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This paper proposes a gain-scheduling control design strategy for a class of linear systems with the presence of both input saturation
constraints and norm-bounded parametric uncertainty. LMI conditions are derived in order to obtain a gain-scheduled controller
that ensures the robust stability and performance of the closed loop system. The main steps to obtain such a controller are given.
Differently from other gain-scheduled approaches in the literature, this one focuses on the problem of 𝐻

∞
loop shaping control

design with input saturation nonlinearity and norm-bounded uncertainty to reduce the effect of the disturbance input on the
controlled outputs. Here, the design problem has been formulated in the four-block𝐻

∞
synthesis framework, in which it is possible

to describe the parametric uncertainty and the input saturation nonlinearity as perturbations to normalized coprime factors of the
shaped plant. As a result, the shaped plant is represented as a linear parameter-varying (LPV) system while the norm-bounded
uncertainty and input saturation are incorporated. This procedure yields a linear parameter-varying structure for the controller
that ensures the stability of the polytopic LPV shaped plant from the vertex property. Finally, the effectiveness of the method is
illustrated through application to a physical system: a VTOL “vertical taking-off landing” helicopter.

1. Introduction

In recent years, input saturation and model uncertainty
problems have been extensively studied in the control system
literature, where much attention has been focused on the
problems of robust stabilization and performance [1–9].
Input saturation is a phenomenon due to inevitable physical
limitations of the actuators, such as pumps or compressors
that have finite throughput capacity and motors that have
a limited range of speed [10]. This saturation can lead to
deterioration of the actuator itself or even to the instability
of the system. When a system is subject to input saturation,
two main issues arise: the guarantee of stability and the
containment of performance degradation [7]. To solve this
problem, there exist two approaches: two-step and one-
step designs [7]. In the first approach, called antiwindup
design, a predesigned controller is given without considering
the input saturation constraints; usually a standard con-
troller is used. Then, after this controller has been designed,

an antiwindup compensator is designed to handle the input
saturation nonlinearity.Thus, the antiwindup compensator is
designed to ensure that stability is maintained and the perfor-
mance degradation is contained. Antiwindup compensator
research using linear matrix inequalities has been vigorously
pursued as can be seen by a significant number of referenced
papers [2, 11–14]. This is because LMI techniques offer the
advantage of operational simplicity when compared to other
approaches. For the second approach, one-step design, the
input saturation is directly accounted for in controller design;
that is, the controller and an antiwindup compensator are
simultaneously computed [15].

Several solutions for input saturation problems have
been proposed. However, just few references deal with LPV
systems [3, 16–18]. Motivated by this scarcity, recent work
focused on employing gain-scheduling controllers designed
with an 𝐻

∞
approach [19]. This resulted in an advantageous

technique using LMI for an 𝐻
∞

loop shaping controller
design with input saturation, derived from a four-block
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configuration. Its advantage lies fundamentally in the ease
of making trade-offs between performance and robustness
to plant uncertainty and the saturation nonlinearities are
described as perturbations to normalized coprime factors of
the shaped plant.

As gain-scheduling 𝐻
∞

loop shaping control can be
viewed as robust against nonparametric uncertainties, this
controller can also be viewed as a candidate to solve the robust
control problem against presence of both nonparametric
and parametric uncertainties. Thus, the contribution of this
paper, motivated by the results in [19], consists in extending
their procedure in order to ensure the robust stability of
the closed loop system subject to both the constraint of an
input saturation nonlinearity and parametric uncertainties.
Here, the parameter uncertainties are assumed to be time-
varying but norm-bounded. Sufficient conditions for the
existence of the gain scheduled parametric𝐻

∞
loop shaping

controller are given in terms of an LMI framework, which
also provides the Lyapunov matrix ensuring the stability
and robust performance of the LPV controlled system from
of the vertex property [20, 21]. The effectiveness of the
design method was evaluated using a physical system: a
VTOL helicopter [22]. This paper is organized as follows.
Section 2 gives some problem statements and preliminaries
about the purpose of the paper. In Section 3 a solvability
condition for existence of a gain scheduled𝐻

∞
loop shaping

controller using the constraint of input saturation and norm-
bounded parametric uncertainty is established. In Section 4,
an example is considered to evaluate the effectiveness of the
proposed method. Finally, Section 5 contains the conclusion.

The notation used in this paper is fairly standard: R𝑛×𝑚
denotes the set of real 𝑛 × 𝑚 matrices and 𝐼

𝑛
is the 𝑛 × 𝑛

identitymatrix.𝑀 > 0 (or𝑀 < 0)means𝑀 is symmetric and
positive (or negative) definite. ∙ indicates symmetric blocks
in the LMIs. Here, the notation

𝐺 (𝑠) := [

𝐴 𝐵

𝐶 𝐷
] (1)

is used to denote the transfer function𝐺(𝑠) = 𝐶(𝑠𝐼 −𝐴)
−1
𝐵+

𝐷.

