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The detection of fastener defects is an important task for ensuring the safety of railway traffic. The earlier automatic inspection
systems based on computer vision can detect effectively the completely missing fasteners, but they have weaker ability to recognize
the partially worn ones. In this paper, we propose a method for detecting both partly worn and completely missing fasteners,
the proposed algorithm exploits the first and second symmetry sample of original testing fastener image and integrates them for
improved representation-based fastener recognition.This scheme is simple and computationally efficient.The underlying rationales
of the scheme are as follows: First, the new virtual symmetrical images really reflect some possible appearance of the fastener; then
the integration of two judgments of the symmetrical sample for fastener recognition can somewhat overcome the misclassification
problem. Second, the improved sparse representation method discarding the training samples that are “far” from the test sample
and uses a small number of samples that are “near” to the test sample to represent the test sample, so as to perform classification
and it is able to reduce the side-effect of the error identification problem of the original fastener image. The experimental results
show that the proposed method outperforms state-of-the-art fastener recognition methods.

1. Introduction

Railroads conduct regular inspection of the track is a very
critical task for maintaining safe and efficient operation.
Traditionally, this task is executed by trained works to
periodically walk along railway lines to search for any damage
of railway facilities. However, the manual inspection is slow,
costly, and even dangerous. With the extension of high-
speed railway network, the inspection faces more challenges
than ever before. Recently, the researchers all over the world
are interested in developing automatic inspection devices,
which are installed on track checking train and are able to
detect railway defects very efficiently. An automatic railway
inspection system is composed of a series of functions such
as gauge measurement [1], track profile measurement [2,
3], track-surface defects detection [4], and fastener defects
detection [5, 6]. In this paper, our research aims to develop
fastener defects detection algorithm and automatically find
defective fasteners based on computer vision technologies.

The fasteners are used to hold the track on sleepers, as
shown in Figure 1, while the causes of two common quality
problems are partly worn and missing fasteners also shown
in Figure 1, which would cause the train derailment and even
threaten the safety of train operation; therefore, the detection
accuracy is themost important target in fastener classification
and defect recognition. In the past decade, some researchers
have devoted themselves to exploiting fastener inspection
methods. For hook-shaped fasteners, Yang et al. [7] took
advantage of direction field as the template of fastener. Sim-
ilarly, Stella et al. [8] employed wavelet transformation and
principal component analysis to preprocess railway images
and searched for the missing fasteners using the neural
classifier. To achieve real-time performance, De Ruvo et al.
[9] applied the error back propagation algorithm to model
the fasteners and also introduced a FPGA-based architecture
for automatic hexagonal bolts detection using the same
algorithm [10]. However, the main work of the researches
above aims at searching formissing fasteners, and it is difficult
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(a) (b) (c)

Figure 1: Fasteners with various existences form on the real railway line. (a) The fastener in left image is intact fastener. (b) The fastener in
middle image is partially worn. (c) The fastener in right image is completely missing.

to detect the partly worn fastener. Recently, Mazzeo et al. [5]
and Rubinsztejn [11] have successfully applied the Adaboost
algorithm to the fastener detection. Specifically, Xia et al. [6]
divided the hook-shaped fastener into four parts and each
part was independently trained by Adaboost. Similarly, Li et
al. [12] used image processing methods to detect the com-
ponents of fastener. Other technologies that have been used
for modeling and detecting fasteners include support vector
machine (SVM) [13], Gabor filters [14], and edge detection
[15]. The methods mentioned above simply use the part of
fastener as an independent object, and they can solve the
detection problem of the partly worn fastener to some extent;
however, some important factors such as the symmetrical
structure of fastener and the relationship between the image
feature and classifier are neglected; thus they have weaker
ability to identify the partially worn fasteners.

In summary, the majority of earlier methods effectively
utilize image feature and take advantage of discriminative
classifiers to classify the testing fastener samples, in order
to achieve the purpose of defect identification. However,
up to now, fastener recognition is still confronted with a
number of challenges such as varying illumination, image
noise, and fastener poses. Affected by these factors, the
interclass distance among the different classes of samples,
especially the distance between partially worn fastener and
intact fastener, is difficult to distinguish; on the other hand,
there is no uniform representation of the defective cases, it
seems that more training samples are able to reveal more
possible variation of samples in illumination or pose and are
consequently beneficial for correct classification of target;
however, there are only a limited number of instances to train
classifiers, and the training sample is not enough. In order to
address these challenges and obtain better recognition result,
people have made many efforts to synthesize new samples
from the original images. For example, in the face recogni-
tion, literature [16–18] used simple geometric transformation
or virtual views to generate virtual samples, and Sharma
et al. [19] synthesized multiple virtual views of a person
under different pose and illumination from a single face
image; these methods exploited extended training samples
to classify the face. Though previous literatures have made
many efforts in making virtual or synthesized object images,

the special nature of the detection object is neglected, such as
the symmetry of the structure of fastener in fastener recogni-
tion.

