠

 𝑑𝑠,

(58)

where we have used the asymptotic relations Δ𝑙 = 𝑜(Δ𝑞−1/2)

for all 𝑙 ≥ 1/2 as Δ ↓ 0 and the quantity 𝐽
6
is given by

𝐽
6
fl2(𝑘

3
)
2
𝑇√𝐴

2
E(𝑥

0
+ 𝑘

1
𝑇)

2√𝐴
4𝑞−2

.
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Relation (56) becomes

E sup
0≤𝑡≤𝑇

E𝑡


2

≤ 8𝐽
6
Δ
𝑞−1/2

+ 𝐽
5
Δ + 6𝑇 (𝑘

2
)
2

∫
𝑇

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

+ 16 (𝑘
3
)
2

∫
𝑇

0

E sup
0≤𝑙≤𝑠

E𝑙

 𝑑𝑠

≤ 8𝐽
6
Δ
𝑞−1/2

+ 16 (𝑘
3
)
2

𝑇 (𝐽
3

Δ𝑞−1/2

𝑚𝑒
𝑚

+ 3 (𝑘
3
)
2

𝑇
1

𝑚
) 𝑒

𝑘
2
𝑇

+ 6𝑇 (𝑘
2
)
2

∫
𝑇

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

≤ 16 (𝑘
3
)
2

𝑇𝐽
3
𝑒
𝑘
2
𝑇+6𝑇

2
(𝑘
2
)
2 Δ𝑞−1/2

𝑚𝑒
𝑚

+ 32 (𝑘
3
)
4

𝑇
2
𝑒
𝑘
2
𝑇+6𝑇

2
(𝑘
2
)
2 1

𝑚
,

(59)

where we have used Proposition 6 in the second step with the
sequence 𝑒

𝑚
as defined there and Gronwall’s inequality in the

last step and the asymptotic relationΔ
𝜅

= 𝑜(Δ
𝜅
/𝑚𝑒

𝑚
) as𝑚 →

∞, for any 𝜅 > 0, and 𝐽
5
is independent of Δ and given by

𝐽
5
fl6𝑇2(𝑘

2
)
2
((1 − 𝜃)

2
𝐴
2

+ 𝜃2𝐴
2
).

We take 𝑚 = √lnΔ−𝜆, with 𝜆 > 0, to be specified soon
and note that 𝑒

√lnΔ−𝜆 = 𝑜(Δ−𝜆) as Δ ↓ 0, since 𝑒
√ln 𝑛 = 𝑜(𝑛) as

𝑛 → ∞. Moreover we have that

Δ𝑞−1/2

𝑒
𝑚

=
Δ𝑞−1/2

𝑒−𝑚
2
/2

𝑒
𝑚/2

=
Δ𝑞−1/2

𝑒−(lnΔ
−𝜆
)/2

𝑒
(1/2)√lnΔ−𝜆

= Δ
𝑞−1/2−3𝜆/2 𝑒(1/2)

√lnΔ−𝜆

Δ−𝜆
.

(60)

Now, since 𝑞 > 1/2 there is an 𝜖 > 0 small enough such that
𝑞 − 1/2 − 𝜖 > 0. We take 𝜆 = 2𝜖/3 and conclude that

Δ𝑞−1/2

𝑒
𝑚

= Δ
𝑞−1/2−𝜖 𝑒

(1/2)√lnΔ2𝜖/3

Δ−2𝜖/3
→ 0, (61)

as Δ → 0 which in turn implies the asymptotic relation
Δ𝑞−1/2/𝑚𝑒

𝑚
= 𝑜(1/𝑚) as 𝑚 → ∞, with the logarithmic

rate stated before. In the same way we can show Δ1/4/𝑚𝑒
𝑚

=

𝑜(1/𝑚) as 𝑚 → ∞, by taking 𝜖 < 1/4. We finally arrive at

E sup
0≤𝑡≤𝑇

E𝑡


2

≤ 32 (𝑘
3
)
4

𝑇
2
𝑒
𝑘
2
𝑇+6𝑇

2
(𝑘
2
)
2 1

√lnΔ−2𝜖/3

, (62)

by taking 0 < 𝜖 < 𝑞 − 1/2, which implies (53).

3.4. Proof of Theorem 1. In order to finish the proof of
Theorem 1 we just use the triangle inequality, Lemma 5, and
Proposition 7 to get

E sup
0≤𝑡≤𝑇

𝑦𝑡 − 𝑥
𝑡


2

≤ 2E sup
0≤𝑡≤𝑇

ℎ𝑡 − 𝑦
𝑡


2

+ 2E sup
0≤𝑡≤𝑇

E𝑡


2

≤ 2𝐶
2
Δ
2

+ 2
𝐶
𝜖

√lnΔ−1

≤
𝐶

√lnΔ−1

,

(63)

where 𝐶 = 𝐶(𝑘
2
, 𝑘

3
, 𝜖, 𝑇), given in the statement of

Theorem 1.

4. Polynomial Rate of Convergence

Wework with the stochastic time change inspired by [21]. We
define the process

𝛾 (𝑡)fl∫
𝑡

0

128 (𝑘
3
)
2

𝑞2

[(𝑦
𝑠
)
1−𝑞

+ (𝑥
𝑠
)
1−𝑞

]
2
𝑑𝑠 (64)

and the stopping time

𝜏
𝑙
fl inf {𝑠 ∈ [0, 𝑇] : 6𝑇 (𝑘

2
)
2

𝑠 + 𝛾 (𝑠) ≥ 𝑙} . (65)

The process 𝛾(𝑡) is well defined since 𝑥
𝑡

> 0 a.s. and 𝑦
𝑡

≥ 0

(see Section 2).
The difference |E

𝑡
|2fl|ℎ

𝑡
−𝑥

𝑡
|2 is estimated as in Section 3

and we get, as in (56), that

E sup
0≤𝑡≤𝜏

E𝑡


2

≤ 𝐽
5
Δ + 6𝑇 (𝑘

2
)
2

∫
𝜏

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

+ 8E
𝑀𝜏


2

,

(66)

where 𝜏 is a stopping time and 𝐽
5
independent of Δ is as

in the proof of Proposition 7. The main difference here will
be the estimation of the last term in (66). The approach in
Section 3 resulted in theL1 estimation E|E

𝑡
| where we used

the Yamada-Watanabe approach. Now, we use the Berkaoui
approach. Relation (47) becomes

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)

2

≤ 2 (𝑘
3
)
2

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+

(𝑦

𝑠
)
𝑞

− (𝑥
𝑠
)
𝑞

2

)

≤ 2 (𝑘
3
)
2

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

)

+

(𝑦

𝑠
)
𝑞

− (𝑥
𝑠
)
𝑞

2

((𝑦
𝑠
)
1−𝑞

+ (𝑥
𝑠
)
1−𝑞

)
2 (𝛾

𝑠
)


64𝑞2

≤ 2 (𝑘
3
)
2

(𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

)

+
1

8
(
ℎ𝑠 − 𝑦

𝑠


2

+
E𝑠


2

) (𝛾
𝑠
)


,

(67)

where we have used the inequality

𝑎
𝑞

− 𝑏
𝑞 (𝑎

1−𝑞
+ 𝑏

1−𝑞
) ≤ 2𝑞 |𝑎 − 𝑏| , (68)
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valid for all 𝑎 ≥ 0, 𝑏 ≥ 0, and 1/2 ≤ 𝑞 ≤ 1. Consequently, we
get the upper bound

E
𝑀𝜏


2flE


∫
𝜏

0

𝑔 (𝑦
𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)
 𝑑𝑊

𝑠



2

≤ 𝐽
6
Δ
𝑞−1/2

+
1

8
∫
𝜏

0

E
ℎ𝑠 − 𝑦

𝑠


2

(𝛾
𝑠
)


𝑑𝑠

+
1

8
∫
𝜏

0

E
E𝑠


2

(𝛾
𝑠
)


𝑑𝑠

≤ 𝐽
6
Δ
𝑞−1/2

+
1

8
∫
𝜏

0

√E
ℎ𝑠 − 𝑦

𝑠


4√E ((𝛾

𝑠
)


)
2

𝑑𝑠

+
1

8
∫
𝜏

0

E
E𝑠


2

(𝛾
𝑠
)


𝑑𝑠,

(69)

where we used the Hölder inequality; 𝐽
6
independent of Δ is

as in proof of Proposition 7. Relation (66) becomes

E sup
0≤𝑡≤𝜏

E𝑡


2

≤ 8𝐽
6
Δ
𝑞−1/2

+ 6𝑇 (𝑘
2
)
2

∫
𝜏

0

E sup
0≤𝑙≤𝑠

E𝑙


2

𝑑𝑠

+ ∫
𝜏

0

√E
ℎ𝑠 − 𝑦

𝑠


4√E ((𝛾

𝑠
)