2. Problem Statements and Preliminaries

The exposition in this section closely follows [19], where the
loop-shaping design procedure based on𝐻

∞
robust stabiliza-

tion combined with a four-block configuration is presented.
In Figure 1, the block diagram for the 𝐻

∞
loop shaping

control design problem with input saturation nonlinearity
is shown depicted. In this formulation, the input saturation
nonlinearity is incorporated through a dynamic weighting
function 𝑊, and the postcompensator is considered as an
identity matrix with proper dimension.

In the absence of input saturation constraints an 𝐻
∞

controller 𝐾
∞

is designed such that the closed loop system
satisfies the condition ‖𝑇

𝑧𝑤
‖
∞

≤ 𝛾:
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Figure 1: Block diagram for 𝐻
∞

loop shaping control using four-
block configuration with input saturation.

where 𝜀max is the maximum achievable robust stability mar-
gin, 𝑇

𝑧𝑤
is the transfer functionmatrix from the disturbances

[𝑤1 𝑤2]
𝑇 to the outputs [𝑧1 𝑧2]

𝑇, and𝐺
𝑠
is the shaped plant.

Herein, the designer knows the maximum input 𝑢max,𝑗 at
the 𝑗th channel, that is, the control value that can be used
without exceeding the limit of the actuator in channel 𝑗. The
saturation nonlinearity is defined as follows, in normalized
form:

sat
𝑗
(𝑢
𝑗
) =

{
{
{
{

{
{
{
{

{

−1, 𝑢
𝑗
< −1,

𝑢
𝑗
,






𝑢
𝑗






≤ 1,

+1, 𝑢
𝑗
> +1.

(3)

Normalization always can be achieved by scaling each chan-
nel in 𝐺 and 𝑊 with the appropriate factor. As shown in
[19] the maximum control input in each 𝑗th channel can be
specified; a corresponding slope𝛼

𝑗
for each 𝑗th channel is also

known. Without losing generality, this slope can be assumed
to be less than or equal to 1. Define sat

𝑗
(𝑢
𝑗
) = 𝜃
𝑗
𝑢
𝑗
with 𝜃

𝑗
as

𝜃
𝑗
=

{
{
{
{
{
{

{
{
{
{
{
{

{

1
𝑢
𝑗

, 𝑢
𝑗
> 1,

1, 




𝑢
𝑗






≤ 1,

−

1
𝑢
𝑗

, 𝑢
𝑗
< −1,

(4)

where 𝑗 = 1, 2, . . . , 𝑚 and 𝑢
𝑗
is constrained by −𝑢max,𝑗 ≤ 𝑢

𝑗
≤

𝑢max,𝑗. It implies that 1/𝑢max,𝑗 ≤ 𝜃
𝑗
≤ 1 (𝛼

𝑗
≤ 𝜃
𝑗
≤ 1) and, for

the multivariable system with𝑚 number of input channels, it
can be written as sat(𝑢) = Θ𝑢 with Θ = diag{𝜃1, 𝜃2, . . . , 𝜃𝑚}.
It is observed that in the 𝐻

∞
loop shaping using four-block

configuration the shaped plant 𝐺
𝑠
can be represented as a

polytopic system where the input saturation constraint is
allocated between the dynamicweighting function𝑊 and the
nominal plant 𝐺.

For the existence of a gain-scheduled controller, the
sufficient conditions proposed by [19] for saturated systems
have been elaborated in the following theorem.

Theorem 1 (see [19]). Consider the nominal plant 𝐺 and a
proper weighting function 𝑊, with −𝑢max,𝑗 ≤ 𝑢

𝑗
≤ 𝑢max,𝑗

being a known saturation bounded for each 𝑗th channel where
𝑗 = 1, 2, . . . , 𝑚. Then there exists a shaped plant with input
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saturation nonlinearity that can be represented as a polytopic
LPV system:

𝐺
𝑠
= [

𝐴
𝑠
𝐵
𝑠

𝐶
𝑠

0 ] , (5)

where (𝐴
𝑠
, 𝐵
𝑠
, 𝐶
𝑠
) is quadratically stabilizable and detectable

for all Φ = (𝐼 − Θ) in the polytope Ω = {∑
2𝑚
𝑖=1 𝜆𝑖𝜉𝑖 : 𝜆𝑖 ≥

0, ∑2𝑚
𝑖=1 𝜆𝑖 = 1} with the vertices in [𝜉1, . . . , 𝜉2𝑚]. Moreover,

there exists a stabilizing LPV controller 𝐾
∞

such that 𝛾 ≥ 1,
if and only if there exist 𝑅 > 0, 𝑆 > 0 that satisfy the following
inequalities:

𝑁
𝑅

0

0 𝐼

𝑇

(

𝐴
𝑠
𝑖

𝑅 + 𝑅𝐴
𝑇

𝑠
𝑖

𝑅 0 𝐶
𝑇

𝑠
0 𝐵
𝑠

⋅ −𝛾𝐼

0 0

𝐼 0
⋅ ⋅ −𝛾𝐼

)

𝑁
𝑅

0

0 𝐼

< 0, 𝑖 = 1, . . . , 2𝑚,

𝑁
𝑆

0

0 𝐼

𝑇

(

𝐴
𝑇

𝑠
𝑖

𝑆 + 𝑆𝐴
𝑠
𝑖

𝑆 0 𝐵
𝑠

0 𝐶
𝑇

𝑠

⋅ −𝛾𝐼

0 𝐼

0 0
⋅ ⋅ −𝛾𝐼

)

𝑁
𝑆

0

0 𝐼

< 0, 𝑖 = 1, . . . , 2𝑚,

(

𝑅 𝐼

𝐼 𝑆

) ≥ 0,

(6)

where𝑁
𝑅
and𝑁

𝑆
denote bases of the null spaces of [𝐵𝑇

𝑠
𝐼 0]

and [𝐶
𝑠
𝐼 0], respectively.

The proof of this theorem and additional details can
be found in [19]. Conditions (6) are numerically tractable
and solvable. From these sufficient conditions an 𝐻

∞
gain-

scheduled controller can be synthesized.
In Theorem 1, the solvability conditions are defined by

two positive definite matrices 𝑅 > 0 and 𝑆 > 0. If there exist
feasible solutions, the gain-scheduled controller matrices in
form

𝐾
∞
(Φ) = [

𝐴
𝐾
(Φ) 𝐵

𝐾
(Φ)

𝐶
𝐾
(Φ) 𝐷

𝐾
(Φ)

] :=

2𝑚

∑

𝑖

𝜆
𝑖
[

𝐴
𝐾
𝑖

𝐵
𝐾
𝑖

𝐶
𝐾
𝑖

𝐷
𝐾
𝑖

] (7)

are then calculated following the method described in [23].
The main steps to the understanding of the gain-scheduling
control design will be described. Firstly, consider the closed
loop system

[

[

[

[

[

�̇�

�̇�
𝐾

𝑧1

𝑧2

]

]

]

]

]

=

[

[

[

[

[

𝐴
𝑠
+ 𝐵
𝑠
𝐷
𝐾
𝐶
𝑠
𝐵
𝑠
𝐶
𝐾

𝐵
𝑠
𝐷
𝐾

𝐵
𝑠

𝐵
𝐾
𝐶
𝑠

𝐴
𝐾

𝐵
𝐾

0
𝐷
𝐾
𝐶
𝑠

𝐶
𝐾

𝐷
𝐾

0
𝐶
𝑠

0 𝐼 0

]

]

]

]

]

[

[

[

[

[

𝑥

𝑥
𝐾

𝑤1

𝑤2

]

]

]

]

]

(8)

which can be written by the state-space equations

Σ0 :=
{

{

{

�̇�cl = 𝐴cl (Φ) 𝑥cl + 𝐵cl (Φ)𝑤

𝑧 = 𝐶cl (Φ) 𝑥cl + 𝐷cl (Φ)𝑤

(9)

with 𝑥
𝐾
being the controller state, 𝑥cl = [𝑥

𝑇

𝑥
𝑇

𝐾
]

𝑇

, 𝑤 =

[𝑤
𝑇

1 𝑤
𝑇

2 ]
𝑇

, and 𝑧 = [𝑧
𝑇

1 𝑧
𝑇

2 ]
𝑇

. Here, 𝐴cl, 𝐵cl, 𝐶cl, and 𝐷cl
are the affine functions of 𝐾

∞
(Φ). In a second step, find the

Lyapunov matrix 𝑃 from of the following linear equation:

𝑃(

𝑅 𝐼

𝑀
𝑇 0

) = (

𝐼 𝑆

0 𝑁
𝑇

) . (10)

𝑃 is a unique solution, where𝑀 and𝑁 are full row rank
matrices with𝑀𝑁

𝑇

= 𝐼−𝑅𝑆 [23]. Now, using the well known
Bounded Real Lemma [24] that ensures the internal stability
and the 𝐻

∞
norm constraint, determine the gain-scheduled

controller if and only if there exists a 𝑃 > 0 such that

(

𝐴
𝑇

cl (𝜉𝑖) 𝑃 + 𝑃𝐴cl (𝜉𝑖) 𝑃𝐵cl (𝜉𝑖) 𝐶
𝑇

cl (𝜉𝑖)

⋅ −𝛾𝐼 𝐷
𝑇

cl (𝜉𝑖)

⋅ ⋅ −𝛾𝐼

) < 0,

𝑖 = 1, . . . , 2𝑚.

