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Real-time systems have always been difficult to monitor and debug because of the timing constraints which rule out any tool
significantly impacting the system latency and performance. Tracing is often the most reliable tool available for studying real-time
systems. The real-time behavior of Linux systems has improved recently and it is possible to have latencies in the low microsecond
range. Therefore, tracers must ensure that their overhead is within that range and predictable and scales well to multiple cores. The
LTTng 2.0 tools have been optimized for multicore performance, scalability, and flexibility. We used and extended the real-time
verification tool rteval to study the impact of LTTng on the maximum latency on hard real-time applications. We introduced a
new real-time analysis tool to establish the baseline of real-time system performance and then to measure the impact added by
tracing the kernel and userspace (UST) with LTTng. We then identified latency problems and accordingly modified LTTng-UST
and the procedure to isolate the shielded real-time cores from the RCU interprocess synchronization routines. This work resulted
in extended tools to measure the real-time properties of multicore Linux systems, a characterization of the impact of LTTng kernel
and UST tracing tools, and improvements to LTTng.

1. Introduction of LTTng-UST 2.0 for use in real-time systems. Our contri-
bution consists in a methodology to measure LTTng-UST
tracepoint latency characteristics in a real-time environment,
the npt open source tool, and modifications to LTTng
and CPU shielding configuration to improve its real-time
behavior. We set up a real-time environment based on
Linux PREEMPT RT and assessed its performance [2]. We
then measured the latency distribution in this real-time setup

and compared it to results obtained on a regular setup. We

Tracing is a method to study the runtime behavior of a
program’s execution. It consists in recording timestamped
events at key points of the execution. Because it can be used to
measure latency, tracing is a fundamental tool for debugging
and profiling real-time systems. To be suitable for real-time
system instrumentation, a tracer must have low-overhead and
consistent maximum latency in order to minimize execution

timing changes and maintain determinism.

The Linux Trace Toolkit next generation (LTTng) is a
high performance tracer optimized for Linux. It supports
both kernel and userspace tracing with coherent timestamps,
which allow observing system-wide execution. The userspace
tracing component of LTTng, LTTng-UST, allows instru-
menting applications, thus correlating application and kernel
events during specific tasks. Earlier results for LTTng-UST
show that the maximum tracepoint execution delay is 300
times the average [1]. Our goal was to assess the newer version

developed the Non-Preempt Test (npt) tool to address these
specific measurement requirements and thus were able to
validate a real-time system and its tracing impact. In addition,
we proposed and applied modifications to LTTng-UST in
order to lower maximum latency and evaluate its effective-
ness.

We present related work in Section 2. We detail the test
environment and the methodology in Section 3. Baseline
results are shown in Section 4 while results obtained with our
proposed improvements to LTTng-UST are presented and
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discussed in Sections 5 and 6. Future work and the conclusion
are in Section 7.

2. Related Work

This section presents the related work in the two main
areas relevant for this paper, real-time systems and software
userspace tracing.

2.1. Existing Real-Time Validation Tools. To evaluate the real-
time properties of the tracer, timing properties of the test
setup must be validated. It consists in measuring latencies
induced by the hardware and the operating system. We
mainly used the rt-tests suite and related tools to perform the
validation. In this section, the different tools corresponding
to our needs are presented.

2.1.1. Hardware. Abnormal hardware latencies can occur in
misconfigured hardware or hardware unable to do real-
time work. To measure these, we used the hwlat_detector
kernel module [3]. This module uses the stop-machine ()
kernel call to hog all of the CPUs during a specified amount
of time [4]. It then polls in a tight loop the CPU timestamp
counter (TSC) for a configurable period and looks for the
discrepancies in the TSC data. If there is any gap, this
means that the polling was interrupted which, in a tight
loop in kernel mode with interrupts disabled, could only
be a nonmaskable system management interrupt (SMI).
SMIs are hardware interrupts used at the CPU level to
perform different tasks such as reporting hardware errors
and doing thermal throttling or system health checks [5].
The nature of these interrupts causes latencies that are hard
to detect. Only an elimination process allows detecting
such latencies while running applications. For this reason,
we want to avoid SMIs during real-time application work.
The hwlat_detector kernel module thus allows identify-
ing and rejecting or reconfiguring computers with abnormal
hardware latencies. Hwlatdetect is a python script to
simplify the use of the hwlat_detector module.