This motivates us to exploit the symmetrical structure of
the fastener to generate two new “virtual samples” of every
test fastener and devise a representation-based method to
perform fastener recognition, and ourmethod is designed for
finding both the partially worn and the completely missing
instances. This paper has the following main contributions:
first, the idea of symmetry is introduced into fastener recog-
nition for the first time, and we use every original testing
sample to generate two “symmetrical fastener” samples. Let
𝑡
𝑖
,𝑦
𝑖
, and 𝑧

𝑖
, respectively, stand for the original fastener image

and the first and second “symmetrical fastener” image. Then
the left half columns of 𝑦

𝑖
are set to the same parts as that of

𝑡
𝑖
and the right half columns of 𝑦

𝑖
are the mirror image of the

left half columns of 𝑦
𝑖
; however, the right half columns of 𝑧

𝑖

are set to the same parts as that of 𝑡
𝑖
and the left half columns

of 𝑧
𝑖
are the mirror image of the right half columns of 𝑧

𝑖
. Our

proposed scheme is to use a simple way to obtain more train-
ing and test samples by the symmetrical operation. Second, an
improved representation-based classification algorithm was
proposed for fastener detection; this method simultaneously
uses the first and second “symmetrical fastener” testing
samples to perform a two-step classification. This method
also takes advantage of decision fusion, which has proven to
be very competent and is usually better than the decision level
and feature level fusion.Third, it provides a very large number
of experiments and the experimental results show that the
proposed method is very competitive.

The remainder of this paper is organized as follows.
In Section 2, we describe the proposed method in detail.
Section 3 provides the analysis and the computational com-
plexity of ourmethods. In Section 4, ourmethods are verified
by extensive experiments using fastener databases. Section 5
offers our conclusions.

2. The Proposed Method

In this section, we present the main steps of the proposed
method in detail. Prior to commencing the method, there are
several premise conditions we need to explain.
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(a) Original fastener (b) The first symmetrical fastener (c) The second symmetrical fastener

Figure 2: The four regions of interest in fastener image; (b) and (c), respectively, the first and second symmetrical fasteners generated from
the original sample as shown in (a); we can see that the appearance of two new samples has a great change relative to original image; and the
main difference lies in the fact that the intact fasteners and defective fasteners are the end region of the fastener.

First, the fastener dataset still consists of three states such
as missing fasteners, worn fasteners, and intact fasteners after
the symmetry operations (as shown in Figure 1). Therefore,
there are three classes and each class has 𝑛 training samples in
the new training set based on the state of new “symmetrical
sample”; let 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑁
represent all the 𝑁 training sam-

ples and column vector 𝑥
(𝑖−1)𝑛+𝑘

(𝑘 = 1, 2, . . . , 𝑛) stands for
the 𝑘th training sample of the 𝑖th subject; On the other hand,
there are two “virtual symmetry samples” obtained from the
original test fastener 𝑡

𝑖
and forming two new sets of testing

subsets 𝑌 = [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑀
] and 𝑍 = [𝑧

1
, 𝑧
2
, . . . , 𝑧

𝑀
] based

on the original testing set 𝑇 = [𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑀
].

Second, all the samples would be converted into one-
dimensional column vectors via feature extraction algorithm
before the classification algorithm is employed. As shown in
Figure 2, the appearance of the first and second symmetry
sample has a great change relative to original image; and the
main difference lies in the fact that the intact fasteners and
defective fasteners are the end region of the fastener (regions
in four red rectangles); thus the region within four red
rectangles is the region of interest (ROI); therefore, Pyramid
Histogram of Oriented Gradients (PHOG) [20] of ROI in
image is extracted, and we use 𝑥

𝑖
, 𝑦
𝑖
, and �̃�

𝑖
to denote the

one-dimensional column vectors of the fasteners 𝑥
𝑖
, 𝑦
𝑖
, and

𝑧
𝑖
, respectively.

2.1. Main Processes of the Proposed Method. The proposed
method includes the following twomodules.The firstmodule
generates “symmetrical fastener” of original samples in the
testing datasets. The second module uses the two types of
“symmetrical image” in test sets to perform two-step fastener
recognition, respectively. The algorithm of two-step fastener
recognition will be described in Section 2.2. The proposed
algorithm in detail is as follows.