(11)

Applying the procedure described in [19, 20, 23] for the
LMIs conditions above, we obtain the gain-scheduled 𝐻

∞

loop shaping controller that ensures the robust stability of the
closed loop system subject to constraint of input saturation
nonlinearity. Now, some important results that are required
to establish the main results of this paper will be described.

3. Main Results

Consider the plant 𝐺 described by state-space models in the
form

𝐺 (Δ) :=

{

{

{

�̇� (𝑡) = [𝐴 + Δ𝐴] 𝑥 (𝑡) + 𝐵V (𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷V (𝑡) ,
(12)

where 𝑥 ∈ R𝑛 is the state vector, V ∈ R𝑚 the input vector, and
𝑦 ∈ R𝑝 the output vector. Herein, 𝐴, 𝐵, 𝐶, and 𝐷 are known
constant matrices that describe the nominal system and Δ𝐴

is amatrix function representing the time-varying parametric
uncertainty.Theparametric uncertainty is considered in form
Δ𝐴 = 𝐹Δ(𝑡)𝐸, where 𝐹 and 𝐸 are known constant matrices
with appropriate dimensions and Δ(𝑡) is an unknown matrix
with Lebesgue measurable elements such that ‖Δ(𝑡)‖2 ≤ 1
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[25]. Now, consider that the dynamic weighting function 𝑊

can be defined as

𝑊:=

{

{

{

�̇�
𝑤
(𝑡) = 𝐴

𝑤
𝑥
𝑤
(𝑡) + 𝐵

𝑤
𝑝 (𝑡)

𝑢 (𝑡) = 𝐶
𝑤
𝑥
𝑤
(𝑡) + 𝐷

𝑤
𝑝 (𝑡) ,

(13)

where 𝑥
𝑤

∈ R𝑛𝑤 is the state vector, 𝑝 ∈ R𝑚𝑤 the input
vector, and 𝑢 ∈ R𝑝𝑤 the output vector of the dynamic
weighting function. Following the same procedure described
by [19] the state-space model of the 𝐻

∞
loop shaping

framework (Figure 1) in the presence of input saturation and
uncertainties in the 𝐴matrix can be written as

�̇� (𝑡) = [𝐴+Δ𝐴] 𝑥 (𝑡) + 𝐵Θ𝐶
𝑤
𝑥
𝑤
(𝑡) + 𝐵Θ𝐷

𝑤
𝑝 (𝑡) ,

�̇�
𝑤
(𝑡) = 𝐴

𝑤
𝑥
𝑤
(𝑡) + 𝐵

𝑤
𝑝 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) +𝐷Θ𝐶
𝑤
𝑥
𝑤
+𝐷Θ𝐷

𝑤
𝑝 (𝑡) .

(14)

Following a few mathematical manipulations we can
write the shaped plant 𝐺

𝑠Δ
(Φ) as

[

[

[

�̇�

�̇�
𝑤

𝑦

]

]

]

=
[

[

[

𝐴 + Δ𝐴 𝐵Θ𝐶
𝑤

𝐵Θ𝐷
𝑤

0 𝐴
𝑤

𝐵
𝑤

𝐶 𝐷Θ𝐶
𝑤

𝐷Θ𝐷
𝑤

]

]

]

[

[

[

𝑥

𝑥
𝑤

𝑝

]

]

]

,

𝐺
𝑠Δ
(Φ) ⇒ [

�̇�
𝑠

𝑦
] =

[

[

𝐴
𝐷𝑠

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

𝐴
𝑠
+ Δ𝐴
𝑠

𝐵
𝑠

𝐶
𝑠

𝐷
𝑠

]

]

[

�̇�
𝑠

𝑝
] .

(15)

Thus, the state-space matrices can be written in the form

𝐴
𝐷
𝑠

= [

𝐴 𝐵Θ𝐶
𝑤

0 𝐴
𝑤

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴
𝑠

+[

𝐹Δ (𝑡) 𝐸 0
0 0

]

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Δ𝐴
𝑠

;

𝐴
𝑠
= [

𝐴 𝐵𝐶
𝑤

0 𝐴
𝑤

]+[

𝐵

0
] (𝐼 −Θ) [0 −𝐶

𝑤
] ;

𝐵
𝑠
= [

𝐵𝐷
𝑤

𝐵
𝑤

]+[

𝐵

0
] (𝐼 −Θ) (−𝐷

𝑤
) ;

𝐶
𝑠
= [𝐶 𝐷𝐶

𝑤
] +𝐷 (𝐼 −Θ) [0 −𝐶

𝑤
] ;

𝐷
𝑠
= 𝐷Θ𝐷

𝑤
= 𝐷𝐷

𝑤
+𝐷 (𝐼 −Θ) (−𝐷

𝑤
) .

