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We analyze an infinite-buffer batch-size-dependent batch-service queuewith Poisson arrival and arbitrarily distributed service time.
Using supplementary variable technique, we derive a bivariate probability generating function from which the joint distribution of
queue and server content at departure epoch of a batch is extracted and presented in terms of roots of the characteristic equation.
We also obtain the joint distribution of queue and server content at arbitrary epoch. Finally, the utility of analytical results is
demonstrated by the inclusion of some numerical examples which also includes the investigation of multiple zeros.

1. Introduction

Recently, Banerjee and Gupta [1] analyzed a finite-buffer
batch-service queue with batch-size-dependent service and
obtained joint distribution of queue and server content (i.e.,
number in the queue as well as with the server) at departure
and arbitrary epochs. However, no such results are available
so far in case of an infinite-buffer queue.This paper considers
an infinite-buffer single server queue with Poisson arrivals
and general service time distribution where customers are
served in batches according to general bulk service, (𝑎, 𝑏)

rule, and service times of the batches depend on the number
of customers within the batch under service process. It is
often challenging to obtain the joint distribution of queue and
server content of thismodel due to the enumerable state space
and increase in dimensionality that arises in this case. Our
main objective in this paper is to develop a tractable yet easily
implementable procedure to obtain the joint distribution of
the queue and the server content at departure and arbitrary
epochs. Banerjee and Gupta [1] used embedded Markov
chain technique to analyze the finite-buffer queue wherein
they first obtain transition probability matrix (TPM), which
appears to be very complex in structure. Further it becomes
quite challenging (if not impossible) to extend this TPM for

the case of infinite-buffer queue and then to find out the
analytic expression of probability generating function (pgf)
of queue and server content. In this paper, we use sup-
plementary variable technique (which essentially surpasses
the direct use of the TPM) to obtain the bivariate pgf of
queue and server content at departure epoch of a batch in a
much simpler way and also to establish the relation between
arbitrary and departure epoch as a byproduct.Therefore, new
contributions in this paper are (i) construction of bivariate
pgf of queue and server content at departure epoch of a
batch without using embedded Markov chain technique, (ii)
extraction of joint distribution (queue and server content)
from the bivariate pgf which has been expressed in terms
of roots of so called characteristic equation which arise in
this case, (iii) illustration of analytical procedure through
several numerical examples, and (iv) investigation of the cases
even if the characteristic equation has nonzero repeated roots.
More precisely, repeated roots occur for Erlang (𝐸

𝑚
), 𝑚 ≥ 2;

service time distribution and number of roots depend on
the threshold value “𝑎” and the maximum capacity “𝑏” and
multiplicity of each root depends on “𝑚”.

Recent studies on this model have been carried out by
Bar-Lev et al. [2], who derived the pgf of only queue content
at departure epoch but did not use it due to the complexity
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involved in the inversion process. However, they obtained
queue-size distribution by truncating the TPM into a finite
state space and then solving a finite number of system of
equations. Later, Chaudhry and Gai [3] have considered this
pgf and inverted it using the method of roots in order to
derive the distribution of queue content only. It may be noted
that both authors did not obtain distribution of queue content
at arbitrary epoch. Moreover, from their analysis, one can not
get joint distribution of queue and server content.

As a counterpart of continuous-time queues, in discrete-
time queues, a series of papers, considered by Claeys et al.
[4–6] deals with such queues. In [4], they considered Geo𝑋/
𝐺(𝑙,𝑐)/1 queue and obtained joint pgf of the queue and the
server content and from this they extracted marginal pgfs.
However, they stayed away from inverting the joint pgf
to obtain complete joint distribution of queue and server
content rather restricted on finding tail distribution and
performance measures only. Further, in [5], they analyze
the same queueing model under discrete-batch Markovian
arrival process (D-BMAP) and derived joint vector gen-
erating function of the queue content, the server content,
and the remaining service time of the batch under service
and then extracted marginal pgfs for several admissible
quantities such as queue content when server is inactive,
server content is at the end of service, and so forth. They
also elaborated upon the influence of correlation of the arrival
process on the mean system content. Furthermore, in [6],
they approximated tail probabilities of the customer delay in
Geo𝑋/𝐺(𝑙,𝑐)/1 queue. It has been emphasized that neglecting
of batch-size-dependent service can lead to a devastating
inaccuracy of the approximation of the tail probabilities.