2.1.2. Software. Cyclictest is a tool to verify the software
real-time performance by running multiple processes on
different CPUs, executing a periodic task [6]. Each task can
have a different period. The priority of each process can be
set to any value up to real time. The performance is evaluated
by measuring the discrepancy between the desired period and
the real one.

The preempt-test tool [7] is also interesting. This tool
is not part of the rt-tests suite but was analyzed before
the development of the Non-Preempt Test tool presented in
Section 4.1. It allows verifying if a higher priority task is able
to preempt a lower priority one by launching threads with
increasing priorities. It also measures the time it takes to
preempt lower priority tasks.

2.2. Existing Software Userspace Tracers. In this section, we
present characteristics of currently available software tracers
with a userspace component.
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Some existing implementations of tracers rely on either
blocking system calls, string formatting, or achieving thread
safety by locking the shared resources for concurrent writers.
For example, the logging framework, Poco: :Logger, is
implemented this way [8]. This category of tracer is slow and
unscalable and thus is unsuitable for use in real-time and
multicore environment.

Feather-trace [9] is a low-overhead tracer imple-
mented with thread-safe and wait-free FIFO buffers. It uses
atomic operations to achieve buffer concurrency safety. It has
been used to analyze locking in the Linux kernel. However,
it does not support variable event size, since the reservation
mechanism is based on array indexes. Also, the timestamp
source is the gettimeofday () system call, which provides
only microsecond precision instead of nanosecond.

Paradyn modifies binary executables by inserting calls
to tracepoints [10, 11]. The instrumentation can be done at
runtime [12] or using binary rewriting in order to reduce
the runtime overhead. This technique has been used to
monitor malicious code. While the framework offers an
extensive API to modify executables, it does not include trace
buffer management, event types definition, or trace write
mechanisms. Therefore, the missing components must be
implemented separately.

Perf [13] is a built-in Linux kernel tracer. It was originally
designed to access the performance counters in the proces-
sors, but its use has since been extended to access the Linux
kernel tracepoints. Being bundled with the kernel makes it
readily accessible. Perf can be used as a regular tracer but
has been optimized for sampling. For instance, perf has a
limited multicore scalability for tracing [14]. Sampling is a
different technique, which sacrifices accuracy for low average
overhead. However, sampling is problematic in real-time
systems as, in those systems, the worst-case overhead is the
limiting factor, and sampling only gives us information about
the average case. More specifically, an interrupt is used to
sample data, a significant perturbation for a real-time system.

SystemTap is a monitoring tool for Linux [15]. It works
by dynamically instrumenting the kernel using Kprobes [16].
It also provides a way to instrument userspace applications
using uprobes since Linux kernel 3.8. In both cases, the
instrumentation is done in a special scripting language that is
compiled to produce a kernel module. The analysis of the data
is bundled inside the instrumentation itself and the results
may be printed on the console at regular interval. Hence, the
analysis is done in flight and there are no facilities, as far as
we know, to efficiently serialize raw events to stable storage.
Moreover, even if it is possible to determine precise places to
put userspace probes to be statically compiled, these probes
nonetheless incur an interrupt, just as for the dynamic probes,
which is problematic for real-time tracing.

LTTng-UST provides macros to add statically compiled
tracepoints to a program. Produced events are consumed by
an external process that writes them to disk. Unlike Feather-
trace, it supports arbitrary event types through the Common
Trace Format [17]. The overall architecture is designed to
deliver extreme performance. It achieves scalability and wait-
free properties for event producers by allocating per-CPU
ring-buffers. In addition, control variables for the ring-buffer
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are updated by atomic operations instead of locking. More-
over, important tracing variables are protected by read-copy
update (RCU) data structures to avoid cache-line exchanges
between readers occurring with traditional read-write lock
schemes [18, 19]. A similar architecture is available at the
kernel level. Since both kernel and userspace timestamps
use the same clock source, events across layers can be
correlated at the nanosecond scale, which is really useful to
understand the behavior of an application. LTTng is thus
the best candidate to work on real-time tracing. The rest of
this paper focuses on LTTng version 2.2 which we used to
perform our experiments.

3. Test Environment

We used the tools presented previously to validate our test
setup. The system consists of an Intel Core i7 CPU 920
2.67 GHz with 6 GB of DDR3 RAM at 1067 MHz and an
Intel DX58S0O motherboard. Hyperthreading was disabled as
it introduces unpredictable delays within cores by sharing
resources between threads, both in terms of processing units
and in terms of cache. This is something to avoid in real-time
systems.