(16)

Making Φ = (𝐼 − Θ) and substituting (16) and empha-
sizing that Φ = diag(𝜙1, . . . , 𝜙𝑚) with 0 ≤ 𝜙

𝑗
≤ (1 − 𝛼

𝑗
) we

obtain

𝐴
𝑠
= 𝐴+𝐵Φ𝐶,

𝐵
𝑠
= 𝐵+𝐵Φ𝐷,

𝐶
𝑠
= 𝐶+𝐷Φ𝐶,

𝐷
𝑠
= 𝐷+𝐷Φ𝐷.

(17)

For technical simplification, it is considered that𝐺 and𝑊 are
strictly proper; that is, 𝐷 = 0 and 𝐷

𝑤
= 0 in (16) such that

overall closed loop system is given by

Σ1 :=
{

{

{

�̇�cl = 𝐴cl
Δ

(Φ) 𝑥cl + 𝐵cl (Φ)𝑤

𝑧 = 𝐶cl (Φ) 𝑥cl + 𝐷cl𝑤,
(18)

where 𝑥cl = [𝑥
𝑇

𝑥
𝑇

𝐾
]

𝑇

and

𝐴cl
Δ

(Φ) = 𝐴cl (Φ) + [

𝐹

0
]

⏟⏟⏟⏟⏟⏟⏟

𝐹

Δ[𝐸 0]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐸

with

𝐴cl (Φ) = [

𝐴
𝑠

𝐵
𝑠
𝐶
𝐾

𝐵
𝐾
𝐶
𝑠

𝐴
𝐾

] ;

𝐵cl (Φ) = [

0 𝐵
𝑠

𝐵
𝐾

0
] ;

𝐶cl (Φ) = [

0 𝐶
𝐾

𝐶
𝑠

0
] ;

𝐷cl = [

0 0
𝐼 0

] .

(19)

This system is quadratically stable with ‖𝑇
𝑧𝑤
‖
∞

≤ 𝛾 [26].
From the generalized plant in four-block configuration
considering 𝐷

𝐾
(Φ) = 0, synthesis conditions are now

presented for the design of the gain-scheduled parametric
𝐻
∞

loop shaping controller subject to both constraint of
input saturation and parametric uncertainties.

Theorem2. There exists a stabilizing gain-scheduled controller
𝐾
∞
(Φ) subject to both constraint of input saturation with

−𝑢max,𝑗 ≤ 𝑢
𝑗
≤ 𝑢max,𝑗 and parametric uncertainties such that

𝛾 ≥ 1 if for some 𝜇 > 0 there exist 𝑌 > 0, 𝑋 > 0, satisfying the
following inequalities:

[

[

[

[

[

[

Ξ1 Ξ2 Ξ3 Ξ4

⋅ −𝛾𝐼 𝐷
𝑐𝑙

𝑇 0
⋅ ⋅ −𝛾𝐼 0
⋅ ⋅ ⋅ −𝜇𝐼

]

]

]

]

]

]

< 0 𝑓𝑜𝑟 𝑖 = 1, . . . , 2𝑚,

[

𝑌 𝐼

𝐼 𝑋

] > 0,

(20)
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where

Ξ1 = [

𝐴
𝑠
𝑖

𝑌 + 𝐵
𝑠
𝐻
𝑖
+ 𝑌𝐴
𝑇

𝑠
𝑖

+ 𝐻
𝑇

𝑖
𝐵
𝑇

𝑠
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐴

𝑠
𝑖

+𝑀
𝑇

𝑖

𝑀
𝑖
+ 𝐴
𝑇

𝑠
𝑖

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑋𝐴
𝑠
𝑖

+ 𝐶
𝑇

𝑠
𝐿
𝑇

𝑖
+ 𝐿
𝑖
𝐶
𝑠
+ 𝐴
𝑇

𝑠
𝑖

𝑋

] ,

Ξ2 = [

0 𝐵
𝑠

𝐿
𝑖
𝑋𝐵
𝑠

] ,

Ξ3 = [

𝐻
𝑇

𝑖
𝑌𝐶
𝑇

𝑠

0 𝐶
𝑇

𝑠

] ,

Ξ4 = [

𝑌𝐸
𝑇

𝜇𝐹

𝐸
𝑇

𝜇𝑋𝐹

] .