)
2

𝑑𝑠

+ ∫
𝜏

0

E
E𝑠


2

(𝛾
𝑠
)


𝑑𝑠

≤ 8𝐽
6
Δ
𝑞−1/2

+ √𝐶
4
Δ
2
∫
𝜏

0

√E(
128 (𝑘

3
)
2

𝑞2

[(𝑦
𝑠
)
1−𝑞

+ (𝑥
𝑠
)
1−𝑞

]
2
)

2

𝑑𝑠

+ ∫
𝜏

0

E sup
0≤𝑙≤𝑠

E𝑙


2

(6𝑇 (𝑘
2
)
2

𝑠 + 𝛾
𝑠
)


𝑑𝑠

≤ 8𝐽
6
Δ
𝑞−1/2

+ √𝐶
4
128 (𝑘

3
)
2

𝑞
2
Δ
2
∫
𝜏

0

√E(
1

(𝑥
𝑠
)
2−2𝑞

)𝑑𝑠

+ ∫
𝜏

0

E sup
0≤𝑙≤𝑠

E𝑙


2

(6𝑇 (𝑘
2
)
2

𝑠 + 𝛾
𝑠
)


𝑑𝑠,

(70)

where we have used Lemma 5 in the second step. At this point
we want to estimate the inverse moments of (𝑥

𝑡
) and to do

so we consider the transformation V = 𝑥
2−2𝑞 and apply Itô’s

formula to get

V
𝑡
= V

0
+ ∫

𝑡

0

((1 − 2𝑞) (1 − 𝑞) (𝑘
3
)
2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾
0

+ 2 (1 − 𝑞) 𝑘
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾
1

(V
𝑠
)
(1−2𝑞)/(2−2𝑞)

− 2 (1 − 𝑞) 𝑘
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾
2

V
𝑠
) 𝑑𝑠 + ∫

𝑡

0

2𝑘
3
(1 − 𝑞)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾
3

√V
𝑠
𝑑𝑊

𝑠
,

(71)

for 𝑡 ∈ [0, 𝑇], where V
0

= (𝑥
0
)
2−2𝑞

> 0. Denote the
drift coefficient of the process (V

𝑡
) by 𝑎(V

𝑡
) and consider the

function

𝛼 (V)fl𝑎 (V) − 𝜆 + 𝐾
2
V +

(2𝑞 − 1) (𝜆 + 𝐾
0
)
1/(2𝑞−1)

(𝑘
1
)
(2−2𝑞)/(2𝑞−1)

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝜂(𝜆)

V, (72)

where 𝜆 ≥ 0. Some elementary calculations show that this
function attains itsminimum at V∗fl(𝑘

1
(2𝑞−1)/𝜂(𝜆))2−2𝑞 and

𝛼(V∗) = 0, thus

𝑎 (V) ≥ 𝜆 − (𝐾
2

+ 𝜂 (𝜆)) V. (73)

Consider the process (𝜁
𝑡
(𝜆)) defined through

𝜁
𝑡
(𝜆) = 𝜁

0
+ ∫

𝑡

0

(𝜆 − (𝐾
2

+ 𝜂 (𝜆)) 𝜁
𝑠
) 𝑑𝑠

+ ∫
𝑡

0

𝐾
3
√𝜁

𝑠
𝑑𝑊

𝑠
,

(74)

for 𝑡 ∈ [0, 𝑇] with 𝜁
0
(𝜆) = V

0
. Process (74) is a square root

diffusion process and when 2𝜆/(𝐾
3
)
2

− 1 ≥ 0 or

𝜆 ≥ 2 (1 − 𝑞)
2

(𝑘
3
)
2 (75)

the process is a CIR process which remains positive if 𝜁
0
(𝜆) >

0.By a comparison theorem [17, Proposition 5.2.18] we obtain
that V

𝑡
≥ 𝜁

𝑡
(𝜆) > 0 a.s. or (V

𝑡
)
−1

≤ (𝜁
𝑡
(𝜆))

−1 a.s. or equivalently
(𝑥

𝑡
)
2𝑞−2

≤ (𝜁
𝑡
(𝜆))

−1 a.s.The inversemoment bounds of (𝜁
𝑡
(𝜆))

follow [22, (3.1)]:

sup
𝑡∈[0,𝑇]

E (𝜁
𝑡
(𝜆))

𝑝

< ∞, for 𝑝 > −2
𝜆

(𝐾
3
)
2 (76)

by choosing big enough 𝜆 and particularly such that (75)
holds strictly. Therefore,

E sup
0≤𝑡≤𝜏

E𝑡


2

≤ 8𝐽
6
Δ
𝑞−1/2

+ ∫
𝜏

0

E sup
0≤𝑙≤𝑠

E𝑙


2

(6𝑇 (𝑘
2
)
2

𝑠 + 𝛾
𝑠
)


𝑑𝑠.

(77)
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Relation (77) for 𝜏 = 𝜏
𝑙
implies

E sup
0≤𝑡≤𝜏

𝑙

(E
𝑡
)
2

≤ 8𝐽
6
Δ
𝑞−1/2

+ ∫
𝜏
𝑙

0

E sup
0≤𝑙≤𝑠

(E
𝑙
)
2

(6𝑇 (𝑘
2
)
2

𝑠 + 𝛾
𝑠
)


𝑑𝑠

≤ 8𝐽
6
Δ
𝑞−1/2

+ ∫
𝑙

0

E sup
0≤𝑗≤𝑢

(E
𝜏
𝑗

)
2

𝑑𝑢 ≤ 8𝐽
6
𝑒
𝑙
Δ
𝑞−1/2

,

(78)

where in the last step we have used Gronwall’s inequality.
Using again relation (77) for 𝜏 = 𝑇 and under the change
of variables 𝑢 = 6𝑇(𝑘

2
)
2
𝑠 + 𝛾

𝑠
we get

E sup
0≤𝑡≤𝑇

(E
𝑡
)
2

≤ 8𝐽
6
Δ
𝑞−1/2

+ ∫
6(𝑘
2
)
2
𝑇
2
+𝛾
𝑇

0

E sup
0≤𝑗≤𝑢

(E
𝜏
𝑗

)
2

𝑑𝑢 ≤ 8𝐽
6
Δ
𝑞−1/2

+ ∫
∞

0

E( sup
0≤𝑗≤𝑢

(I
{6(𝑘
2
)
2
𝑇
2
+𝛾
𝑇
≥𝑢}

E
𝜏
𝑗

)
2

) 𝑑𝑢

≤ ∫
6(𝑘
2
)
2
𝑇
2

0

E sup
0≤𝑗≤𝑢

(E
𝜏
𝑗

)
2

𝑑𝑢

+ ∫
∞

6(𝑘
2
)
2
𝑇
2

P (6 (𝑘
2
)
2

𝑇
2

+ 𝛾
𝑇

≥ 𝑢)

⋅ E( sup
0≤𝑗≤𝑢

(E
𝜏
𝑗

)
2

| {6 (𝑘
2
)
2

𝑇
2

+ 𝛾
𝑇

≥ 𝑢}) 𝑑𝑢

+ 8𝐽
6
Δ
𝑞−1/2

≤ 8𝐽
6
𝑒
6(𝑘
2
)
2
𝑇
2

Δ
𝑞−1/2

+ ∫
∞

0

P (𝛾
𝑇

≥ 𝑢)

⋅ E sup
0≤𝑗≤𝑢

(E
𝜏
𝑗

)
2

𝑑𝑢 + 8𝐽
6
Δ
𝑞−1/2

≤ 16𝐽
6
𝑒
6(𝑘
2
)
2
𝑇
2

Δ
𝑞−1/2

+ 8𝐽
6
Δ
𝑞−1/2

∫
∞

0

P (𝛾
𝑇

≥ 𝑢)

⋅ 𝑒
𝑢
𝑑𝑢,

(79)

where in the last steps we have used (78). We proceed by
showing that 𝑢 → P(𝛾

𝑇
≥ 𝑢)𝑒𝑢 ∈ L1(R

+
). Markov’s

inequality implies

P (𝛾
𝑇

≥ 𝑢) ≤ 𝑒
−𝜖𝑢

E (𝑒
𝜖𝛾
𝑇) , (80)

for any 𝜖 > 0. The following bound holds:

𝛾
𝑇

= ∫
𝑇

0

128 (𝑘
3
)
2

𝑞2

[(𝑦
𝑠
)
1−𝑞

+ (𝑥
𝑠
)
1−𝑞

]
2
𝑑𝑠

≤ 128 (𝑘
3
)
2

𝑞
2
∫
𝑇

0

(𝑥
𝑠
)
2𝑞−2

𝑑𝑠,

(81)

and thus

E (𝑒
𝜖𝛾
𝑇) ≤ E(𝑒

𝜖128(𝑘
3
)
2
𝑞
2
∫
𝑇

0
(𝑥
𝑠
)
2𝑞−2

𝑑𝑠
) , (82)

where −1 < 2𝑞 − 2 < 0. It remains to bound the exponential
inverse moments of (𝑥

𝑡
) defined through the stochastic

integral equation (2). Exponential inverse moments for the
CIR process are known [10, Theorem 3.1] and are given by

E𝑒
𝛿 ∫
𝑡

0
(𝜁
𝑠
(𝜆))
−1
𝑑𝑠

≤ 𝐶HK (𝜁
0
)
−(1/2)(](𝜆)−√](𝜆)2+8(𝛿/(𝐾

3
)
2
))

, (83)

for 0 ≤ 𝛿 ≤ (2𝜆/(𝐾
3
)
2
−1)2((𝐾

3
)
2
/8) =: ](𝜆)

2
((𝐾

3
)
2
/8)where

the positive constant 𝐶HK is explicitly given in [10, (10)] and
depends on the parameters 𝑘

2
, 𝑘

3
, 𝑇, 𝑞, but is independent of

𝜁
0
. Thus the other condition that we require for parameter 𝜆

is

𝜆 ≥ 2 (1 − 𝑞) √2𝛿 (𝑘
3
) + 2 (1 − 𝑞)

2

(𝑘
3
)
2

. (84)

When (84) is satisfied then (75) is satisfied too; thus there is
actually no restriction on the coefficient 𝛿 in (83) since we can
always choose appropriately a 𝜆 such that (84) holds. Relation
(82) becomes

E (𝑒
𝜖𝛾
𝑇) ≤ E(𝑒

𝜖128(𝑘
3
)
2
𝑞
2
∫
𝑇

0
(V
𝑠
)
−1
𝑑𝑠

)

≤ E(𝑒
𝜖128(𝑘

3
)
2
𝑞
2
∫
𝑇

0
(𝜁
𝑠
(𝜆))
−1
𝑑𝑠

) .

(85)

We therefore require that

128 (𝑘
3
)
2

𝑞
2
𝜖 ≤ (] (𝜆))

2
(𝐾

3
)
2

8
(86)

and can always find a 𝜖 > 1, such that the above relation holds
by choosing appropriately 𝜆 as discussed before.

Relation (85) becomes

E (𝑒
𝜖𝛾
𝑇) ≤ 𝐶HK (𝜁

0
)
−](𝜆)/2

, (87)

and therefore

P (𝛾
𝑇

≥ 𝑢) ≤ 𝐶HK (𝑥
0
)
(1−𝑞)](𝜆)

𝑒
−𝜖𝑢

, (88)

where 𝜆 is chosen such that (86) holds with 𝜖 > 1. We
conclude

E sup
0≤𝑡≤𝑇

(E
𝑡
)
2

≤ 16𝐽
6
𝑒
6(𝑘
2
)
2
𝑇
2

Δ
𝑞−1/2

+ 8𝐽
6
𝐶HK (𝑥

0
)
(1−𝑞)](𝜆)

Δ
𝑞−1/2

∫
∞

0

𝑒
(1−𝜖)𝑢

𝑑𝑢

≤ 𝐶 ⋅ Δ
𝑞−1/2

,

(89)

by choosing 𝜖 > 1 where 𝐶 = 𝐶(𝑘
1
, 𝑘

2
, 𝑘

3
, 𝑇, 𝑞,

𝜖)fl 8𝐽
6
(2𝑒6(𝑘2)

2
𝑇
2

+ (𝐶HK/(𝜖 − 1))(𝑥
0
)
(1−𝑞)](𝜆)

), is as given in
statement of Theorem 2.
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5. Alternative Approach with Reduced
Rate of Convergence

In this sectionwe briefly discuss the case where instead of (12)
we use directly (6).Then, Lemmas 3, 4, and 5 still hold; that is,
the moment bounds and error bounds of (𝑦SD

𝑡
), as well as the

moment bounds involving the auxiliary process (ℎ
𝑡
), are true.

The proof of the convergence results follows the same lines as
in Sections 3 and 4. The main difference is in the estimation
(47) that now becomes

sgn (𝑧
𝑠
) 𝑔 (𝑦

𝑠
, 𝑦

𝑠
) − 𝑔 (𝑥

𝑠
, 𝑥

𝑠
)

2

≤ 3 (𝑘
3
)
2

⋅ ((𝑦
𝑠
)
2𝑞−1

𝑦
𝑠
(sgn (𝑧

𝑠
) − 1)

2

+ 𝑦
𝑠

𝑦𝑠 − 𝑦
𝑠


2𝑞−1

+
ℎ𝑠 − 𝑦

𝑠

 +
ℎ𝑠 − 𝑥

𝑠

) .

(90)

The first term on the right-hand side of the above inequality
containing the sgn(𝑧

𝑠
)will contribute in a negative way to the

rate of convergence. We do not give all the details but just
mention that in order to bound the expectation of that term,
which can be done in the following way,

E (𝑦
𝑠
)
2𝑞−1

𝑦
𝑠

sgn (𝑧
𝑠
) − 1


2

= E (4 (𝑦
𝑡
𝑛

)
2𝑞−1

𝑦
𝑠
I
{𝑧
𝑠
≤0}

)

≤ 4E

(𝑦

𝑡
𝑛

)
2𝑞−1

𝑦
𝑠
− (𝑦t

𝑛

)
2𝑞

+ 4E ((𝑦
𝑡
𝑛

)
2𝑞

I
{𝑧
𝑠
≤0}

I
{𝑦
𝑡𝑛
≤Δ
1−2𝜉

}
)

+ 4E ((𝑦
𝑡
𝑛

)
2𝑞

I
{𝑧
𝑠
≤0}

I
{𝑦
𝑡𝑛
>Δ
1−2𝜉

}
)

≤ 4E

(𝑦

𝑡
𝑛

)
2𝑞−1

(𝑦
𝑠
− 𝑦

𝑡
𝑛

)

+ 4Δ

2𝑞−4𝑞𝜉

+ 4√E (𝑦
𝑡
𝑛

)
4𝑞

√P ({𝑧
𝑠
≤ 0} ∩ {𝑦

𝑡
𝑛

> Δ1−2𝜉}),

(91)

we need to estimate the probability of 𝑧
𝑡
being negative when

at the same time 𝑦
𝑡
𝑛

> Δ1−2𝜉, for 0 < 𝜉 < 1/2.

Lemma 8. For every 𝑡 ∈ [𝑡
𝑛
, 𝑡
𝑛+1

] it holds that

P ({𝑧
𝑡
≤ 0} ∩ {𝑦

𝑡
𝑛

> Δ
1−2𝜉

}) ≤ 𝐶
𝑘
2
,𝑘
3
,𝜃,Δ

√Δ, (92)

where𝐶
𝑘
2
,𝑘
3
,𝜃,Δ

fl𝑘
3
/√1 − 𝑘

2
(2 − 𝜃)Δ and Δ(2−𝜃) < 1/𝑘

2
and

(𝑘
3
)
2
/(1 + 𝑘

2
𝜃Δ) ≤ 4𝑘

2
. Relation (92) implies that P({𝑧

𝑡
≤

0} ∩ {𝑦
𝑡
𝑛

> Δ1−2𝜉}) = 𝑂(√Δ) as Δ ↓ 0.

Proof of Lemma 8. By the definition (7) of (𝑧
𝑡
) for 𝑡 ∈ [𝑡

𝑛
, 𝑡
𝑛+1

]

and for 0 < 𝜉 < 1/2, we have that

𝐴fl {𝑧
𝑡
≤ 0} ∩ {𝑦

𝑡
𝑛

> Δ
1−2𝜉

}

= {(𝑦
𝑡
𝑛

)
𝑞−1/2

(𝑊
𝑡
− 𝑊

𝑡
𝑛

) ≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√𝑦
𝑛
}

∩ {𝑦
𝑡
𝑛

> Δ
1−2𝜉

} ⊆ 𝐴
1

∪ 𝐴
2
,

(93)

where

𝐴
1

fl{𝑊
𝑡
− 𝑊

𝑡
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√(𝑦
𝑛
) (𝑦

𝑡
𝑛

)
−𝑞+1/2

}

∩ {𝑦
𝑡
𝑛

≥ 1} ,

𝐴
2

fl{𝑊
𝑡
− 𝑊

𝑡
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√(𝑦
𝑛
) (𝑦

𝑡
𝑛

)
−𝑞+1/2

}

∩ {1 > 𝑦
𝑡
𝑛

> Δ
1−2𝜉

} .