As expected, running hwlatdetect to verify the hard-
ware latency did not find any problem; it measured
no latencies for a duration of twenty-four hours. The
hwlat_detector module often allowed us to find unex-
pected latencies on particular setups in our initial studies.
This module thus helped us to choose a computer able to do
real-time work.

The cyclictest tool was then used to verify the
software latency. As the documentation of rt-tests specifies
that cyclictest has been developed primarily to be used
in a stressed environment, we made the test using rteval.
The rteval tool is a python script written to run multiple
threads which will load the system and run cyclictest
in a separate thread at the same time. It then produces a
report giving information about the system tested and the
results obtained under load. We fixed portability problems
on cyclictest and performed the tests on the two different
kernels used in the rest of this paper, the 3.8.13 stable kernel
(hereinafter referred to as standard kernel) and the 3.8.13
stable kernel with the rtll PREEMPT RT patch (hereinafter
referred to as PREEMPT RT patched kernel or RT kernel).
We chose to do our tests on both these kernels to compare
the performance of LTTng in a non-real-time environment
versus a hard real-time one. We also expected that if LTTng
was able to reach very good performance on a nonoptimized
system, it would most likely be able to reach it on a real-time
one. Both kernels were compiled with uprobes support to
be able to trace with SystemTap as well.

Table 1 shows the results of the cyclictest executions
run by rteval on these kernels during one hour. These exe-
cutions have been performed running hackbench [20] and
a kernel compilation load (make -j8 to use 8 compilation
threads). The cyclictest application was executed with
command line arguments, -i100 to set the base interval of the
first thread, -m to prevent the memory used by cyclictest

TABLE I: Results of the Cyclictest executions performed on our
standard (std) and PREEMPT_RT patched (rt) kernels.

Latencies in us

CPU core Kernel type
0 1 2 3
Minimum ! ! ! ! std
1 1 1 1 rt
2 2 2 2 std
Average
2 2 3 2 rt
. 17 18 16 35 std
Maximum
8 5 7 5 rt

from being paged out, -p95 to set the priority to real time, and
- -smp to activate the standard options to test an SMP system.

The results obtained show latencies up to 18 us for three
of the four CPU cores on which cyclictest was running
with the standard kernel. The fourth shows a latency about
two times higher than the other cores. The results are better
on the PREEMPT RT patched kernel. The maximum latency
reached is 8 us, instead of 18 ys on the standard kernel. We
also see that the maximum of the processor with the worst
latency under the PREEMPT_RT patched kernel is lower than
the maximum of the processor with the best latency under
the standard kernel (almost twice lower). The PREEMPT_RT
patched kernel should thus be able to handle real-time tasks
much better than the standard kernel.

4. Baseline Results

In this part, we present the performance of LTTng in our test
environment. To do so, we first introduce the Non-Preempt
Test tool, developed for this purpose, and then present and
discuss our latency results.

4.1. The Non-Preempt Test Tool. One condition we wanted to
test was the nonpreemption of a high priority process. To do
so, we developed the Non-Preempt Test application or npt.
To isolate the effect of different latency sources, the tool
can optionally first set up an ideal environment by disabling
the interrupt requests (IRQs) (only when compiled with the
enable-cli-sti command line option). The IRQs are hardware
signals sent to the processor in order to interrupt the running
process to run the corresponding handler. Such events can
add latency. In our case, we wanted to separate the latencies
caused by the rest of the system from those linked to tracing,
to be able to analyze the tracer. Even if disabling the IRQs is
not mandatory, it allows isolating the factors that can cause
unwanted latencies. For this reason, they were disabled for
the experiments presented in this paper.

The tool then locks the process memory into RAM
to prevent it from being swapped (with mlockall). The
core of the application loops and calculates the time gap
between the start of two consecutive loops, using the rdtsc
instruction to get the Time Stamp Counter [21] of the CPU.
This is similar to the hwlat_detector module in kernel
mode. In an ideal situation, this time gap will be very short,
just the time to execute the few instructions in the loop.
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FIGURE 1: The cpusets organization for the running tests.