The rest of the paper is organized as follows: the next
section describes the model in detail and governing equa-
tions. Section 3 contains the derivation of bivariate pgf and
extraction of joint distribution from that pgf at departure
epoch of a batch. The joint distribution at arbitrary epoch is
obtained in Section 4 while Section 5 shows the applicability
of our analytical results through some specific service time
distributions. The paper ends with conclusion.

2. Model Description and
Governing Equations

Although the model description and governing equations
have been well discussed by Banerjee and Gupta [1] for finite-
buffer queue, however, for the sake of completeness it is again
discussed briefly in case of infinite-buffer.

(i) Arrival Process. Customers arrive at the system
according to Poisson process with rate 𝜆.

(ii) Batch-Service Discipline. The single server serves the
customers in batches according to general bulk ser-
vice (𝑎, 𝑏) rule.

(iii) Service Process. The service time (𝑇
𝑟
) of a batch of

size 𝑟 (𝑎 ≤ 𝑟 ≤ 𝑏) follows general distribution with
probability density function (p.d.f.) 𝑠

𝑟
(𝑡), distribution

function 𝑆
𝑟
(𝑡), the Laplace-Stieltjes transform (L.-

S.T.) 𝑆
𝑟
(𝜃), and the mean service time 1/𝜇

𝑟
= 𝑠
𝑟

=

−𝑆
(1)

𝑟
(0), 𝑎 ≤ 𝑟 ≤ 𝑏, where 𝑆(1)

𝑟
(0) is the derivative of

𝑆
𝑟
(𝜃) evaluated at 𝜃 = 0.

(iv) Utilization Factor. The traffic intensity of the system
𝜌 = 𝜆𝑠

𝑏
/𝑏 < 1 which ensures the stability of the

system.

Let us define the state of the system at time 𝑡 as

(i) 𝑁
𝑞
(𝑡) ≡ number of customers in the queuewaiting for

service,

(ii) 𝑁
𝑠
(𝑡) ≡ number of customers with the server,

(iii) 𝑈(𝑡) ≡ remaining service time of the batch in service.

Further, we define

𝑝
𝑛,0

(𝑡) = Pr {𝑁
𝑞
(𝑡) = 𝑛,𝑁

𝑠
(𝑡) = 0} , 0 ≤ 𝑛 ≤ 𝑎 − 1,

𝑝
𝑛,𝑟

(𝑢, 𝑡) 𝑑𝑢

= Pr {𝑁
𝑞
(𝑡) = 𝑛,𝑁

𝑠
(𝑡) = 𝑟, 𝑢 < 𝑈 (𝑡) < 𝑢 + 𝑑𝑢} ,

𝑢 ≥ 0, 𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏.

(1)

In steady-state, let us define

𝑝
𝑛,0

= lim
𝑡→∞

𝑝
𝑛,0

(𝑡) , 0 ≤ 𝑛 ≤ 𝑎 − 1,

𝑝
𝑛,𝑟

(𝑢) = lim
𝑡→∞

𝑝
𝑛,𝑟

(𝑢, 𝑡) , 𝑢 ≥ 0, 𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏.
(2)

Relating the states of the system at two consecutive time
epochs 𝑡 and 𝑡 + 𝑑𝑡 and using supplementary variable
technique, we obtain, in steady-state, the following differ-
ential equations:

0 = −𝜆𝑝
0,0

+

𝑏

∑
𝑟=𝑎

𝑝
0,𝑟

(0) , (3)

0 = −𝜆𝑝
𝑛,0

+ 𝜆𝑝
𝑛−1,0

+

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) ,

1 ≤ 𝑛 ≤ 𝑎 − 1,

(4)