(94)

The following inclusion relations hold for the event 𝐴
1
:

𝐴
1

⊆
{

{

{

Δ𝑊
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√𝑦
𝑡
𝑛

(1 −
𝑘
2
Δ

1 + 𝑘
2
𝜃Δ

) −
(𝑘

3
)
2

Δ

4 (1 + 𝑘
2
𝜃Δ)

2
(𝑦

𝑡
𝑛

)
2𝑞−1

(𝑦
𝑡
𝑛

)
−𝑞+1/2}

}

}

∩ {𝑦
𝑡
𝑛

≥ 1}

⊆
{

{

{

Δ𝑊
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√
1 − 𝑘

2
(2 − 𝜃) Δ

1 + 𝑘
2
𝜃Δ

−
(𝑘

3
)
2

Δ

4 (1 + 𝑘
2
𝜃Δ)

2

}

}

}

⊆

{{

{{

{

Δ𝑊
𝑛

√𝑡 − 𝑡
𝑛

≤ −
2

𝑘
3

√(1 − 𝑘
2
(2 − 𝜃) Δ) (1 + 𝑘

2
𝜃Δ)

√𝑡 − 𝑡
𝑛

}}

}}

}

(95)
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when Δ(2 − 𝜃) < 1/𝑘
2
and (𝑘

3
)
2
/(1 + 𝑘

2
𝜃Δ) ≤ 4𝑘

2
, where

Δ𝑊
𝑛
fl𝑊

𝑡
− 𝑊

𝑡
𝑛

. We obtain

P (𝐺 ≤ −𝛽) = ∫
−𝛽

−∞

1

√2𝜋
𝑒
−𝑢
2
/2

𝑑𝑢 ≤ ∫
−𝛽

−∞

𝑒
−𝑢
2
/2

𝑑𝑢

= ∫
∞

𝛽

𝑒
−𝑢
2
/2

𝑑𝑢 ≤
1

𝛽
𝑒
−(𝛽)
2
/2

,

(96)

for every standard normal random variable 𝐺, where in the
last step we have used [17, (9.20), page 112] valid for 𝛽 > 0.

Using the fact that Δ𝑊
𝑛
/√𝑡 − 𝑡

𝑛
is a standard normal r.v. and

ignoring the exponential term in (96), since its exponent is
negative, we get that

P (𝐴
1
) ≤

𝑘
3

2√(1 − 𝑘
2
(2 − 𝜃) Δ)

√𝑡 − 𝑡
𝑛

≤ 𝐶
𝑘
2
,𝑘
3
,𝜃,Δ

√Δ.

(97)

The following inclusion relations hold for the event 𝐴
2
:

𝐴
2

⊆
{

{

{

Δ𝑊
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√𝑦
𝑡
𝑛

1 − 𝑘
2
(1 − 𝜃) Δ

1 + 𝑘
2
𝜃Δ

+
𝑘
1
Δ

1 + 𝑘
2
𝜃Δ

−
(𝑘

3
)
2

Δ

4 (1 + 𝑘
2
𝜃Δ)

2
(𝑦

𝑡
𝑛

)
2𝑞−1

(𝑦
𝑡
𝑛

)
−𝑞+1/2}

}

}

∩ {1 > 𝑦
𝑡
𝑛

> Δ
1−2𝜉

} ⊆
{

{

{

Δ𝑊
𝑛

≤ −
2 (1 + 𝑘

2
𝜃Δ)

𝑘
3

√Δ1−2𝜉
1 − 𝑘

2
(1 − 𝜃) Δ

1 + 𝑘
2
𝜃Δ

+ (𝑘
1

−
(𝑘

3
)
2

4 (1 + 𝑘
2
𝜃Δ)

)
Δ

1 + 𝑘
2
𝜃Δ

}

}

}

⊆

{{

{{

{

Δ𝑊
𝑛

√𝑡 − 𝑡
𝑛

≤ −
2

𝑘
3

√(1 − 𝑘
2
(1 − 𝜃) Δ) (1 + 𝑘

2
𝜃Δ)

√𝑡 − 𝑡
𝑛

Δ
1/2−𝜉

}}

}}

}

(98)

whenΔ(1−𝜃) < 1/𝑘
2
and (𝑘

3
)
2
/(1+𝑘

2
𝜃Δ) ≤ 4𝑘

1
.Using again

(96) we have that

P (𝐴
2
) ≤

𝑘
3

2√(1 − 𝑘
2
(1 − 𝜃) Δ)

⋅ √𝑡 − 𝑡
𝑛
Δ
𝜉−1/2

𝑒
−(2/(𝑘

3
)
2
)((1−𝑘

2
(1−𝜃)Δ)(1+𝑘

2
𝜃Δ)/√𝑡−𝑡𝑛)Δ

1−2𝜉

≤
𝑘
3

2√(1 − 𝑘
2
(1 − 𝜃) Δ)

⋅ Δ
𝜉
𝑒
−(2/(𝑘

3
)
2
)(1−𝑘

2
(1−𝜃)Δ)(1+𝑘

2
𝜃Δ)Δ
−2𝜉

.

(99)

Taking probabilities in the inclusion relation (93) and using
(97) and (99) we get

P (𝐴) ≤ P (𝐴
1
) + P (𝐴

2
) ≤ 𝐶

𝑘
2
,𝑘
3
,𝜃,Δ

√Δ

+
𝑘
3

2√(1 − 𝑘
2
(1 − 𝜃) Δ)

⋅ Δ
𝜉
𝑒
−(2/(𝑘

3
)
2
)(1−𝑘

2
(1−𝜃)Δ)(1+𝑘

2
𝜃Δ)Δ
−2𝜉

≤ 𝐶
𝑘
2
,𝑘
3
,𝜃,Δ

√Δ,

(100)

since Δ𝜉𝑒−Δ
−2𝜉

= 𝑜(√Δ) as Δ ↓ 0. Finally, note that 𝐶
𝑘
2
,𝑘
3
,𝜃,Δ

=

𝑘
3
/√1 − 𝑘

2
(2 − 𝜃)Δ → 𝑘

3
asΔ ↓ 0which justifies the𝑂(√Δ)

notation (see, e.g., [24]).

6. Numerical Experiments

We discretize the interval [0, 𝑇] with a number of steps in
power of 2. The semidiscrete (SD) scheme is given by

𝑦
SD
𝑡
𝑛+1

= (√𝑦
𝑡
𝑛

(1 −
𝑘
2
Δ

1 + 𝑘
2
𝜃Δ

) +
𝑘
1
Δ

1 + 𝑘
2
𝜃Δ

−
(𝑘

3
)
2

Δ

(4 (1 + 𝑘
2
𝜃Δ)

2

)
(𝑦

𝑡
𝑛

)
2𝑞−1

+
𝑘
3

(2 (1 + 𝑘
2
𝜃Δ))

(𝑦
𝑡
𝑛

)
𝑞−1/2

Δ𝑊
𝑛
)

2

, (101)

for 𝑛 = 0, . . . , 𝑁 − 1, where Δ𝑊
𝑛
fl𝑊

𝑡
𝑛+1

− 𝑊
𝑡
𝑛

are the
increments of the Brownian motion which are Gaussian
random variables with Δ𝑊

𝑛
∼ N(0, Δ).