At the end of its execution, npt computes latencies statistics
for each loop and generates a histogram showing the different
latencies reached and the number of times each one was
reached. The npt tool was primarily designed to be executed
in a CPU shielded environment, where one or more CPUs
are exclusively dedicated to the real-time task. This is highly
recommended but not mandatory, as npt automatically
asks to be pinned on a specific CPU. Our CPU shielding
configuration puts all the system processes on cpu0 and npt
on cpul, as shown in Figure 1. The npt tool version 1.0 was
used for the tests presented in this paper.

The rdtsc time source is a precise counter and its
frequency is fixed. Even in cases where it is not syn-
chronized between cores, this does not affect our exper-
iment because npt is guaranteed to always be sched-
uled on the same CPU by setting its own CPU affinity
(with sched_setaffinity). Moreover, this is reinforced by
the CPU shielding. In order to reduce the effect of transient
state, npt also uses an empty loop to stress the CPU before
getting its frequency, as presented in [22]. The frequency
can then be recovered from /proc/cpuinfo, which is the
default behavior of npt, but we choose to evaluate it for more
accuracy (using the eval-cpu-speed command line option).
The CPU stress allows removing any effect of the frequency
scaling, even if it is not disabled. However, the effect of the
Intel Turbo Boost Technology is not managed yet. We finally
discard the first five iterations of the benchmark (this number
is configurable). The study of the pipeline warm-up latency is
beyond the scope of this paper.

This tool is ideal to test the performance of the kernel
and userspace LTTng tracers as it is easy to extend and add
tracepoints in the main loop, while identifying any latency
added by the tracer, as shown in Algorithm 1. The session
daemon of LTTng is put on cpu2 during the tracing tests, to
be CPU independent of npt and the system processes. The
session daemon spawns the consumer daemons and thus they
will also run on cpu2.

4.2. Latency Results. Figure 2 presents the histograms gener-
ated by npt for an execution with 10°® loops without tracing.
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Di<0

(2) t, « read rdtsc

(3)t, —t,

(4) tracepoint nptstart

(5) while i < loops_to_do do

6) ie—i+l

(7)  duration « (t, — t,) x cpuPeriod
(8)  tracepoint nptloop

9) CALCULATESTATISTICS(duration)
10) £, «t,

(11)  t, « read rdtsc

(12) end while

(13) tracepoint nptstop

ALGORITHM 1: Tracepoints in npt.
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FIGURE 2: Histograms generated by npt for 10° loops on standard
and PREEMPT RT patched kernels.

As we can see, there is no latency peak. These results indicate
a good hardware and software basis, thus insuring that any
added latency will be caused by the tracer.

In order to see the baseline performance of LTTng-UST
and SystemTap, we ran npt for 10° loops with each tracer,
one after the other, and then compared the results. We
started our tests on kernel 3.2 at first, but as SystemTap
needs uprobe to trace userspace we then moved to kernel
3.8. This change caused a serious performance regression
in LTTng, resulting in dropped events, which we were able
to trace to a change in the fadvise system call included
in the first 3.8 stable release [23]. We then choose to
remove the fadvise call from LTTng for our tests, as
it was not necessary in our case. Table 2 shows the data
obtained. We can see in the table that the maximum latency
of SystemTap is almost twenty times larger than the one
of LTTng on a standard kernel and around forty times
larger on a PREEMPTRT patched kernel. Moreover, the
variance of the results obtained for SystemTap is much
larger than the one obtained for LTTng. As the maximum



Advances in Computer Engineering

TABLE 2: Statistics per loop, in nanoseconds, generated by npt for
10® loops on both standard and PREEMPT_RT patched kernels for
both LTTng-UST 2.2 and SystemTap 2.2.1.

Latencies in ns

Kernel

Standard PREEMPT _RT patched
Tracer LTTng SystemTap LTTng SystemTap
Minimum  270.0 581.6 262.5 911.2
Mean 498.2 777.0 497.6 1028
Maximum 82180 1498000 35260 1476 000
Variance 3.620 23.36 4.872 33.74
std deviation 60.17 152.8 69.80 183.7

latency and the variance are important values for a real-time
application, LTTng is a better choice than SystemTap for
this study.

Figures 3, 4, and 5 present the generated histograms for
executions of npt with 10® loops with, respectively, kernel,
UST, and kernel and UST tracers active.

We verified that no event was lost for each of the
generated traces by using the babeltrace tool, which provides
a command line interface to read Common Trace Format
(CTF) traces.