Step 1. Use every original testing sample to generate two
“symmetrical fastener” samples. Let 𝑡

𝑖
be the 𝑖th testing

sample in the formof imagematrix. Let𝑦
𝑖
and 𝑧
𝑖
, respectively,

stand for the first and second “symmetrical fastener” testing
samples generated from 𝑡

𝑖
. The left half columns of 𝑦

𝑖
are set

to the same parts as that of 𝑡
𝑖
and the right half columns of 𝑦

𝑖

are the mirror image of the left half columns of 𝑦
𝑖
. However,

the right half columns of 𝑧
𝑖
are set to the same parts as that of

𝑡
𝑖
and the left half columns of 𝑧

𝑖
are the mirror image of the

right half columns of 𝑧
𝑖
. The mirror image 𝑆 of an arbitrary

image 𝑅 is defined as 𝑆(𝑖, 𝑗) = 𝑅(𝑖, 𝑉 − 𝑗 + 1), 𝑖 = 1, . . . , 𝑈;
𝑗 = 1, . . . , 𝑉. 𝑈 and 𝑉 are the numbers of rows and columns
of 𝑅, respectively. 𝑆(𝑖, 𝑗) denotes the pixel located in the 𝑖th
row and 𝑗th column of 𝑆 [21].

Step 2. Use the first “symmetrical fastener” to perform the
improved sparse representation algorithm for fastener recog-
nition. The method proposes representing the symmetrical
fastener 𝑦

𝑖
as a sparse linear combination of all the samples in

train sets and identifies which training sample the test sample
𝑦
𝑖
is most similar to. Let the class label 𝑆1

𝑖
of this training

sample denote the ultimate class label of the test sample 𝑦
𝑖
.

For the details of algorithm, please see Section 2.2.

Step 3. Use the second “symmetrical fastener” to perform
the improved sparse representation algorithm for fastener
recognition. Let 𝑆2

𝑖
denote the result of test sample 𝑧

𝑖
with

respect to the 𝑖th class. This step shares the same algorithm
as Step 2.

Step 4. Integrate the results obtained using Steps 2 and 3
to conduct fusion decision. In other words, the judgment
result of the original test sample 𝑡

𝑖
is achieved according

to the results of the first symmetrical image 𝑦
𝑖
and second

symmetrical image 𝑧
𝑖
. The details of the fusion rule are as

shown in Table 1.

2.2. The Improved Sparse Representation Algorithm for Sym-
metrical Image Recognition. Sparse representation is one core
issue of the modern theory of compressed sensing, and it is
intended to represent a sample using a minimal number of
nonzero coefficient terms. A number of works have shown
that sparse representation and classification (SRC) algorithm
can obtain a very high accuracy for image classification such
as object recognition and image resolution [22–25]. However,
the conventional SRC algorithm such as the one proposed in
[22] has a relatively high computational cost, the improved
sparse representation algorithm for fastener recognition is
presented in this subsection, and our algorithm is mathemat-
ically tractable and computationally efficient.The first step in
our algorithm aims at identifying and discarding the training
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Table 1: The decision rule for the ultimate form of original testing
fastener.

The form of the first
symmetrical fastener
𝑦
𝑖

The form of the
second symmetrical

fastener 𝑧
𝑖

The ultimate form of
original testing

fastener 𝑡
𝑖

Intact
Intact Intact

Partially worn Partially worn
Missing Partially worn

Partially worn
Intact Partially worn

Partially worn Partially worn
Missing Partially worn

Missing
Intact Partially worn

Partially worn Partially worn
Missing Missing

samples that are “far” from the test sample and the second
step then exploits the remaining training samples 𝑥

1
, . . . , 𝑥

𝐾

as candidates for the class label of the test sample, and the
second step represents the test sample as a linear combination
of the “nearest 𝐾 neighbors” and uses the representation
result to perform classification. For simplicity of presentation,
we describe the algorithm only on the first “symmetrical
fastener”; the algorithmon the second “symmetrical fastener”
is the same except that the first “symmetrical fastener” images
are replaced with the second “symmetrical fastener” images.

2.2.1. Decision of the𝐾 Nearest Sample to the Test Image. The
choice algorithm of 𝐾 nearest feature subspace exploits the
representation ability of each training sample to determine
the “𝐾 nearest neighbors” for the test sample. This method
uses all of the training samples to represent each test sample
[21] and exploits the representation result to identify the
𝐾 nearest neighbors of the test sample from the set of the
training samples. It first assumes that the following equation
is approximately satisfied:

𝑦 = 𝑓
1
𝑥
1
+ 𝑓
2
𝑥
2
+ ⋅ ⋅ ⋅ + 𝑓

𝑁
𝑥
𝑁
, (1)

where 𝑦 is the test sample and 𝑓
𝑖
is referred to as the coef-

ficient. Let 𝑋 = [𝑥
1
⋅ ⋅ ⋅ 𝑥
𝑖
⋅ ⋅ ⋅ 𝑥
𝑁
] and 𝐹 = [𝑓

1
⋅ ⋅ ⋅ 𝑓
2
⋅ ⋅ ⋅ 𝑓
𝑁
]
𝑇.