−
𝑑

𝑑𝑢
𝑝
0,𝑎

(𝑢) = −𝜆𝑝
0,𝑎

(𝑢) + 𝜆𝑝
𝑎−1,0

𝑠
𝑎
(𝑢)

+

𝑏

∑
𝑟=𝑎

𝑝
𝑎,𝑟

(0) 𝑠
𝑎
(𝑢) ,

(5)

−
𝑑

𝑑𝑢
𝑝
0,𝑟

(𝑢) = −𝜆𝑝
0,𝑟

(𝑢) +

𝑏

∑
𝑗=𝑎

𝑝
𝑟,𝑗

(0) 𝑠
𝑟
(𝑢) ,

𝑎 + 1 ≤ 𝑟 ≤ 𝑏,

(6)
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−
𝑑

𝑑𝑢
𝑝
𝑛,𝑟

(𝑢) = −𝜆𝑝
𝑛,𝑟

(𝑢) + 𝜆𝑝
𝑛−1,𝑟

(𝑢) ,

𝑎 ≤ 𝑟 ≤ 𝑏 − 1, 𝑛 ≥ 1,

(7)

−
𝑑

𝑑𝑢
𝑝
𝑛,𝑏

(𝑢) = −𝜆𝑝
𝑛,𝑏

(𝑢) + 𝜆𝑝
𝑛−1,𝑏

(𝑢)

+

𝑏

∑
𝑟=𝑎

𝑝
𝑛+𝑏,𝑟

(0) 𝑠
𝑏
(𝑢) , 𝑛 ≥ 1.

(8)

Further, let us define

𝑆
𝑟
(𝜃) = ∫

∞

0

𝑒
−𝜃𝑢

𝑑𝑆
𝑟
(𝑢) = ∫

∞

0

𝑒
−𝜃𝑢

𝑠
𝑟
(𝑢) 𝑑𝑢,

𝑎 ≤ 𝑟 ≤ 𝑏,

𝑝
𝑛,𝑟

(𝜃) = ∫
∞

0

𝑒
−𝜃𝑢

𝑝
𝑛,𝑟

(𝑢) 𝑑𝑢, 𝑎 ≤ 𝑟 ≤ 𝑏, 𝑛 ≥ 0,

𝑝
𝑛,𝑟

≡ 𝑝
𝑛,𝑟

(0) = ∫
∞

0

𝑝
𝑛,𝑟

(𝑢) 𝑑𝑢,

𝑎 ≤ 𝑟 ≤ 𝑏, 𝑛 ≥ 0.

(9)

Multiplying (5)–(8) by 𝑒
−𝜃𝑢 and integrating with respect to 𝑢

over 0 to ∞, we obtain

(𝜆 − 𝜃) 𝑝
0,𝑎

(𝜃) = 𝜆𝑝
𝑎−1,0

𝑆
𝑎
(𝜃) +

𝑏

∑
𝑟=𝑎

𝑝
𝑎,𝑟

(0) 𝑆
𝑎
(𝜃)

− 𝑝
0,𝑎

(0) ,

(10)

(𝜆 − 𝜃) 𝑝
0,𝑟

(𝜃) =

𝑏

∑
𝑗=𝑎

𝑝
𝑟,𝑗

(0) 𝑆
𝑟
(𝜃) − 𝑝

0,𝑟
(0) ,

𝑎 + 1 ≤ 𝑟 ≤ 𝑏,

(11)

(𝜆 − 𝜃) 𝑝
𝑛,𝑟

(𝜃) = 𝜆𝑝
𝑛−1,𝑟

(𝜃) − 𝑝
𝑛,𝑟

(0) ,

𝑎 ≤ 𝑟 ≤ 𝑏 − 1, 𝑛 ≥ 1,
(12)

(𝜆 − 𝜃) 𝑝
𝑛,𝑏

(𝜃) = 𝜆𝑝
𝑛−1,𝑏

(𝜃) +

𝑏

∑
𝑟=𝑎

𝑝
𝑛+𝑏,𝑟

(0) 𝑆
𝑏
(𝜃)

− 𝑝
𝑛,𝑏

(0) , 𝑛 ≥ 1.