As we can see, LTTng-UST adds many nondeterministic
peaks to the execution of npt, up to 82 us on the standard
kernel and 35 us on the PREEMPT_RT patched one. On both
kernels, using kernel tracing alone does not seem to have
any impact on the execution of npt. Latency peaks show
that the impact is more important on the UST side, likely
because there is an UST tracepoint directly added into the
loop, therefore slowing it. As these peaks were also visible
in the execution of npt with both kernel and UST tracers,
we used this trace to analyze the execution of npt on
cpul. Doing so, we identified that, at some point, npt was
scheduled out from its CPU, and a lower priority kworker
thread was scheduled for a short amount of time, before npt
returned back to its execution. This priority inversion was
also the occasion for the kernel to do all its pending work,
including the RCU interprocess synchronization routines to
update and free unused data structures, taking a significant
amount of time. This point was in fact the exact moment
where the application was using a write call. This call is
part of UST and aims to inform the consumer using a
nonblocking write call on its control pipe that the current
tracing subbuffer in the application is full.

5. Reducing Maximum Latency

The results presented in the previous section led us to
modify LTTng-UST to create a test version in which the
synchronization between the application and the consumer is
removed to dissociate the work of npt and LTTng. Instead
of using the kernel polling call in the consumer, we first
changed it to active polling for the sake of this experimenta-
tion. Using active polling, the consumer would continuously
check if the buffers were full and thus run at 100% of the
CPU. However, with our shielded environment, it would not
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FIGURE 3: Histograms generated by npt for 10* loops on standard
and PREEMPT_RT patched kernels with LTTng kernel tracing.
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FIGURE 4: Histograms generated by npt for 10°* loops on standard
and PREEMPT_RT patched kernels with LTTng-UST tracing.

have any impact on the npt execution. This implementation
was then improved to a timed polling using a sleep call
to relieve the CPU which was running the LTTng-UST
consumer. The timed polling, using delays selected between
20 and 200 microseconds, gave results as good as those of
the active polling, while avoiding overloading the hosting
CPU. For its part, the application (through the UST library)
will not contact the consumer anymore to inform it of the
subbuffers state. We also discovered that the getcpu call in
glibc version 2.13 was not a VDSO function yet and thus was
adding latency to LTTng. We upgraded our system to use
glibc version 2.16 which corrects this behavior for our tests.
After further tests, these LTTng-UST design changes
were included in LTTng version 2.2 as a new read-timer
command line parameter, after the conference paper intro-
ducing them [24]. Without this parameter, LTTng 2.2 has
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FIGURE 6: Histograms generated by npt for 10° loops on a standard
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the same behavior as LTTng 2.1. Figures 6 and 7 show the
difference of added latencies using or not the read-timer
command line parameter of LTTng-UST on a standard and
a PREEMPT_RT patched kernel, respectively. To avoid confu-
sion, we will thereafter use the terms “timer LTTng-UST”
when using the read timer mode and “writer LTTng-UST”
otherwise.

On the standard kernel, the maximum latency is lowered
from 82 ys to 7 us, while on the PREEMPT_RT patched kernel
it is lowered from 35 us to 6 ps. If we compare the results of
the timer LTTng-UST on both kernels in Figure 8, we can see
that, unlike the writer LTTng-UST results shown in Figure 4,
these are much more consistent between kernels.

Moreover, Table 3 shows the statistics obtained from the
execution of npt for the writer and timer designs of LTTng
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FIGURE 8: Histograms generated by npt for 10°* loops on standard
and PREEMPT_RT patched kernels with timer LTTng-UST tracing.

for comparison purposes. We can see that even if the
minimum duration is higher with the timer version for the
standard kernel, the maximum duration, the variance, and
the standard deviation, which are the most important values
in a real-time system, are lower.

6. Real-Time Tracing Limits

We have seen in the previous section that the proposed design
modification allows us to trace an application with a heavy
UST load. However, LTTng still has limits when it comes
to tracing the userspace application and the kernel at the
same time. In the extreme case where an application would
generate tracing events at the maximum rate, in a tight infinite
loop, the system may be overwhelmed. In that case, where
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TABLE 3: Statistics per loop, in nanoseconds, generated by npt on
both standard and PREEMPT_RT patched kernels for both writer and
timer versions of LTTng-UST.