The ALF (Alfonsi) scheme [4, Section 3] is an implicit
scheme which requires solving the nonlinear equation

𝑌
𝑛+1

= 𝑦
𝑡
𝑛

+ (1 − 𝑞) (𝑘
1
(𝑌

𝑛+1
)
−𝑞/(1−𝑞)

− 𝑘
2
𝑌
𝑛+1

−
𝑞 (𝑘

3
)
2

2
(𝑌

𝑛+1
)
−1

) Δ + 𝑘
3
(1 − 𝑞) Δ𝑊

𝑛
,

(102)

and then computing 𝑦ALF
𝑡
𝑛+1

= (𝑌
𝑛+1

)
1/(1−𝑞)

. The estimation of
𝑌
𝑛+1

in (102) can be done, for example, with Newton’s method
but requires a small enough Δ (in the CIR case, that is, when
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𝑞 = 1/2, (102) simplifies to a solution of a quadratic equation).
We also consider a scheme recently proposed in [16] using
again the SD method, but in a different way,

𝑦
HAL
𝑡
𝑛+1

(𝑞) =



(𝑦
𝑡
𝑛

(1 − 𝑘
2
Δ) + 𝑘

1
Δ

−
𝑞 (𝑘

3
)
2

Δ

2
(𝑦

𝑡
𝑛

)
2𝑞−1

)

1−𝑞

+ 𝑘
3
(1 − 𝑞)

⋅ Δ𝑊
𝑛



1/(1−𝑞)

,

(103)

for 𝑛 = 0, . . . , 𝑁 − 1. Note the similarity in the expressions
of (103) and the SD scheme (101) proposed here. This is not
strange, because they both rely on the same way of splitting
the drift coefficient. In particular, in the explicit HAL scheme,
the following process is considered:

𝑦
HAL
𝑡

(𝑞) = 𝑦
𝑡
𝑛

+ 𝑓
1
(𝑦

𝑡
𝑛

) ⋅ Δ + ∫
𝑡

𝑡
𝑛

𝑓
2
(𝑦

𝑠
) 𝑑𝑠

+ ∫
𝑡

𝑡
𝑛

sgn (𝑧
𝑠
) 𝑔 (𝑦

𝑠
) 𝑑𝑊

𝑠
,

(104)

for 𝑡 ∈ (𝑡
𝑛
, 𝑡
𝑛+1

] with 𝑦
0

= 𝑥
0
a.s. where now

𝑓 (𝑥)

= 𝑘
1

− 𝑘
2
𝑥 − (𝑞 (𝑘

3
)
2

/2) 𝑥
2𝑞−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
1
(𝑥)

+ (𝑞 (𝑘
3
)
2

/2) 𝑥
2𝑞−1

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑓
2
(𝑥)

,

𝑔 (𝑥) = 𝑘
3
𝑥
𝑞
,

𝑧
𝑡

= (𝑦
𝑡
𝑛

(1 − 𝑘
2
Δ) + 𝑘

1
Δ −

𝑞 (𝑘
3
)
2

Δ

2
(𝑦

𝑡
𝑛

)
2𝑞−1

)

1−𝑞

+ 𝑘
3
(1 − 𝑞) (𝑊

𝑡
− 𝑊

𝑡
𝑛

) .

(105)

A comparison with (3) and (4) shows that 𝑓
2
(𝑥) = 2𝑞𝑓

2
(𝑥)

and 𝑔(𝑥) = 𝑔(𝑥, 𝑥), for 𝜃 = 0. We write (104) again as

𝑦
HAL
𝑡

(𝑞) = 𝑦
𝑡
𝑛

+ (𝑘
1

− 𝑘
2
𝑦
𝑡
𝑛

−
𝑞 (𝑘

3
)
2

2
(𝑦

𝑡
𝑛

)
2𝑞−1

)

⋅ Δ + ∫
𝑡

𝑡
𝑛

𝑞 (𝑘
3
)
2

2
(𝑦

𝑠
)
2𝑞−1

𝑑𝑠

+ 𝑘
3
∫
𝑡

𝑡
𝑛

sgn (𝑧
𝑠
) (𝑦

𝑠
)
𝑞

𝑑𝑊
𝑠
,

(106)

and the process (106) is well defined when

(𝑘
3
)
2

≤
2

𝑞
𝑘
1
,

Δ ≤
2

2𝑘
2

+ 𝑞 (𝑘
3
)
2
.

(107)

The reader can compare again with (6) for 𝜃 = 0. Solving for
𝑦
𝑡
, we end up with 𝑦HAL

𝑡
(𝑞) = |𝑧

𝑡
|1/(1−𝑞). The main result in

[16] is

E

𝑦
HAL
𝑡

− 𝑥
𝑡



2

≤ 𝐶 ⋅ Δ
2𝑞(𝑞−1/2)

, (108)

when (107) holds, implying a rate of convergence at least 𝑞(𝑞−

1/2) which is bigger than the rate of convergence of the SD
scheme proposed here which is at least (1/2)(𝑞 − 1/2) (see
Theorem 2).

We also consider two more linear-implicit schemes that
were stated in the Introduction and discussed in Appendix B.
Namely, we compare with the balanced implicit method
(BIM) with appropriate weight functions to guarantee pos-
itivity ([25, Theorem 5.9]), which reads

𝑦
BIM
𝑡
𝑛+1

(𝑞) =
𝑦
𝑡
𝑛

+ 𝑘
1
Δ + 𝑘

3
(𝑦

𝑡
𝑛

)
𝑞

(Δ𝑊
𝑛

+
Δ𝑊

𝑛

)

1 + 𝑘
2
Δ + 𝑘

3
(𝑦

𝑡
𝑛

)
𝑞−1 Δ𝑊

𝑛



, (109)

and the balancedMilsteinmethod (BMM)with the suggested
weight functions [25, Theorem 5.9] that is given by

𝑦
BMM
𝑡
𝑛+1

(𝑞) =
𝑦
𝑡
𝑛

+ (𝑘
1

+ (Θ − 1) 𝑘
2
𝑦
𝑡
𝑛

) Δ + 𝑘
3
(𝑦

𝑡
𝑛

)
𝑞

Δ𝑊
𝑛

+ (𝑞 (𝑘
3
)
2

/2) (𝑦
𝑡
𝑛

)
2𝑞−1

(Δ𝑊
𝑛
)
2

1 + Θ𝑘
2
Δ + (𝑞 (𝑘

3
)
2

/2)

𝑦
𝑡
𝑛



2𝑞−2

Δ
. (110)

We take the relaxation parameter Θ to be 1/2 as recom-
mended in [25, (5.10)].

We aim to show experimentally the order of convergence
for the above positivity preservingmethods for the estimation
of the true solution of the CEV model (2), that is, the

semidiscrete methods SD (101) and the HAL scheme (103), as
well as the implicit ALF scheme (102) and the linear-implicit
schemes BIM and BMM. The choice of the parameters is
the same as in [15, Figure 6] with 𝑘

3
= 0.4. In particular

(𝑥
0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) = (1/16, 1/16, 1, 0.4, 3/4, 1).
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Furthermore, wewould also like to reveal the dependence
of the order of the semidiscretemethods on 𝑞; that is, we want
to verify our theoretical results and in particular the order
shown in Theorem 2. We take the level of implicitness of the
SD method (101) to be 𝜃 = 1; that is, we consider the fully
implicit scheme. We also discuss the fully explicit scheme,
that is, when 𝜃 = 0, but also an intermediate scheme 𝜃 = 1/2,
in Section 7.

We want to estimate the endpoint L2-norm 𝜖 =

√E|𝑦(Δ)(𝑇) − 𝑥
𝑇
|2 of the difference between the numerical

scheme evaluated at step size Δ and the exact solution
of (2). For that purpose, we compute 𝑀 batches of 𝐿

simulation paths, where each batch is estimated by 𝜖
𝑗

=

(1/𝐿) ∑
𝐿

𝑖=1
|𝑦

(Δ)

𝑖,𝑗
(𝑇)−𝑦

(ref)
𝑖,𝑗

(𝑇)|2 and theMonteCarlo estimator
of the error is

𝜖 = √
1

𝑀𝐿

𝑀

∑
𝑗=1

𝐿

∑
𝑖=1


𝑦
(Δ)

𝑖,𝑗
(𝑇) − 𝑦

(ref)
𝑖,𝑗

(𝑇)


2

, (111)

and requires 𝑀 ⋅ 𝐿 Monte Carlo sample paths. The reference
solution is evaluated at step size 2

−14 of the numerical scheme.
For the SD case, we have shown in Theorems 1 and 2 that it
strongly converges to the exact solution. We simulate 100 ⋅

100 = 10000 paths, where the choice for 𝐿 = 100 is as in [28,
page 118].The choice of the number of trajectories𝑀⋅𝐿 = 10

4

is also considered in [26, Section 5] where a fundamental
mean-square theorem is proved for SDEs with superlinear
growing coefficients satisfying a one-side Lipschitz condition,
but unfortunately it is not positivity preserving.Of course, the
number of Monte Carlo paths has to be sufficiently large, so
as not to significantly hinder the mean-square errors.

We plot in a log
2
-log

2
scale and error bars represent 98%

confidence intervals. The results are shown in Table 1 and
Figure 1. Table 1 does not present the computed Monte Carlo
errors with 98% confidence, since they were at least 9 times
smaller that the mean-square errors.

In Table 2 we present the computational times (we
simulate with 3.06GHz Intel Pentium, 1.49GB of RAM in
MATLAB 𝑅2014𝑏 Software. The random number generator
is Mersenne Twister. The evaluated times do not include the
random number generation time, since all the methods we
compare involve the same amount of random numbers) of
fully implicit SD, HAL, ALF, BIM, and BMM, for the same
problem. Figure 2 shows the relation between the error and
computer time consumption. As one can see from Table 2
the CPU times for ALF are at least 1000 times bigger than
the other schemes; thus we choose in Figure 2 to restrict our
attention to the rest of the methods.