We rewrite (1) into the following equation:

𝑦 = 𝑋𝐹. (2)

𝐹 is calculated using 𝐹 = (𝑋
𝑇
𝑋 + 𝜇𝐼)

−1
𝑋
𝑇
𝑦. And 𝐹 =

[𝑓
1
, . . . , 𝑓

𝑖
, . . . , 𝑓

𝑁
]
𝑇. 𝜇 is a small positive constant and 𝐼 is

the identity matrix. Equation (1) implies that the effect on
representing the test sample of the 𝑘th sample can be eva-
luated using

𝑑
𝑘
=



𝑦 −

𝑁

∑

𝑖=1

𝑓
𝑖
𝑥
𝑖



2

. (3)

Equation (1) shows that every training sample makes its
own contribution to representing of the test sample 𝑦 and
the contribution that the 𝑖th training sample makes is 𝑓

𝑖
𝑥
𝑖
.

The contribution in representing the test sample can be also
assessed by the residual of the test sample with respect to the
𝑖th training sample; that is, 𝑑

𝑘
= ‖𝑦 − 𝑓

𝑖
𝑥
𝑖
‖
2. 𝑑
𝑘
can also be

somewhat viewed as a measurement of the distance between
the test sample and the 𝑖th training sample. We consider that
a small 𝑑

𝑘
means that the 𝑖th training sample has a great

contribution in representing the test sample. We exploit 𝑑
𝑘

to identify the 𝐾 training samples that have the 𝐾 greatest
contributions; we would like to point out that the effect on
representing the test sample of the 𝑘th training sample is
somewhat similar to the distance between the test sample and
the 𝑘th training sample.

2.2.2. The Precise Recognition for the Symmetrical Image.
The second phase we identify the test sample using all the
retained 𝐾 training samples, and represents the test sample
as a linear combination of all the 𝐾 nearest neighbors and
uses the representation result to perform the precise fastener
classification. If 𝑑

𝑟
1

≤ 𝑑
𝑟
2

≤ ⋅ ⋅ ⋅ ≤ 𝑑
𝑟
𝑁

, then we say that the
𝑟
1
th, 𝑟
2
th ⋅ ⋅ ⋅ 𝑟

𝑘
th training samples are the first 𝐾 candidate

samples of the sample. In other words, we can consider that
the ultimate class label of the test sample should be one
element of 𝐷 = 𝑐

𝑟
1

, 𝑐
𝑟
2

, . . . , 𝑐
𝑟
𝑘

, and 𝑐
𝑟
1

, 𝑐
𝑟
2

, . . . , 𝑐
𝑟
𝑘

are the class
labels of the first 𝐾 candidate samples, respectively. As the
above steps roughly determine that the test sample is from a
small number of classes, we refer to the selection of the first
𝐾 candidate training samples as coarse classification.

The algorithm then uses a linear combination of the first
𝐾 candidate training samples to represent the test sample.
In other words, if the first 𝐾 candidate training samples are
denoted by 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑘
, respectively, then the algorithm

assumes that the following equation is approximately satis-
fied:

𝑦 = 𝑓
1
𝑥


1
+ 𝑓
2
𝑥


2
+ ⋅ ⋅ ⋅ + 𝑓

𝑘
𝑥


𝑘
, (4)

where 𝑓
𝑘
is the coefficient. We rewrite (4) as

𝑦 = 𝑋

𝐹, (5)

where 𝐹 = [𝑓
1
⋅ ⋅ ⋅ 𝑓
𝑘
]
𝑇 and 𝑋 = [𝑥

1
, . . . , 𝑥



𝑘
]. 𝐹 is calculated

using

𝐹 = (𝑋
𝑇
𝑋

+ 𝛾𝐼)
−1

𝑋
𝑇
𝑦,

𝐹 = [𝑓
1
𝑓
2
, . . . , 𝑓

𝑘
]
𝑇

.

(6)

𝛾 is a small positive constant and 𝐼 also denotes the identity
matrix. Suppose that 𝑥

1
, . . . , 𝑥



𝑘
stand for all the training

samples and the coefficients are 𝑓
1
, . . . , 𝑓

𝑘
, respectively. The

ultimate effect on representing the test sample of the 𝑘th
training sample can be evaluated using

dev
𝑠
=



𝑦 −

𝐾

∑

𝑖=1

𝑓
𝑖
𝑥


𝑖



2

. (7)

If 𝑟 = argmin dev
𝑠
, then test sample 𝑦 is ultimately

assigned to the 𝑟th class, which is also referred to as the result
of precise classification.
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3. Rationale Analysis of the Proposed Method

In this section we show the intuitive rationales and the
justification of the proposed method.