(21)

Moreover, a suitable gain-scheduled controller when Φ varies
in the polytope is described as

𝐶
𝐾
𝑖

= 𝐻
𝑖
𝑉,

𝐵
𝐾
𝑖

= (𝑈
𝑇

)

−1
𝐿
𝑖
,

𝐴
𝐾
𝑖

= (𝑈
𝑇

)

−1
(𝑀
𝑖
−𝑋𝐴

𝑠
𝑖

𝑌−𝑋𝐵
𝑠
𝐻
𝑖
−𝑈
𝑇

𝐵
𝐾
𝑖

𝐶
𝑠
𝑌)𝑉
−1
,

(22)

where 𝑈 and 𝑉 are arbitrary nonsingular matrices satisfying
𝑉𝑈
𝑇

= 𝐼 − 𝑋𝑌 with 𝑖 = 1, . . . , 2𝑚.

Proof. According to [21], a closed loop system (𝐴cl
𝑖

, 𝐵cl
𝑖

,

𝐶cl
𝑖

, 𝐷cl
𝑖

) is stable with ‖𝑇
𝑧𝑤
‖
∞

≤ 𝛾 if and only if there exists
a 𝑃 > 0 such that

[

[

[

[

𝐴
𝑇

cl
𝑖

𝑃 + 𝑃𝐴cl
𝑖

𝑃𝐵cl
𝑖

𝐶
𝑇

cl
𝑖

⋅ −𝛾𝐼 𝐷
𝑇

cl
𝑖

⋅ ⋅ −𝛾𝐼

]

]

]

]

< 0, 𝑖 = 1, . . . , 2𝑚. (23)

For norm-bounded parametric uncertainty, an important
lemma will be used to prove the main results in this paper.

Lemma 3 (see [27]). Consider 𝑄 = 𝑄
𝑇, 𝐺 and 𝑊 matrices

with appropriate dimensions

𝑄+𝐺Δ (𝑡)𝑊+𝑊
𝑇

Δ (𝑡)
𝑇

𝐺
𝑇

< 0 𝑓𝑜𝑟 ‖Δ (𝑡)‖2 ≤ 1 (24)

if only if there exists 𝜇 > 0 such that

𝑄+𝜇𝐺𝐺
𝑇

+𝜇
−1
𝑊
𝑇

𝑊 < 0. (25)

The lemma above and Schur complement imply that there
exists a Lyapunov matrix 𝑃 = 𝑃

𝑇

> 0 such that

[

[

[

[

[

[

[

[

[

𝐴
𝑇

cl
𝑖

𝑃 + 𝑃𝐴cl
𝑖

𝑃𝐵cl
𝑖

𝐶
𝑇

cl
𝑖

𝐸
𝑇

𝜇𝑃𝐹

⋅ −𝛾𝐼 𝐷
𝑇

cl 0 0
⋅ ⋅ −𝛾𝐼 0 0
⋅ ⋅ ⋅ −𝜇𝐼 0
⋅ ⋅ ⋅ ⋅ −𝜇𝐼

]

]

]

]

]

]

]

]

]

< 0, (26)

where

𝑄 =

[

[

[

[

𝐴
𝑇

cl
𝑖

𝑃 + 𝑃𝐴cl
𝑖

𝑃𝐵cl
𝑖

𝐶
𝑇

cl
𝑖

⋅ −𝛾𝐼 𝐷cl

⋅ ⋅ −𝛾𝐼

]

]

]

]

,

𝐺 =
[

[

[

𝑃𝐹

0
0

]

]

]

,

𝑊 = [𝐸 0 0] .

(27)

Now, partition the Lyapunovmatrix𝑃 in accordance with
the structure of the matrix𝐴cl andmatrices given by𝑋,𝑈,𝑌,
and 𝑉 [24]; we obtain

𝑃 = [

𝑋 𝑈
𝑇

𝑈 𝑋

] ,

𝑃
−1

= [

𝑌 𝑉
𝑇

𝑉 �̂�

]

(28)

with 𝑋 = 𝑋
𝑇, 𝑌 = 𝑌

𝑇, and 𝑉𝑈
𝑇

= 𝐼 − 𝑋𝑌. To eliminate
the nonlinear terms in (26) it is necessary to consider the
transformation matrix Ψ given by

Ψ = [

𝑌 𝐼

𝑉 0
] . (29)

Thus it is possible to apply the following congruence
transformation on 𝑃 for the inequality 𝑃 > 0:

𝑃 > 0 ⇒ Ψ
𝑇

𝑃Ψ > 0,

[

𝑌 𝑉
𝑇

𝐼 0
][

𝑋 𝑈
𝑇

𝑈 𝑋

][

𝑌 𝐼

𝑉 0
] = [

𝑌 𝐼

𝐼 𝑋

] > 0.
(30)
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Now, premultiplying and postmultiplying (26) by
diag {Ψ𝑇 𝐼 𝐼 𝐼 𝐼} and its transpose, respectively, yield