(13)

As our major concern is to perceive the joint distribution
of queue content as well as server content at departure and
arbitrary epoch, we define the following probabilities at
departure epoch:

𝑝
+

𝑛,𝑟
= Pr {𝑛 customers in the queue at departure epoch of a batch and 𝑟 customers with the departing batch} ,

𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏,
(14)

𝑝
+

𝑛
= Pr {𝑛 customers in the queue at departure epoch of a batch} =

𝑏

∑
𝑟=𝑎

𝑝
+

𝑛,𝑟
, 𝑛 ≥ 0, (15)

𝑞
+

𝑟
= Pr {𝑟 customers with the departing batch} =

∞

∑
𝑛=0

𝑝
+

𝑛,𝑟
, 𝑎 ≤ 𝑟 ≤ 𝑏. (16)

Now we propose the following lemmas which will be used
later.

Lemma 1. The probabilities 𝑝+
𝑛,𝑟

and 𝑝
𝑛,𝑟

(0) are connected by
the relation

𝑝
+

𝑛,𝑟
=

𝑝
𝑛,𝑟

(0)

∑
∞

𝑚=0
∑
𝑏

𝑟=𝑎
𝑝
𝑚,𝑟

(0)
. (17)

Proof. As 𝑝
+

𝑛,𝑟
is proportional to 𝑝

𝑛,𝑟
(0), using

∑
∞

𝑛=0
∑
𝑏

𝑟=𝑎
𝑝+
𝑛,𝑟

= 1 we obtain the desired result.

Lemma 2. The value of ∑∞
𝑛=0

∑
𝑏

𝑟=𝑎
𝑝
𝑛,𝑟

(0) is given by

∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) =
1 − ∑

𝑎−1

𝑖=0
𝑝
𝑖,0

𝜔
, (18)

where 𝜔 = 𝑠
𝑎
∑
𝑎

𝑛=0
𝑝+
𝑛
+ ∑
𝑏

𝑛=𝑎+1
𝑠
𝑛
𝑝+
𝑛
+ 𝑠
𝑏
∑
∞

𝑛=𝑏
𝑝+
𝑛
.

Proof. Using (3) in (4), we get

𝜆𝑝
𝑛,0

=

𝑛

∑
𝑚=0

𝑏

∑
𝑟=𝑎

𝑝
𝑚,𝑟

(0) , 0 ≤ 𝑛 ≤ 𝑎 − 1. (19)

Using (19) in (10), we get

(𝜆 − 𝜃) 𝑝
0,𝑎

(𝜃) = 𝑆
𝑎
(𝜃)

𝑎

∑
𝑚=0

𝑏

∑
𝑟=𝑎

𝑝
𝑚,𝑟

(0) − 𝑝
0,𝑎

(0) . (20)

Summing (20) and (11) to (13), we obtain
∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(𝜃) =
1 − 𝑆
𝑎
(𝜃)

𝜃

𝑎

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0)

+

𝑏

∑
𝑛=𝑎+1

𝑏

∑
𝑟=𝑎

1 − 𝑆
𝑛
(𝜃)

𝜃
𝑝
𝑛,𝑟

(0)

+
1 − 𝑆
𝑏
(𝜃)

𝜃

∞

∑
𝑛=𝑏+1

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) .

(21)
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Taking limit as 𝜃 → 0 in the above expression and
using L’Hôspital’s rule, the normalizing condition∑

𝑎−1

𝑛=0
𝑝
𝑛,0

+

∑
∞

𝑛=0
∑
𝑏

𝑟=𝑎
𝑝
𝑛,𝑟

= 1, and after a little bit of manipulation, we
obtain the desired result.