First, though the “symmetrical fastener” image is simply
generated from the original fastener image, it also appears
to be a natural image and properly reflects some possible
appearance of the fastener image. Figure 3 shows some origi-
nal samples from the fastener database and the “symmetrical
fastener” samples generated from the original samples. We
can see that the “symmetrical fastener” samples not only seem
to be different from the original samples, but also indeed
somewhat reflect the possible variation of the fastener in
image pose and illumination, which are not shown by the
original samples. On the other hand, symmetrical operation
enriches the diversity of fastener samples, and that is very
useful to overcome the trouble of nonsufficient training sam-
ples. Since the “symmetrical fastener” training samples are
complementary for the original training samples, the fastener
detection captures only a few original training samples and
still obtains enough information of the fastener.

Second, the symmetrical image is also sufficiently differ-
ent from the original fastener image in terms of the distance
metric; it can somewhat overcome the error identification
problem of the fastener in fastener recognition. Identify the
probable causes of impacts: the recognition effect on repre-
senting the test sample is somewhat similar to the distance
between the test sample and the train sample of 𝑘th class;
in other words, a test sample is most likely from the classes
which are close to it.The Latent Dirichlet Allocation reported
in literature [26] achieved a very good test results in fastener
classification and recognition; it outperforms the othermeth-
ods mentioned above and can detect both partially worn and
completely missing fasteners, and many other methods listed
in the bibliography cannot detect the partially worn fasteners
well. However, we found that it also has limited capacity in
the detection of partiallyworn fasteners. For example, Figures
4(a), 4(b), and 4(c) respectively show the original testing
sample, its first and second symmetrical sample, among
them the original testing sample is erroneously and correctly
classified by Latent Dirichlet Allocation and our method,
respectively. Therefore, we calculate the mean Chi-square
distance of Figures 4(a), 4(b), and 4(c) to the three classes
such asmissing fasteners, worn fasteners, and intact fasteners
in training set and use the these distances as the indicator to
determine which class they belong to. For two 𝐿-dimensional
normalized histograms 𝑀 and 𝑁, the Chi-square distance
[27] could be described by the following equation:

𝜒
2
(𝑁,𝑀) =

1

2

𝐿

∑

𝑖=1

(𝑛
𝑖
− 𝑚
𝑖
)
2

𝑛
𝑖
+ 𝑚
𝑖

, (8)

where 𝑛
𝑖
, 𝑚
𝑖
denote the 𝑖th element value of feature

histograms𝑁 and𝑀.The test results in Table 2 show that the
original testing sample and its first symmetrical sample have
a smaller distance from the intact fasteners, and the second
symmetrical sample has a smaller distance from the partly
worn fasteners; Figures 4(d), 4(e), and 4(f), respectively,
show the original training samples in training sets which

are the nearest to them. As the experimental analysis above,
the Latent Dirichlet Allocation method exploits only the
original training samples and our method uses both the
first and second “symmetrical fastener” testing samples; as a
consequence, the fastener recognition method using only the
original fastener images will be very hard to obtain accurate
identification result; however, it is very easy to determine
which classes the first and second symmetrical fastener
belong to and then combine the recognition results of the
first and second fastener to conduct the final discrimination
result of original testing sample; the judgment rules are as
shown in Table 1.

The fastener sample in Figure 4 is not a special case.
we randomly select 60 samples in testing sets that the
right branch of fasteners is partially broken and their first
and second symmetrical sample are also obtained by image
symmetry operation and then measure the PHOG feature
distance between every 60 images of each class and intact fas-
tener images in training sets; finally, we can achieve the mean
distance of each class to intact training fasteners. As the test
result shown in Figure 5, the original distance, the first sym-
metrical distance, and the second symmetrical distance are
3.59, 2.78, and 4.37, respectively; further, the original distance
is much bigger than the first symmetrical distance and also
much smaller than the second symmetrical distance; the two
classes symmetrical images are two polarized developments
relative to the original distance between original testing
fasteners and intact training fasteners. Meanwhile, to better
illustrate the advantages of themethod of fastener image sym-
metry operation, we display the classification results of the
three classes of fasteners by the improved sparse representa-
tion algorithm; as the test result shown in Figure 6, the recall
rate of 60 original testing images is 78.4%, and the recall rate
of the first and second symmetrical images is 96.7% and 100%,
respectively.Thenwe can indirectly obtain that the final accu-
racy of original testing image is 96.7% according to the judg-
ment results of the first and second symmetrical images.Thus,
the correct recognition rate is higher than its previous value
78.4%. We can obtain that the following conclusion is that
the change of the symmetrical distance (relative to original
distance) is helpful for determining which class the first and
second symmetrical fastener belong to, and the simultaneous
use of the symmetrical sample of the original testing fastener
is helpful for a “distance” based classifier to accurately classify
the test sample and is able to reduce the side-effect of the error
identification problem of the original fastener image.