[

[

[

[

[

[

[

[

[

Γ1 Ψ
𝑇

𝑃𝐵cl
𝑖

Ψ
𝑇

𝐶
𝑇

cl
𝑖

Ψ
𝑇

𝐸
𝑇

𝜇Ψ
𝑇

𝑃𝐹

⋅ −𝛾𝐼 𝐷
𝑇

cl 0 0
⋅ ⋅ −𝛾𝐼 0 0
⋅ ⋅ ⋅ −𝜇𝐼 0
⋅ ⋅ ⋅ ⋅ −𝜇𝐼

]

]

]

]

]

]

]

]

]

< 0 (31)

with Γ1 = Ψ
𝑇

(𝐴
𝑇

cl
𝑖

𝑃 + 𝑃𝐴cl
𝑖

)Ψ. Solving the terms 𝐶cl
𝑖

Ψ,
𝐵
𝑇

cl
𝑖

𝑃Ψ, and Γ1 we obtain a gain-scheduled controller 𝐾
∞
(Φ)

that ensures the robust stability of the closed loop system
subject to the input saturation constraint and norm-bounded
parametric uncertainty:

𝐶
𝐾
𝑖

= 𝐻
𝑖
𝑉,

𝐵
𝐾
𝑖

= (𝑈
𝑇

)

−1
𝐿
𝑖
,

𝐴
𝐾
𝑖

= (𝑈
𝑇

)

−1
(𝑀
𝑖
−𝑋𝐴

𝑠
𝑖

𝑌−𝑋𝐵
𝑠
𝐻
𝑖
−𝑈
𝑇

𝐵
𝐾
𝑖

𝐶
𝑠
𝑌)𝑉
−1
,

(32)

where the optimization variables are 𝛾, 𝑋, 𝑌, 𝐻
𝑖
, 𝐿
𝑖
, and 𝑀

𝑖

with 𝑉𝑈
𝑇

= 𝐼 − 𝑋𝑌 and 𝑖 = 1, . . . , 2𝑚.

It can be noted that (20) cannot be solved directly via an
LMI software, due to the product of 𝜇 with 𝑋. To overcome
this difficulty, it is important to set an a priori value for 𝜇 and
afterward use an LMI solver. Thus it is necessary to tune the
parameter 𝜇 until a feasible solution is found.

4. Numerical Example

This section describes a realistic design of a gain scheduled
𝐻
∞

loop shaping controller considering both input satu-
ration constraint and parametric uncertainties for a VTOL
helicopter. The synthesis procedure described in this section
was implemented using the following software suite: Matlab
7.5.0, SeDuMi [28], and Yalmip [29].

4.1. VTOL Helicopter. This example was inspired by [22]
where a robust controller was designed in order to keep the
closed loop system stable when subject to airspeed changes.
Here, the model is slightly modified to address the present
problem, being described by the following states equations:

𝐺 (Δ) :=

{

{

{

�̇� (𝑡) = [𝐴 + Δ𝐴] 𝑥 (𝑡) + 𝐵V (𝑡)

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝐷V (𝑡)
(33)

with

𝐴 =

[

[

[

[

[

[

−0.0366 0.0271 0.0188 −0.4555
0.0482 −1.010 0.0024 −4.0208
0.1002 𝜌1 −0.707 𝜌2

0 0 1 0

]

]

]

]

]

]

;

𝐵 =

[

[

[

[

[

[

0.4422 0.1761
3.5446 −7.592
−5.52 4.49
0 0

]

]

]

]

]

]

;

𝐶 = [0 1 0 0] ;

𝐷 = 0,

(34)

where the states variables are horizontal velocity, 𝑥1, vertical
velocity, 𝑥2, pitch rate, 𝑥3, and pitch angle, 𝑥4; the saturating
input variables are collective pitch control, V1, and longitu-
dinal cyclic pitch control, V2. Moreover, the following bound
parameters are assumed: 𝜌1 = 0.3681+Δ𝜌1 with |Δ𝜌1| ≤ 0.05
and 𝜌2 = 1.42 + Δ𝜌2 with |Δ𝜌2| ≤ 0.01. Now, assuming the
parametric uncertainty Δ𝐴 = 𝐹Δ(𝑡)𝐸, we can represent the
uncertainty using the following matrices:

𝐹 =

[

[

[

[

[

[

0 0
0 0

0.05 0.01
0 0

]

]

]

]

]

]

,

𝐸 = [

0 1 0 0
0 0 0 1

]

for ‖Δ (𝑡)‖2 ≤ 1.