3. Joint Distribution of Queue Content and
Number with the Departing Batch

In order to obtain 𝑝+
𝑛,𝑟

, 𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏, we further define
the following pgfs:

𝑃 (𝑧, 𝑦, 𝜃) =

∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(𝜃) 𝑧
𝑛

𝑦
𝑟

, |𝑧| < 1,
𝑦

 < 1, (22)

𝑃
+

(𝑧, 𝑦) =

∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
+

𝑛,𝑟
𝑧
𝑛

𝑦
𝑟

, |𝑧| < 1,
𝑦

 < 1, (23)

𝑃
+

(𝑧, 1) =

∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
+

𝑛,𝑟
𝑧
𝑛

=

∞

∑
𝑛=0

𝑝
+

𝑛
𝑧
𝑛

= 𝑃
+

(𝑧) . (24)

Multiplying (10)–(13) by appropriate powers of 𝑧 and 𝑦,
summing over 𝑛 from 0 to ∞ and 𝑟 from 𝑎 to 𝑏 and using
(22), we get

(𝜆 − 𝜃 − 𝜆𝑧) 𝑃 (𝑧, 𝑦, 𝜃)

= 𝑆
𝑎
(𝜃)

𝑎−1

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) 𝑦
𝑎

+

𝑏

∑
𝑛=𝑎

𝑏

∑
𝑟=𝑎

𝑆
𝑛
(𝜃) 𝑝
𝑛,𝑟

(0) 𝑦
𝑛

+ 𝑆
𝑏
(𝜃)

∞

∑
𝑛=𝑏+1

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) 𝑧
𝑛−𝑏

𝑦
𝑏

−

∞

∑
𝑛=0

𝑏

∑
𝑟=𝑎

𝑝
𝑛,𝑟

(0) 𝑧
𝑛

𝑦
𝑟

.

(25)

Now substituting 𝜃 = 𝜆 − 𝜆𝑧 in (25) and using (17), (16), (15),
and (23), we obtain

𝑃
+

(𝑧, 𝑦) = 𝐾
(𝑎)

(𝑧)

𝑎−1

∑
𝑛=0

𝑝
+

𝑛
𝑦
𝑎

+

𝑏

∑
𝑛=𝑎

𝑝
+

𝑛
𝐾
(𝑛)

(𝑧) 𝑦
𝑛

+ 𝐾
(𝑏)

(𝑧)

∞

∑
𝑛=𝑏+1

𝑝
+

𝑛
𝑧
𝑛−𝑏

𝑦
𝑏

,

(26)

where 𝐾(𝑟)(𝑧) = 𝑆
𝑟
(𝜆 − 𝜆𝑧) is the pgf of 𝑘(𝑟)

𝑗
and

𝑘
(𝑟)

𝑗

= Pr {𝑗 arrivals during the service time of a batch of size 𝑟}

= ∫
∞

0

𝑒−𝜆𝑡 (𝜆𝑡)
𝑗

𝑗!
𝑠
𝑟
(𝑡) 𝑑𝑡.

(27)

Substituting 𝑦 = 1 in (26), using (24) and after a little bit of
manipulation, we obtain

𝑃
+

(𝑧) =
∑
𝑎−1

𝑛=0
𝑝+
𝑛
[𝑧𝑏𝐾(𝑎) (𝑧) − 𝑧𝑛𝐾(𝑏) (𝑧)] + ∑

𝑏−1

𝑛=𝑎
𝑝+
𝑛
[𝑧𝑏𝐾(𝑛) (𝑧) − 𝑧𝑛𝐾(𝑏) (𝑧)]

𝑧𝑏 − 𝐾(𝑏) (𝑧)
. (28)

Finally, using (28) in (26) and after some algebraic simplifica-
tion, we get

𝑃
+

(𝑧, 𝑦)

=
∑
𝑎−1

𝑛=0
𝑝
+

𝑛
[𝐾
(𝑎)

(𝑧)𝐾
(𝑏)

(𝑧) (𝑦
𝑏

− 𝑦
𝑎

) + (𝐾
(𝑎)

(𝑧) 𝑧
𝑏

𝑦
𝑎

− 𝐾
(𝑏)

(𝑧) 𝑧
𝑛

𝑦
𝑏

)] + ∑
𝑏−1

𝑛=𝑎
𝑝
+

𝑛
[𝐾
(𝑏)

(𝑧)𝐾
(𝑛)

(𝑧) (𝑦
𝑏

− 𝑦
𝑛

) + (𝐾
(𝑛)

(𝑧) 𝑧
𝑏

𝑦
𝑛

− 𝐾
(𝑏)

(𝑧) 𝑧
𝑛

𝑦
𝑏

)]

𝑧𝑏 − 𝐾(𝑏) (𝑧)
.