We show, in Table 3, the L2-distance between our pro-
posed method and the other methods for the numerical
approximation of (2). We work as before and estimate the
distance,

𝑑 (𝐺, 𝐻) = √
1

𝑀𝐿

𝑀

∑
𝑗=1

𝐿

∑
𝑖=1


𝑦
(Δ,𝐺)

𝑖,𝑗
(𝑇) − 𝑦

(Δ,𝐻)

𝑖,𝑗
(𝑇)



2

, (112)

between method 𝐺 and 𝐻, by considering sufficient small Δ,
and in particular for Δ = 10−2, 10−3, 10−4.
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Figure 1: Convergence of fully implicit SD, HAL, ALF, BIM,
and BMM schemes applied to SDE (2) with parameters
(𝑥

0
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Figure 2: Strong convergence error of themean-reverting CEVpro-
cess (2) as a function of CPU time (in sec) using positivity preserving
schemes SD, HAL, ALF, BIM, and BMM with (𝑥

0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) =

(1/16, 100, 0.05, 1/16, 1, 0.4, 3/4, 1).

Finally, we examine the behavior of all the methods for a
value of the parameter 𝑞 close to 1/2. The results are shown
in Table 4.

The following points of discussion are worth mentioning:

(i) The performance of all methods, as shown in Table 1
and Figure 1, implies, in terms of error estimates, that
the implicit ALF scheme performs better, for values
of discretization steps Δ ≤ 2

−9. Actually for these



Journal of Probability and Statistics 15

Table 1: 98% error and step size of fully implicit SD, HAL, ALF, BIM, and BMM scheme for (2) with (𝑥
0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) =

(1/16, 1/16, 1, 0.4, 3/4, 1).

Step Δ SD (𝜃 = 1) Rate HAL Rate ALF Rate BIM Rate BMM Rate
2−5 0.035161 — 0.03568 — 0.044343 — 0.033275 — 0.035819 −

2
−7

0.035082 0.0016 0.035034 0.0131 0.044539 −0.0032 0.033541 −0.0057 0.035737 0.0017

2−9 0.034565 0.1071 0.035109 −0.0015 0.020261 0.5682 0.032988 0.012 0.035192 0.0111

2
−11

0.033205 0.029 0.033709 0.029 0.019532 0.0264 0.031724 0.0282 0.033731 0.0306

2−13 0.025078 0.2025 0.024978 0.2162 0.014600 0.2099 0.024998 0.1719 0.025292 0.2077

Table 2: Average computational time (in seconds) for a path, for different discretizations, for all considered positivity preserving methods
for the mean-reverting CEV process (2) with 𝑞 = 3/4.

Step Δ Time/path (in sec): Implicit SD HAL ALF BIM BMM
2
−5 0.000013 0.0000164 0.0221883 0.0000174 0.0000196

2−7 0.0000422 0.0000558 0.0841705 0.0000584 0.0000657

2
−9 0.0001586 0.0002137 0.2453943 0.0002207 0.0002482

2−11 0.0006243 0.0008437 0.9768619 0.0008703 0.0009795

2−13 0.0024975 0.0033977 3.9096332 0.0034785 0.0039143

Table 3: The L2-distance between all the considered numerical
schemes applied to SDE (2) with parameter set (𝑥

0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) =

(1/16, 1/16, 1, 0.4, 3/4, 1).

Step Δ
98%-𝑑

(SD, HAL)
98%-𝑑

(SD, ALF)
98%-𝑑

(SD, BIM) 98%-𝑑 (SD, BMM)

10−2 0.0005727 0.0716140 0.0038373 0.0005312

10
−3

0.0001577 0.0286630 0.0013460 0.0001564

10
−4

0.0000498 0.0283117 0.0004448 0.0000498

step sizes the ALF method starts to converge, and the
same is true for the HAL and BIM methods. All the
methods except ALF, that is, the semidiscrete SD and
HAL, the BIM, and the BMM have a similar behavior
for all values of Δ in the sense of error estimation
as Figure 1 shows. The similarity of SD, HAL, BIM,
BMM, and especially between SD and BMM is also
indicated in Table 3, where we see how close they are
with respect to the L2-norm. Nevertheless, Table 3
also shows that in order to get an accuracy to at least
two decimal digits, which in practicemay be adequate
concerning that we want, for example, to evaluate an
option and thus our results are in euros, we are free to
use any of the above available methods. We may then
choose the fastest one, as will be discussed later on.

(ii) The experimental strong order of convergence of
implicit SD for problem (2) is 1/5 (at least 1/2(𝑞 −

1/2) = 1/8 as shown theoretically and presented in
Table 1). We also see that all methods converge with
similar orders and the theoretically rate 1 of the ALF
method [4] does not hold for these values of Δ. Thus,
again we see that the rate in practical situations does
not necessarily matter, if one has to consider very
small values of Δ to achieve it. Moreover, we present

in Table 5 the performance of the explicit SD method
and see that it is very close to the implicit, which is of
course natural to happen.

(iii) Table 4 concerns the case where the parameter 𝑞 is
0.55. We do not present the ALF method since it
required smaller values of Δ. All the methods again
behave quite the same, with the BIM performing
better with respect to error estimation.

(iv) In practice, the computer time consumed to provide
a desired level of accuracy is of great importance.
In particular, in financial applications, a scheme is
considered better when, except of its accuracy, it is
implemented faster. As mentioned before, the SD
method as well as the HAL method performs well in
that aspect, compared to the implicit ALF method,
which requires the estimation of a root of a nonlinear
equation in each step and is therefore time consum-
ing. This is presented in Table 2 and Figure 2 which
illustrates the advantage of the semidiscrete method
SD, performing slightly better than HAL and BMM,
better than BIM, and of course a lot better compared
with ALF (over 1000 times quicker to achieve an
accuracy of almost two decimal digits). Moreover, the
explicit SD performs slightly better in that aspect.

(v) A negative step of a numerical method appears when
the computer-generated random variable exceeds a
certain threshold, which tends to increase as the
step size Δ decreases. Thus, the undesirable effect of
negative values that are produced by some numerical
schemes (such as the explicit Euler (EM) and standard
Milstein (M)) tends to disappear, since, after a certain
small step size, the threshold exceeds the maximum
standard normal random number attainable by the
computer system.
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Table 4: 98% error and step size of fully implicit SD, HAL, ALF, BIM, and BMM scheme for (2) with (𝑥
0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) =

(1/16, 1/16, 1, 0.4, 0.55, 1).

Step Δ SD-error (𝜃 = 1) Rate HAL-error Rate BIM-error Rate BMM-error Rate
2−10 0.059129 — 0.059666 — 0.055819 — 0.059661 —
2
−11

0.058178 0.0234 0.058669 0.0243 0.055033 0.0205 0.058667 0.0242

2−12 0.054582 0.092 0.054989 0.0935 0.051796 0.0875 0.054987 0.0935

2−13 0.044065 0.3088 0.044288 0.3122 0.042444 0.2873 0.044287 0.3122

Table 5: The performance of fully explicit SD scheme (101)
applied to SDE (2) with parameter set (𝑥

0
, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) =

(1/16, 1/16, 1, 0.4, 3/4, 1).

Step Δ 98% SD-error (𝜃 = 0) Rate
2−7 0.0344244 —
2
−9

0.0342415 0.0038

2−11 0.0331273 0.0239

2−13 0.0250195 0.2025

7. Approximation of Stochastic Model (1)

So far we have focused on the process (𝑉
𝑡
), which is one part

of system (1). Nevertheless, it can be treated independently,
since the only way that it interacts with the process (𝑆

𝑡
) is

through the correlation 𝜌 of the Wiener processes. First we
apply Itô’s formula on ln(𝑆

𝑡
) to get

ln 𝑆
𝑡
= ln 𝑆

0
+ ∫

𝑡

0

𝜇 𝑑𝑢 −
1

2
∫
𝑡

0

(𝑉
𝑢
)
2𝑝

𝑑𝑢

+ ∫
𝑡

0

(𝑉
𝑢
)
𝑝

𝑑𝑊
𝑢
, 𝑡 ∈ [0, 𝑇] .