The third rationale of the proposed method is that the
algorithm uses the two-step fastener recognition, which is
able to enhance the robustness of fastener recognition. The
conventional SRCmethods usually use the entire set of train-
ing samples to produce a representation for the test sample.
They compute the distance between the representation of the
test sample and that of the training sample and then use the
distance as ameasurement to indicate howwell each class can
represent this sample or the probability that the test sample
comes from that class. That is to say, the shorter the distance
a class has, the greater the probability the test sample comes
from this class. Relative to the conventional SRC methods,
the algorithm in this paper specifically takes the relationship
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(a)

(b)

(c)

Figure 3: Some original samples from the database and the corresponding “symmetrical fastener” samples. (a) Showing the original samples;
(b) and (c), respectively, showing the first and second “symmetrical fastener” samples generated from the original sample.

Table 2: The original and symmetrical distances of the samples shown in Figure 4.

Number of the subjects Missing fastener Worn fastener Intact fastener
Original distance (×105) 4.72 3.47 3.24
The first symmetrical distance (×105) 4.93 3.55 2.76
The second symmetrical distance (×105) 2.89 3.37 4.58

(a) (b) (c)

(d) (e) (f)

Figure 4: A test sample that is erroneously and correctly classified by the Latent Dirichlet Allocation and our method, respectively. (a) The
test sample. (b) The first symmetrical sample of the test sample. (c) The second symmetrical sample of test sample. (d) The training sample
which is the nearest to the test sample. (e) The training sample which is the nearest to the first symmetrical sample. (f) The training sample
which is the nearest to the second symmetrical sample.
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Figure 5: Demonstration of the idea of the construction of symmet-
rical sample. The dotted lines indicate the mean distance between
the three classes of fastener images and intact training fasteners.
The original distance, the first symmetrical distance, and the second
symmetrical distance, respectively, express the feature distance
between original test fastener, the first symmetrical fastener, the
second symmetrical fastener, and intact fastener.

between the test sample and its neighbors into account and
only uses a linear combination of the 𝐾 nearest neighbors to
represent and classify the test fastener. It has the following
underlying rationale: the related literature has shown that
the test sample is usually not from the classes which have
bigger distance from it [28]; therefore, the fine recognition
can increase the probability of the test sample being correctly
classified by eliminating the training samples from these
classes. In the first phase of our algorithm, we compute the
distances and exploit the discriminative information from
𝐾 nearest principle to retrieve the first 𝐾 nearest subspaces
for the test sample and assume that the residual training
samples have no effects on the ultimate classification decision.
Such a practice does not only eliminate the interference of
the residual training samples, but also reduce the scale of
the problem. It will be very helpful for the second phase
to perform an accurate classification. The second phase of
our algorithm performs SRC based on the training samples
from the selected 𝑘 subspaces. Moreover, when determining
the 𝐾 nearest subspaces, the first phase uses only the linear
regression in which the hat matrix for each class can be
calculated offline. Thus, it has a very low time cost, and the
whole method is also computationally much more efficient
than the original SRC.Moreover, this method has similarities
with Local Projection methods in that they only use a subset
of the training samples. For example, Sugiyama integrated the
ideas of the LDA (Linear Discriminant Analysis) and locality
preserving projection to generate a Local Projection method
for a problem where the samples in a class are multimodal
[29]. This method is first to exploit the local structure of
patterns to produce a representation for test samples and then
uses a classifier to classify the test samples; we refer to this
method as Local Projection method. However, the proposed

70
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Figure 6: The classification results of the three classes of fasteners
by the improved sparse representation algorithm.

method in this paper has somedistinctionswith Local Projec-
tionmethod: it takes the relationship between the test sample
and neighbors into account by setting different coefficients
for different neighbors and uses only the𝐾 nearest neighbors
to represent and classify the test sample; the test sample and
its nearest neighbors usually belong to the same class.

In a word, the proposedmethod has the following ration-
ales: in the module of the construction of symmetrical
sample, the use of the symmetrical image does enable the fas-
tener recognition method to exploit more available informa-
tion of the fastener which is not shown by the original
samples; since the “symmetrical fastener” training samples
are complementary for the original training samples, it is
very useful to overcome the trouble of nonsufficient train-
ing samples.Moreover, it is a simpleway to obtainmore train-
ing and test samples, and the detection system can capture
only a few original training samples and still obtain enough
information of the fastener. On the other hand, the symmet-
rical image is also sufficiently different from the original fas-
tener image in terms of the distance metric, and the original
distance is much bigger than the first symmetrical distance
and alsomuch smaller than the second symmetrical distance.
Two types of symmetrical distance are two polarized devel-
opments relative to the original distance between original
testing images and original training images; it is helpful for
the improved sparse representation algorithm to accurately
classify the test sample and overcome the error identification
problem of the fastener image in fastener recognition. In the
module of the fastener recognition, its first phase identifies a
number of training samples that are the most similar to the
test sample and takes the class labels of the identified training
samples as candidates for the class label of the test sample. As
the class labels of the identified training samples are usually a
subset of those of all the training samples, ultimate classifica-
tion becomes a problem of determining the class label from
a smaller number of candidates. Under the conditions where
the genuine class label of the test sample is really one of those
of the identified training samples, this will be very helpful for
the second phase to perform an accurate classification.
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Table 3: The recall rate (%) of different methods on the fastener database.