(29)

Remark 3. To the best of the authors’ knowledge, no such
bivariate pgf (expressed in (29)) of queue content as well as
number with the departing batch is available so far in the
literature.

Remark 4. The pgf expressed in (28) for the queue content at
departure epoch exactly matches with the pgf given in Bar-
Lev et al. [2, page 230] which was obtained using embedded
Markov chain technique.

One can observe from (29) that 𝑃
+(𝑧, 𝑦) is a bivariate

pgf and has been expressed in a compact form except for

the 𝑏 unknowns {𝑝
+

𝑛
}
𝑏−1

0
. One can further note that these 𝑏

unknowns are the same as those 𝑏 unknowns appearing in the
numerator of (28). Nowour first task is to get these unknowns
from (28) before any further analysis is carried out using (29).
Now in order to determine them, we make use of Rouché’s
theorem, by which it can be shown that the denominator of
(28), 𝑧𝑏 −𝐾

(𝑏)

(𝑧), has 𝑏 zeroes (say, 𝑧
0
= 1, 𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑏−1
) in

the closed complex unit disk {𝑧 ∈ C : |𝑧| ≤ 1}. Due to the
analytic property of the pgf in the closed complex unit disk,
these zeroes are necessarily also zeroes of the numerator of
(28), which leads to 𝑏 − 1 linear equations as
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𝑎−1

∑
𝑛=0

𝑝
+

𝑛
[𝑧
𝑏

𝑖
𝐾
(𝑎)

(𝑧
𝑖
) − 𝑧
𝑛

𝑖
𝐾
(𝑏)

(𝑧
𝑖
)]

+

𝑏−1

∑
𝑛=𝑎

𝑝
+

𝑛
[𝑧
𝑏

𝑖
𝐾
(𝑛)

(𝑧
𝑖
) − 𝑧
𝑛

𝑖
𝐾
(𝑏)

(𝑧
𝑖
)] = 0,

1 ≤ 𝑖 ≤ 𝑏 − 1.

(30)

As we need one more equation in order to get 𝑏 linear
equations, we obtain it using normalizing condition 𝑃

+(1) =

1. After applying L’Hôspital’s rule, it leads to

𝑎−1

∑
𝑛=0

𝑝
+

𝑛
[(𝑏 − 𝑛) + 𝜆 (𝑠

𝑎
− 𝑠
𝑏
)]

+

𝑏−1

∑
𝑛=𝑎

𝑝
+

𝑛
[(𝑏 − 𝑛) + 𝜆 (𝑠

𝑛
− 𝑠
𝑏
)] = (𝑏 − 𝑏𝜌) .

(31)

Now the 𝑏 unknowns can be determined by solving (30) and
(31).

3.1. Extraction of Joint Probabilities {𝑝
+

𝑛,𝑟
} from the Bivariate

pgf. Having found the unknowns {𝑝+
𝑛
}𝑏−1
𝑛=0

, 𝑃+(𝑧, 𝑦) is now
completely known to us. Our main objective is to extract the
probabilities 𝑝

+

𝑛,𝑟
, 𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏, from 𝑃+(𝑧, 𝑦). In

order to get these, we need to invert the bivariate pgf𝑃+(𝑧, 𝑦).
For this purpose, we first accumulate the coefficient of 𝑦𝑗,
𝑎 ≤ 𝑗 ≤ 𝑏, from both the sides of (29). These are given as

coefficient of 𝑦
𝑎:
∞

∑
𝑛=0

𝑝
+

𝑛,𝑎
𝑧
𝑛

=

𝑎

∑
𝑖=0

𝑝
+

𝑖
𝐾
(𝑎)