Latencies in ns

Kernel
Standard PREEMPT_RT patched
LTTng-UST 2.2  Writer Timer Writer Timer
Minimum 270.0 369.4 262.5 258.0
Mean 498.2 424.2 497.6 286.8
Maximum 82180 7569 35260 6409
Variance 3.620 1.063 4.872 0.4541
std deviation 60.17 32.60 69.80 21.31
10°
=108
CE107
E10°
? E10°
= - E1o
S L3
5 : 10
_g - 10
2 SR 10!
T -l | T T
6 7 8 9 10

Latency (us)

Standard Linux kernel
mmm Linux kernel with PREEMPT_RT patch

FIGURE 9: Histograms generated by npt for 10° loops on standard
and PREEMPT_RT patched kernels with timer LTTng-UST and ker-
nel tracing.

events cannot be consumed as fast as they are generated,
either the generating program should be temporarily blocked
or some of the events generated will be dropped.

Nptisjust such an atypical application doing almost noth-
ing but generating events in a tight infinite loop. Interestingly,
when only UST is used, npt on cpul generates a maximum
volume of tracing data, but the consumer daemon on cpu2
is still able to cope with this very large volume. However,
when kernel tracing is added, cpu2 has the added burden of
generating kernel tracing data and consuming this additional
tracing data and becomes overwhelmed. In this latest case,
even if we can reach latencies as low as 6 s, as shown in
Figure 9, the UST part of the tracer drops many events, giving
the priority to the kernel trace.

Since it is useful to have a trace with both correlated
tracers (userspace and kernel), we wanted to know what is
the maximum charge our setup can handle without dropping
events. In most cases, a trace without any discarded events
has more value than a trace with discarded ones. To measure
the maximum load, we added a new tracepoint maximum
frequency command line parameter to the npt tool, allowing
limiting the maximum number of times a tracepoint will be
called per second. This test aims to restrain the frequency of

TaBLE 4: Millions of tracepoints per second we are able to generate
without any drops, in our system, with userspace and kernel tracing
active, using 32 subbuffers of 1 MB for UST and 32 subbuffers of 4 MB
for the kernel.

Kernel All tracepoints Syscalls only
Standard 2.0 2.4
PREEMPT_RT 2.2 2.9

events, which will lighten the stress on the storing mechanism
of LTTng.

We started a series of tests using this new option to
find by binary search the number of UST events we could
generate per second without discarding any of them. We
chose to use 32 subbuffers of 1 MB for the UST trace and
32 subbuffers of 4 MB for the kernel one. The kernel trace
was started by enabling all the tracepoints currently available
in LTTng-modules 2.2. The kernel was idle during our tests.
We also ran our tests using only syscalls tracepoints to lighten
the work of the kernel consumer. In real-life situations, one
would not use all the kernel tracepoints but choose those
which are really useful to the analysis of the behavior of
his program. In such situations, as fewer events would be
generated on the kernel side, we expect to be able to use a
greater tracepoint frequency on the userspace tracing side.
The results of these tests are presented in Table 4.

For both standard and PREEMPT_RT patched kernels, we
can see that LTTng is able to support a pretty heavy tracing
charge on the userspace side, even when tracing the kernel,
allowing tracing very demanding real-time applications. As
expected, this charge is higher when using fewer kernel
tracepoints.

7. Conclusion and Future Work

We have presented the effects of tracing with LTTng on
both standard and PREEMPT_RT patched Linux kernels by
using the Non-Preempt Test (npt) application. We changed
the way the userspace instrumented application interacts
with LTTng userspace tracer (UST) to reduce and improve
the determinism of the added latency. Our results were
promising and thus integrated upstream in the new LTTng
2.2 release, allowing us to lower the maximum latencies to
7 us for the standard kernel and 6 us for the PREEMPT_RT
patched one when using only userspace tracing. We also were
able to determine the stress limits of LTTng when tracing
both userspace and kernel by limiting the UST tracepoints
frequency.

We believe that LTTng has a great potential for tracing
real-time systems. Therefore, we are viewing the real-time
work described in this paper as the beginning of a larger
project. We intend to pursue our investigations to find if we
can lower even more the LTTng latency and create new test
cases in npt to be able to evaluate more easily a real-time
system and its real-time behavior. The latest version of npt
can be obtained from http://git.dorsal.polymtl.ca/?=npt.git.
Another feature of LTTng that could be useful for real-
time applications tracing is being developed to take snapshot



traces, allowing only storing the trace events in the vicinity of
an identified problem.
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