(113)

Then, we consider two different schemes for the integra-
tion of (113) (the reason for not considering other schemes
such as the two-dimensional Milstein is that they generally
are time consuming, since they involve additional random
number generation for the approximation of double Wiener
integrals). The first is the EM scheme which reads

ln 𝑆
EM
𝑡
𝑛+1

= ln 𝑆
𝑡
𝑛

+ 𝜇Δ −
1

2
(𝑉

𝑡
𝑛

)
2𝑝

Δ + (𝑉
𝑡
𝑛

)
𝑝

Δ𝑊
𝑛
, (114)

which has strong convergence order 1/2 and is easy to imple-
ment.The second scheme, which is based on an interpolation
of the drift term and an interpolation of the diffusion term,
considering decorrelation of the diffusion term, including a
higher order Milstein term [15, Section 4.2], is denoted IJK
and is given by [15, (137)]

ln 𝑆
IJK
𝑡
𝑛+1

= ln 𝑆
𝑡
𝑛

+ 𝜇Δ −
1

4
((𝑉

𝑡
𝑛

)
2𝑝

+ (𝑉
𝑡
𝑛+1

)
2𝑝

) Δ

+ 𝜌 (𝑉
𝑡
𝑛

)
𝑝

Δ�̃�
𝑛

+
1

2
((𝑉

𝑡
𝑛

)
𝑝

+ (𝑉
𝑡
𝑛+1

)
𝑝

) (Δ𝑊
𝑛

− 𝜌Δ�̃�
𝑛
)

+
1

2
𝜌𝑝𝑘

3
(𝑉

𝑡
𝑛

)
𝑞+𝑝−1

((Δ�̃�
𝑛
)
2

− Δ) .

(115)
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Figure 3: Strong convergence error of the financial underlying
process (𝑆

𝑡
), as a function of CPU time (in sec) using log-

Euler or IJK method with SD or BMM scheme for (1) with
(𝑥

0
, 𝑆

0
, 𝜇, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) = (1/16, 100, 0.05, 1/16, 1, 0.4, 3/4, 1), cor-

relation 𝜌 = −0.8.

We therefore consider the EM scheme (114) combined
with SD (101) and the IJK scheme (115) combined with SD
(101) and compare with the case where the stochastic variance
(𝑝 = 1/2) is integrated with BMM scheme (110), for three
different correlation parameters, 𝜌 = 0, 𝜌 = −0.4, and
𝜌 = −0.8 with 𝑆

0
= 100, 𝜇 = 0.05, as in [15, Section 5].

We present in Tables 6, 7, and 8 the errors, in the sense of
distance (112), for all the above considered ways of numerical
integration of process (𝑆

𝑡
), for different step sizes, as well as

the average computational time (in seconds) consumed for
each discretization.We also give an illustrative representation
just for one case (𝜌 = −0.8) in Figure 3.

Tables 6, 7, and 8 indicate that in all cases the favorable
choice is to integrate (𝑆

𝑡
) using IJK method combined with

the SD scheme for (𝑉
𝑡
) in model (1). The IJK-SD approxima-

tion of system (1) seems to be the better one, with respect to
CPU time, for every correlation coefficient considered.

8. Conclusion

In this paper, we exploit further the semidiscrete method
(SD), which originally appeared in [8], to numerically
approximate stochastic processes that appear in financial
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Table 6: 98% error, step size, and average computational time of numerical integration of process (𝑆
𝑡
) using log-Euler or IJK method with

SD or BMM scheme for (1) with (𝑥
0
, 𝑆

0
, 𝜇, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) = (1/16, 100, 0.05, 1/16, 1, 0.4, 3/4, 1) and correlation 𝜌 = 0.

Step Δ EM and SD-error (𝜃 = 0.5) IJK and SD-error (𝜃 = 0.5) EM and BMM-error (Θ = 0.5) IJK and BMM-error (Θ = 0.5)

2
−5

26.901 (0.0000261) 26.901 (0.0000159) 26.891 (0.00002) 26.890 (0.0000294)

2−7 27.288 (0.0000919) 27.288 (0.0000492) 27.277 (0.0000676) 27.277 (0.0001043)

2−9 27.298 (0.0003595) 27.297 (0.0001843) 27.289 (0.0002610) 27.288 (0.0004081)

2
−11

25.057 (0.0014255) 25.058 (0.0007309) 25.051 (0.0010309) 25.051 (0.0016191)

2
−13

19.441 (0.0057322) 19.441 (0.0028928) 19.442 (0.0041177) 19.442 (0.0064721)

Table 7: 98% error, step size, and average computational time of numerical integration of process (𝑆
𝑡
) using log-Euler or IJK method with

SD or BMM scheme for (1) with (𝑥
0
, 𝑆

0
, 𝜇, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) = (1/16, 100, 0.05, 1/16, 1, 0.4, 3/4, 1), correlation 𝜌 = −0.4.

Step Δ EM and SD-error (𝜃 = 0.5) IJK and SD-error (𝜃 = 0.5) EM and BMM-error (Θ = 0.5) IJK and BMM-error (Θ = 0.5)

2−5 26.382 (0.0000266) 26.331 (0.0000161) 26.372 (0.0000202) 26.324 (0.00003)

2−7 26.448 (0.0000951) 26.396 (0.000005) 26.439 (0.0000691) 26.389 (0.0001081)

2
−9

25.951 (0.0003631) 25.909 (0.000184) 25.944 (0.0002606) 25.904 (0.0004131)

2−11 24.540 (0.0014506) 24.494 (0.0007355) 24.531 (0.0010378) 24.486 (0.0016495)

2−13 18.738 (0.0060748) 18.749 (0.0030185) 18.735 (0.0042868) 18.747 (0.0068395)

Table 8: 98% error, step size, and average computational time of numerical integration of process (𝑆
𝑡
) using log-Euler or IJK method with

SD or BMM scheme for (1) with (𝑥
0
, 𝑆

0
, 𝜇, 𝑘

1
, 𝑘

2
, 𝑘

3
, 𝑞, 𝑇) = (1/16, 100, 0.05, 1/16, 1, 0.4, 3/4, 1), correlation 𝜌 = −0.8.

Step Δ EM and SD-error (𝜃 = 0.5) IJK and SD-error (𝜃 = 0.5) EM and BMM-error (Θ = 0.5) IJK and BMM-error (Θ = 0.5)

2
−5

25.552 (0.0000263) 25.455 (0.0000159) 25.541 (0.0000199) 25.449 (0.0000296)

2−7 25.670 (0.0000932) 25.569 (0.0000494) 25.659 (0.0000678) 25.564 (0.0001059)

2−9 25.217 (0.0003622) 25.137 (0.0001835) 25.208 (0.0002595) 25.132 (0.0004111)

2
−11

23.743 (0.0014407) 23.711 (0.0007306) 23.734 (0.0010307) 23.707 (0.0016376)

2−13 18.082 (0.005871) 18.316 (0.0029312) 18.078 (0.0041637) 18.312 (0.0066239)

mathematics and are meant to be nonnegative. In [23] we
examined the Heston 3/2-model, that is, a mean-reverting
process with superlinear diffusion, described by a SDE of the
form (2) with 𝑞 = 3/2.Now, we deal with SDEswith sublinear
diffusion coefficients of the type (𝑥

𝑡
)
𝑞 with 1/2 < 𝑞 < 1.These

kinds of SDEs, called mean-reverting CEV processes, appear
in stochastic models, where they represent the instantaneous
volatility-variance of an underlying financially observable
variable.Weprove theoretically the strong convergence of our
proposed SD scheme, revealing the order of convergence.The
resulting polynomial rate is shown inTheorem 1. We present
a comparative study between various positivity preserving
schemes and the SD method seems to be the best with
respect to CPU time consumption. The advantage of the
SD method here is that although implicit, it has an explicit
formula and thus requires fewer arithmetic operations and
consequently less computational time.Moreover, ourmethod
can cover cases where (2) has time varying coefficients, that
is, 𝑘

1
(𝑡), 𝑘

2
(𝑡), 𝑘

3
(𝑡).

We also treat the two-dimensional stochastic volatility
model (1). In order to do that, we actually integrate the
process ln(𝑆

𝑡
) which satisfies a SDE of the form (113) and

in the end transform back for (𝑆
𝑡
). We only consider two

different schemes for the integration of ln(𝑆
𝑡
), namely, the

Euler Maruyama (EM) scheme, which is easy to implement
and the IJK scheme [15, (137)] which is shown to be the
most efficient method, robust and simple as EM [15]. We

do not apply other two-dimensional schemes, such as, for
example, the Milstein scheme, since they are in general
time consuming, as they involve approximations of double
Wiener integrals which require additional random number
generation. We therefore combine the EM scheme with SD
((114) and (101)) and the IJK scheme with SD ((115) and (101))
and compare with the case where the stochastic variance (𝑝 =

1/2) is integrated with BMM scheme (110), for three different
correlation parameters, 𝜌 = 0, 𝜌 = −0.4, and 𝜌 = −0.8 with
𝑆
0

= 100, 𝜇 = 0.05, as in [15, Section 5].The combination IJK
with SD seems to be the most favorable with respect to CPU
time, for all the cases.