(𝑧) , (32)

coefficient of 𝑦
𝑗:
∞

∑
𝑛=0

𝑝
+

𝑛,𝑗
𝑧
𝑛

= 𝑝
+

𝑗
𝐾
(𝑗)

(𝑧) , 𝑎 + 1 ≤ 𝑗 ≤ 𝑏 − 1, (33)

coefficient of 𝑦
𝑏:
∞

∑
𝑛=0

𝑝
+

𝑛,𝑏
𝑧
𝑛

=
𝐾(𝑏) (𝑧) [𝐾

(𝑎)

(𝑧)∑
𝑎

𝑖=0
𝑝+
𝑖
+ ∑
𝑏−1

𝑖=𝑎+1
𝑝+
𝑖
𝐾(𝑖) (𝑧) − ∑

𝑏−1

𝑖=0
𝑝+
𝑖
𝑧𝑖]

𝑧𝑏 − 𝐾(𝑏) (𝑧)
.

(34)

Now collecting the coefficient of 𝑧𝑛 fromboth the sides of (32)
and (33), we obtain

𝑝
+

𝑛,𝑎
= (

𝑎

∑
𝑖=0

𝑝
+

𝑖
)𝑘
(𝑎)

𝑛
, 𝑛 ≥ 0,

𝑝
+

𝑛,𝑗
= 𝑝
+

𝑗
𝑘
(𝑗)

𝑛
, 𝑛 ≥ 0, 𝑎 + 1 ≤ 𝑗 ≤ 𝑏 − 1.

(35)

As 𝑝+
𝑛,𝑟

, 𝑛 ≥ 0, 𝑎 ≤ 𝑟 ≤ 𝑏−1, are already known, we turn our
focus on determination of 𝑝+

𝑛,𝑏
, 𝑛 ≥ 0, from (34). In order

to get these probabilities, we invert the right hand side of
(34) which is a completely known function in 𝑧 for a specific
service time distribution.

In order to simplify the calculation, let us assume that
the L.-S.T of service time distribution 𝑆

𝑟
(𝜃), 𝑎 ≤ 𝑟 ≤ 𝑏, is

a rational function and is given by 𝑆
𝑟
(𝜃) = 𝑃(𝜃)/𝑄(𝜃), 𝑎 ≤

𝑟 ≤ 𝑏, where 𝑃(𝜃) and 𝑄(𝜃) are polynomials of degrees 𝑙

and 𝑚, respectively, with 𝑙 ≤ 𝑚. Then, substituting 𝐾
(𝑟)(𝑧) =

𝑆
𝑟
(𝜆−𝜆𝑧) = 𝑃(𝜆−𝜆𝑧)/𝑄(𝜆−𝜆𝑧), 𝑎 ≤ 𝑟 ≤ 𝑏, in the right-hand

side of (34) and after some simplification it can be proved that
degree of the numerator of (34) is always less than the degree
of the denominator of (34).

Let us denote numerator of (34) as 𝑁(𝑧) (after dividing
the numerator of (34) by the highest power coefficient of
the denominator of (34)) and the denominator as 𝐷(𝑧) =

𝑧
𝑏 − 𝐾(𝑏)(𝑧). Let us also assume that 𝐷(𝑧) has degree 𝑑. To
extract the probabilities {𝑝+

𝑛,𝑏
}
∞

𝑛=0
, we need to know about the

zeroes of 𝐷(𝑧). Let us call these zeroes 𝛽
𝑖
, 𝑖 = 1, 2, . . . , 𝑑.