Number of the training samples of each subject Intact fastener Partially worn fastener Missing fastener
50 100 150 250 50 100 150 250 50 100 150 250

SVM 84.3 87.5 89.0 93.5 77.5 81.3 83.7 85.3 92.5 94.8 95.3 98.0
Improvement to SVM 88.8 91.2 95.8 96.3 89.5 91.6 95.7 98.5 94.5 96.8 97.3 98.5
NNA 86.3 88.5 92.8 94.5 81.6 83.3 87.8 92.3 91.5 94.3 95.8 97.3
Improvement to NNA 87.5 89.8 94.5 96.5 89.8 91.3 96.8 99.0 92.5 95.8 96.3 97.8
SRC 87.3 89.3 93.3 95.5 85.5 88.3 89.8 91.3 94.3 94.8 96.3 97.5
Improvement to SRC 89.8 90.3 95.8 96.3 89.3 93.7 97.5 96.8 94.8 95.5 97.2 98.3

4. Experimental Results

In this section, we evaluated the effectiveness of our methods
by performing experiments on railway fasteners databases.
This fastener dataset consists of 1500 images from 3 subjects
each providing 500 images; we segment the fastener image
from the rail image which is collected by the video collection
system, and the image size is 110∗170 pixels. For each subject,
part of 500 images was randomly selected to serve as training
samples and the remaining ones were used for testing. All
experiments were implemented using the Matlab 2010 on
a PC with an Intel i5-2430 Processor. The performance of
fastener classification is evaluated by recall rate [30], recall
rate indicates the correctness of classification and recognition
results, recall rate is widely used criteria for evaluating the
performance of classification or detection algorithms, and it
is defined as

Recall rate =
𝑇
𝑝

𝑁
, (9)

where𝑇
𝑝
is the number of samples that are correctly classified

in 𝑁 testing samples. In other words, recall rate requires
detection method to find most of defects on rail images
without missing.

4.1. Experiment of Image Symmetrical Operation in the Fas-
tener Database. We first verify the effectiveness of image
symmetrical operation method by performing experiments
on railway fastener databases. In this section, 50, 100, 150, and
250 fastener images of each subject were randomly selected
to serve as original training samples and the remaining ones
were used for testing, respectively. It should be noted that the
fasteners of the same type are counted separately. Hereafter,
the integrations of our proposed scheme and support vector
machine (SVM),Nearest NeighborAnalysis (NNA), and SRC
are referred to as the improvements to SVM, NNA, and
SRC, respectively. Table 3 shows the recall rate of different
methods; we see that our proposed scheme can improve
SVM, NNA, and SRC and obtain high recall rate for all
types of fasteners, especially for partially worn fastener. For
example, when each subject provided 150 training samples,
the rates of recall rate of SVM, NNA, and SRC are 83.7%,
87.8%, and 89.8%, respectively; however, the recall rates
of the improvements to SVM, NNA, and SRC are 95.7%,
96.8%, and 97.5%, respectively. The experiments show that
the proposed scheme not only greatly improves the accuracy
of the representation-based classification and recognition

methods but also is helpful for improving other fastener
recognition methods.

4.2. Variation of the Performance of Our Method with
Different Number of Candidate Samples. In this section, we
mainly want to examine how𝐾 affects computation time and
recognition accuracy. In this section, 250 fastener images
of each subject were randomly selected to serve as original
training samples and the rest are used for testing. In addition,
we set the parameter 𝐾 to be 10, 20, 60, 100, 150, and 200 in
the fastener databases. In order to comprehensively show the
performance of ourmethod, we use Table 4 to briefly indicate
the variation of the rate of recall rate of our method with
different number of candidate samples. We see that when
the number of candidate samples is smaller, our method
almost always obtains a higher recall rate. This clearly shows
that the problem of fastener detection turns into a 𝑘-class
classification problem from a 𝑐-class classification problem
by discarding the samples that are “far” from the test sample
in the first phase of the improved sparse representation algo-
rithm (of course,𝐾 is smaller than 𝑐), and it is really beneficial
for the improvement of the accuracy of ourmethod.However,
this classifier exploits the neighbors of the test sample too
coarsely and usually produces a bad classification result when
𝐾 has a large value. Moreover, compared to the original SRC,
though the proposed algorithm adds a procedure to find
the 𝐾 candidate training samples, it can significantly reduce
the scale of the precise fastener recognition in the second-
phase problem solved in performing SRC, and its own
computational complexity is quite low. Therefore, the total
computational cost of the improved sparse representation
algorithm decreases, which is confirmed in the experimental
results. The results of CPU time are also shown in Table 4.
When using 𝐾 = 20 our method can obtain around 5 times
speedup compared to classical SRC.