Appendices

A. Boundary Classification of One-
Dimensional Time-Homogeneous SDEs

Let us now recall some results [17, Section 5.5] concerning the
boundary behavior of SDEs of the form

𝑑𝑋
𝑡
= 𝑎 (𝑋

𝑡
) 𝑑𝑡 + 𝑏 (𝑋

𝑡
) 𝑑𝑊

𝑡
. (A.1)

Let 𝐼 = (𝑙, 𝑟) be an interval with −∞ ≤ 𝑙 < 𝑟 ≤ ∞ and define
the exit time from 𝐼 to be

𝑆fl inf {𝑡 ≥ 0 : 𝑋
𝑡
∉ (𝑙, 𝑟)} . (A.2)
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Let also the coefficients of (A.1) satisfy the following condi-
tions:

Nondegeneracy (ND)

𝑏
2
(𝑥) > 0, ∀𝑥 ∈ 𝐼. (A.3)

Local Integrability (LI)

∫
𝑥+𝜖

𝑥−𝜖

1 +
𝑎 (𝑦)



𝑏2 (𝑦)
𝑑𝑦 < ∞, ∀𝑥 ∈ 𝐼, ∃𝜖 > 0. (A.4)

Then for 𝑐 ∈ 𝐼, we can define the scale function

𝑠 (𝑥)fl∫
𝑥

𝑐

𝑒
−2∫
𝑦

𝑐
(𝑎(𝑧)/𝑏

2
(𝑧))𝑑𝑧

𝑑𝑦, (A.5)

whose behavior at the endpoints of 𝐼 determines the bound-
ary behavior of (𝑋

𝑡
) [17, Proposition 5.22]. In particular, we

get for the dynamics of the mean-reverting CEV process (𝑉
𝑡
)

of (1) a boundary behavior which is determined by the scale
function

𝑠 (𝑥) = ∫
𝑥

𝑐

exp{−2 ∫
𝑦

𝑐

𝑘
1

− 𝑘
2
𝑧

(𝑘
3
)
2

𝑧2𝑞
𝑑𝑧} 𝑑𝑦

= 𝐶 ∫
𝑥

𝑐

exp{−
2𝑘

1

(𝑘
3
)
2

(1 − 2𝑞)
𝑦
1−2𝑞

+
2𝑘

2

(𝑘
3
)
2

(2 − 2𝑞)
𝑦
2−2𝑞

} 𝑑𝑦,

(A.6)

for any 𝑥 ∈ 𝐼, where 𝐶 > 0. Let 𝐼 = (0, ∞) and take 𝑐 = 1. We
compute

𝑠 (0+) = −𝐶 ∫
1

0

exp{−
2𝑘

1

(𝑘
3
)
2

(1 − 2𝑞)
𝑦
1−2𝑞

+
2𝑘

2

(𝑘
3
)
2

(2 − 2𝑞)
𝑦
2−2𝑞

} 𝑑𝑦 = −∞,

(A.7)

when 2𝑞 > 1; thus by [17, Proposition 5.22c] we have that
P(inf

0≤𝑡
𝑉
𝑡
> 0) = 1.

B. Some Numerical Schemes for the
Integration of the Variance-Volatility
Process (𝑉

𝑡
)

We consider a partition of the time interval [0, 𝑇] with 0 =

𝑡
0

< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑁

= 𝑇 and discretization steps Δ
𝑛
fl𝑡

𝑛+1
− 𝑡

𝑛

for 𝑛 = 0, . . . , 𝑁 − 1. Moreover, we denote by Δ𝑊
𝑛
fl𝑊

𝑡
𝑛+1

−

𝑊
𝑡
𝑛

the increments of the Brownian motion. We show in
the following subsections some numerical schemes for the
approximation of

𝑉
𝑡
= 𝑉

0
+ ∫

𝑡

0

(𝑘
1

− 𝑘
2
𝑉
𝑠
) 𝑑𝑠 + ∫

𝑡

0

𝑘
3
(𝑉

𝑠
)
𝑞

𝑑𝑊
𝑠
,

𝑡 ∈ [0, 𝑇]

(B.1)

and make some brief comments on them. We also denote
𝑉
𝑛
fl𝑉

𝑡
𝑛

.

B.1. Standard Euler-Maruyama Scheme. The Euler method,
applied to the SDE setting, already appeared in the 50s
through Maruyama [27] and thereafter there has been an
extensive study on numerical approximations of solutions of
SDEs (we just mention [12] for a recent review on numerical
methods for SDEs with applications in finance and references
therein).

The explicit Euler-Maruyama (EM) scheme for the pro-
cess (𝑉

𝑡
) is given by

𝑉
EM
𝑛+1

= 𝑉
𝑛

+ (𝑘
1

− 𝑘
2
𝑉
𝑛
) Δ

𝑛
+ 𝑘

3
(𝑉

𝑛
)
𝑞

Δ𝑊
𝑛
, (B.2)

for 𝑛 = 0, . . . , 𝑁 − 1. Clearly P(𝑉
𝑛+1

< 0 | 𝑉
𝑛

> 0) > 0; thus
the EM scheme can produce negative values with positive
probability, or in the notion of [29] we say that (B.2) has a
finite life time.

B.2. Standard Milstein Scheme. The standard one-
dimensional Milstein (M) scheme contains some extra
terms derived by Itô-Taylor expansion [1, Section 5] and
applied to (𝑉

𝑡
) reads

𝑉
𝑀

𝑛+1
= 𝑉

𝑛
+ (𝑘

1
− 𝑘
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𝑉
𝑛
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𝑛
+ 𝑘

3
(𝑉

𝑛
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𝑛
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(𝑘

3
)
2

𝑞 (𝑉
𝑛
)
2𝑞−1

((Δ𝑊
𝑛
)
2

− Δ
𝑛
) ,

(B.3)

for 𝑛 = 0, . . . , 𝑁 − 1 where we have retained terms of order
(Δ

𝑛
). Again (M) scheme has a finite life time.

B.3. Balanced ImplicitMethod. Thebalanced implicitmethod
(BIM) [11, (3.2)] was the first attempt to treat the problem of
invariance-preserving of specific domains of the underlying
process and reads

𝑉
BIM
𝑛+1

= 𝑉
𝑛

+ (𝑘
1

− 𝑘
2
𝑉
𝑛
) Δ

𝑛
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3
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𝑛
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0
(𝑉

𝑛
) Δ

𝑛
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1
(𝑉

𝑛
)
Δ𝑊

𝑛

) (𝑉
𝑛

− 𝑉
𝑛+1

) ,
(B.4)

for 𝑛 = 0, . . . , 𝑁 − 1 where 𝑐0 and 𝑐1 are appropriate weight
functions. The choice 𝑐0(𝑥) = 𝑘

2
and 𝑐1(𝑥) = 𝑘

3
𝑥𝑞−1

preserves positivity [25, Section 5]. Rearranging the above
equation, we get the expression

𝑉
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. (B.5)

B.4. Balanced Milstein Method. The balanced Milstein
method (BMM) was proposed in [25], for an improvement
of the BIM in the stability behavior as well as in the rate
of convergence. It is given by the following linear-implicit
relation:

𝑉
BMM
𝑛+1

= 𝑉
𝑛

+ (𝑘
1

− 𝑘
2
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⋅ (𝑉
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− 𝑉
𝑛+1

) ,

(B.6)
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for 𝑛 = 0, . . . , 𝑁 − 1 where 𝑑0 and 𝑑1 are appropriate weight
functions.The choice𝑑0(𝑥) = Θ𝑘

2
+(1/2)(𝑘

3
)
2
𝑞|𝑥|2𝑞−2, where

Θ ∈ [0, 1] and 𝑑1(𝑥) = 0 implies an eternal life time for
the scheme [25, Theorem 5.9], in the sense that P(𝑉

𝑛+1
>

0 | 𝑉
𝑛

> 0) = 1. The step sizes Δ
𝑛
have to be such that

Δ
𝑛

< (2𝑞 − 1)/2𝑞𝑘
2
(1 − Θ). The relaxation parameter

resembles the implicitness parameter (𝜃 in our notation).
For Θ = 1 there is no restriction in the step size, but it is
recommended when possible [25, Remark 5.10] to take Θ =

1/2. Rearranging with the above specifications leads to
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. (B.7)

Finally, the proposed semidiscrete (SD) scheme reads

𝑉
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. (B.8)

Increasing the time horizon 𝑇 results in an increase of the
percentage of negative paths of EM andM.On the other hand
BIM, BMM, and of course SD are not affected by that, since
they preserve their positivity on any interval [0, 𝑇].
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