(35)

The following specifications are chosen for the controller
to be designed: (1) reference signal tracking and disturbance
rejection with error not exceeding 10%(2) zero steady error
for the step input; (3) stability of the controlled system
for input saturation limits of 𝑢max/min = ±2.5. Typically,
a dynamic weighting function 𝑊 is used to enforce the
performance specifications in the frequency domain. This
weighting function 𝑊 must be selected in order to obtain
high gain at low frequencies, roll-off rates of approximately
20 dB/decade at the desired bandwidth(s), and higher rates at
high frequencies [30]. To satisfy these requirements, we chose

𝑊 =
[

[

[

12.5𝑠 + 7
0.01𝑠2 + 4𝑠 + 0.8

0

0

12.5𝑠 + 2
0.01𝑠2 + 2𝑠

]

]

]

. (36)

From this choice the shaped plant has been defined. The
frequency response of the shaped plant in comparison to
nominal plant is presented in Figure 2.
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Figure 2: Singular values of the shaped and nominal plants.

To demonstrate the effectiveness of the proposedmethod,
two different designs will be discussed. The first consists
in the design of an 𝐻

∞
loop shaping controller for the

VTOL helicopter considering only norm-bounded paramet-
ric uncertainty; this design will be used as a reference for
performance evaluation.The second consists in the proposed
LPV approach considering both the input saturation con-
straint and norm-bounded parametric uncertainty. In this
design, the same dynamic weighting function and 𝜇 = 52000
have been considered. Suitable values of 𝜇 can be found
by a grid search, in this example in the interval (0, 105].
Furthermore, two varying parameters (𝜙1, 𝜙2) that indicate
the level of actuator’s saturation are defined. Herein, it is
assumed that 𝜙1 varies in the range between 0 and 0.4 and
𝜙2 varies between 0 and 0.2, representing a polytope with
four vertices and input saturation limits around 𝑢max/min =

±2.5. For both designs the maximum robust stability margin
𝜀max > 0.25 (𝛾 < 4) was achieved. In the absence of
input saturation, that is, considering only norm-bounded
parametric uncertainty, the𝐻

∞
loop shaping controller was a

robust stability margin of 0.60 while the gain-scheduled𝐻
∞

controller was a margin of 0.40.
Figures 3 and 4 illustrate the performance of the two

controllers designed.They satisfied the requirements of refer-
ence signal tracking, zero steady error for the step input, and
guarantee of robust stability of the controlled system for input
saturation of 𝑢max/min = ±2.5. It can be noted that another
simulation for better evaluation of the proposed method
is incorporated. It consists basically in the performance
of the 𝐻

∞
loop shaping controller designed considering a

saturation block. Taking into account the control input in
both channels obtained with the two controllers designed,
it is observed that gain scheduled 𝐻

∞
loop shaping has a

better performance than the 𝐻
∞

loop shaping controller
incorporating the saturation block.
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Figure 3: Step response for the controllers designed considering
input saturation and parametric uncertainty.
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Figure 4: Control input in both channels for the controllers
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Next, the guaranteed simultaneous gain/phase margins
[31, 32] were used to evaluate the controlled system’s robust-
ness. These margins were defined as

−20 log10√
1 + 𝜀

1 − 𝜀

dB ≤ 𝐺𝑀 ≤ 20 log10√
1 + 𝜀

1 − 𝜀

dB

−sin−1𝜀 degrees ≤ 𝑃𝑀 ≤ sin−1𝜀 degrees.
(37)
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The𝐻
∞

loop shaping controller considering only norm-
bounded parametric uncertainty has a gain margin of
±6.02 dB; its phase margin is 36.86∘. The gain-scheduled
𝐻
∞

loop shaping controller has a gain margin of ±3.67 dB
and phase margin of 23.57∘. The guaranteed simultaneous
gain/phase margins for the gain-scheduled controller are less
than for the LTI controller without input saturation consider-
ing only parametric uncertainties. This conservative margin
occurs because in (22) there is a style set of𝑋,𝑌 being used for
all polytope vertices. From these results, it is concluded that
the proposed method is an interesting alternative for systems
subject to input saturation and parametric uncertainties.

5. Conclusions

New sufficient LMI conditions for the synthesis of gain
scheduled 𝐻

∞
loop shaping controllers considering both

input saturation constraints and norm-bounded parametric
have been presented. The methodology addresses the design
problem in the four-block𝐻

∞
synthesis framework, in which

it is possible, through a linear parameter-varying structure, to
describe the parametric uncertainty and the input saturation
nonlinearity as perturbations to normalized coprime factors
of the shaped plant.Moreover, it is observed that the synthesis
is quite simple, but in practical terms some adjustments are
necessary to avoid high gains and an inappropriate limited
control inputmust be considered. One difficulty found in this
methodology is the exhaustive attempt to find the parameter
𝜇, which is capable of providing good performance and
a feasible solution. Future work should use computational
techniques in order to reduce this exhaustive attempt to find
𝜇. Finally, performance and robustness analysis illustrate that
the controllers obtained can be an advantageous strategy for
a class of linear systems with the presence of both constraint
of input saturation and parametric uncertainty.
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