4.3. Performance Comparison with Relative Fastener Detec-
tion Methods. In this section, we compare the proposed
method with some relative fastener detection methods. We
first reimplemented the feature extraction and classification
algorithm in [6, 7, 26, 31] and let them operate on original
images. Moreover, we also let the methods operate on the
symmetrical images, so as to evaluate the effectiveness of
the proposed method. When we set the parameter 𝐾 = 20,
in other words, the first 20 fastener images of each subject
were used as the original training samples and the remaining
fastener images were taken as the test samples, the proposed
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Table 4: Comparison of recall rate and mean CPU time with different number of candidate samples.

Method SRC SRC-KNS
𝑘 = 10 𝑘 = 20 𝑘 = 60 𝑘 = 100 𝑘 = 150 𝑘 = 200

CPU time (s) 1.606 0.314 0.336 0.387 0.462 0.605 0.839
Recall rate (%) 87.3 97.8 98.8 95.3 91.8 88.3 87.8

Table 5: The recall rate (%) of different methods on fastener database.

Methods The recall rate
Intact fastener Partially worn fastener Missing fastener

Xia’s method on original image [6] 94.3 86.3 94.8
Xia’s method on symmetrical image [6] 94.0 94.5 95.3
Yang’s method on original image [7] 93.5 84.5 96.3
Yang’s method on symmetrical image [7] 93.8 85.3 95.8
Feng’s method on original image [26] 95.5 87.8 95.5
Feng’s method on symmetrical image [26] 95.8 94.3 96.0
Zhang’s method on original image [31] 95.3 96.3 95.3
Zhang’s method on symmetrical image [31] 95.3 96.8 95.5
The proposed method in this paper 97.5 98.5 98.3

method outperforms the othermethods in fastener databases,
especially in the subsets of partially worn fastener. As the
results shown in Table 5, when the experiment operates
on symmetrical images, the recall rates of the methods in
literatures [6, 7, 26, 31] and our method are 94.5%, 85.3%,
94.3%, 96.8%, and 98.5%, respectively; however, the recall
rates of methods in literatures [6, 7, 26, 31], operating on
original images are 86.3%, 84.5%, 87.8%, 96.3%, and 98.5%,
respectively. This indicates the virtual symmetrical images
and the sparsity are helpful in improving the classification
accuracy for fastener recognition. Moreover, the CRC [31]
and our algorithm achieve higher classification accuracies
than the other methods. The CRC is similar to the first phase
of the proposed method. It classifies the test sample into
the class corresponding to the least error in our first phase.
However, there is misclassification in CRC if the right train-
ing sample does not contribute most in the first phase. Our
method can avoid such misclassifications by recalculating
the coefficient vector using the retained 𝐾 training samples
in the precise recognition phase for the symmetrical image
of our method; thus this phase increases the contribution
of the right training samples and suppresses those of the
others, and thismethod enhances the sparsity of the𝐾nearest
samples in representation. The experimental results show
that the proposed method can classify the fastener with a
high accuracy and outperforms the state-of-the-art fastener
recognition methods.

5. Conclusion

The detection of worn and missing fasteners is an important
task in railway inspection. However, the traditional manual
inspection is of poor efficiency and dangerous to workers.
On the other hand, the earlier automatic inspection systems
based on computer visions are of low reliability. In this paper,
a novel railway inspection method is proposed, which is

able to detect the damaged fasteners, especially the fasteners
which partially worn. This method has the following three
major advantages: (1)Theproposed symmetrical image of the
original fastener indeed simulates possible variation of the
fastener image; thus we capture only a few original training
samples and still obtain enough information of the fastener.
The proposed scheme is very simple and also helpful for
improving fastener recognition methods. (2) We turn the
detection problem of the original testing image into the
detection of two tests of symmetrical image. Due to the
interclass feature distance between the two classes symmet-
rical images and intact training fasteners are two polarized
developments (relative to the original distance between intact
training fasteners and intact testing fasteners); it is very easy
to judge which class the first and second symmetrical image
belong to; then the proposed method can achieve a better
recognition result by integrating two classes of symmetrical
image for representation-based fastener recognition. (3)The
first and second phases of the improved sparse representation
algorithm in this paper respectively made a coarse and fine
classification decision for the test samples. The first phase
exploits the discriminative information of 𝐾 nearest samples
to enhance their sparsity of the test sample and then represent
the test sample as a linear combination of the determined 𝐾
nearest neighbors so as to perform fine classification. It can
greatly eliminate the side-effect, on the classification of the
test sample, of the classes that are “far” from it (the test sample
is usually not from these classes) and greatly improve the
accuracy of the representation-based classification methods.
The analyses and experimental results sufficiently show the
rationales of the proposed scheme.
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