Now applying the partial fraction technique, ∑∞
𝑛=0

𝑝+
𝑛,𝑏

𝑧𝑛 can
be uniquely written as

∞

∑
𝑛=0

𝑝
+

𝑛,𝑏
𝑧
𝑛

=

𝑑

∑
𝑖=1

𝑐
𝑖

𝛽
𝑖
− 𝑧

(36)

for some constants 𝑐
𝑖
’s, which can be determined using

residue theorem as

𝑐
𝑖
= −

𝑁 (𝛽
𝑖
)

𝐷 (𝛽
𝑖
)

𝑖 = 1, 2, . . . , 𝑑. (37)

Now collecting the coefficient of 𝑧𝑛 from both the sides of
(36), we obtain

𝑝
+

𝑛,𝑏
=

𝑑

∑
𝑖=1

𝑐
𝑖

𝛽𝑛+1
𝑖

, 𝑛 ≥ 0. (38)

This completes the evaluation of joint distributions of number
of customers in the queue and number with the departing
batch at departure epoch of a batch.

Remark 5. It may be remarked here that if some of the
zeroes of the characteristic equation are repeated, then the
above procedure has to be slightly modified to extract the
joint distribution. We have included one such example in the
numerical section.

Remark 6. One can also obtain the tail distribution from
(34) using single root of 𝐷(𝑧). This root is the smallest with
absolute value greater than one, real and strictly positive.Oth-
erwise, if the denominator 𝐷(𝑧) has two complex conjugate
zeros or one negative real zero with smallest modulus, this
can lead to negative probabilities for sufficiently large values
of 𝑛; see Desmet et al. [7]. Thus, we can find the following
approximation of the tail distribution for sufficiently large 𝑛 as

𝑝
+

𝑛,𝑏
≅

𝛿

𝜁𝑛+1
0

, where 𝛿 = −
𝑁 (𝜁
0
)

𝐷 (𝜁
0
)

(39)

and 𝜁
0
is the real positive zero of𝐷(𝑧)with the smallest mod-

ulus greater than one.

Remark 7. For some specific service time distributions, the
probabilities 𝑘

(𝑟)

𝑗
, 𝑎 ≤ 𝑟 ≤ 𝑏, 𝑗 ≥ 0, can be easily computed

by inverting the pgf 𝐾(𝑟)(𝑧).
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Table 1: Joint distribution of queue and server content at departure epoch (𝑝+
𝑛,𝑟
) of an 𝑀/𝐺(5,15)

𝑛
/1 queue with 𝐺 ∼ 𝑀, 𝜆 = 252, 𝜇

𝑎
= 11,

𝜇
𝑟
= 𝜇
𝑟−1

+ 1, and 𝜌 = 0.8.

𝑛 𝑝+
𝑛,5

𝑝+
𝑛,6

𝑝+
𝑛,7

𝑝+
𝑛,8

𝑝+
𝑛,9

𝑝+
𝑛,10

𝑝+
𝑛,11

𝑝+
𝑛,12

𝑝+
𝑛,13

𝑝+
𝑛,14

𝑝+
𝑛,15

𝑝+
𝑛

0 0.003264 0.000634 0.000693 0.000751 0.000808 0.000864 0.000918 0.000970 0.001021 0.001070 0.001118 0.012112
1 0.003127 0.000606 0.000659 0.000712 0.000763 0.000812 0.000860 0.000906 0.000950 0.000992 0.002146 0.012531
2 0.002997 0.000578 0.000627 0.000674 0.000720 0.000763 0.000805 0.000845 0.000883 0.000919 0.003090 0.012903
3 0.002871 0.000552 0.000596 0.000639 0.000679 0.000718 0.000754 0.000789 0.000821 0.000851 0.003956 0.013228
4 0.002751 0.000527 0.000567 0.000605 0.000641 0.000675 0.000707 0.000736 0.000764 0.000789 0.004749 0.013511
5 0.002636 0.000503 0.000539 0.000573 0.000605 0.000635 0.000662 0.000687 0.000710 0.000731 0.005472 0.013754
10 0.002129 0.000398 0.000419 0.000437 0.000453 0.000467 0.000478 0.000487 0.000494 0.000499 0.008205 0.014465
50 0.000385 0.000062 0.000056 0.000050 0.000045 0.000040 0.000035 0.000031 0.000027 0.000024 0.008117 0.008872
100 0.000045 0.000006 0.000004 0.000003 0.000002 0.000002 0.000001 0.000000 0.000000 0.000000 0.002615 0.002678
200 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000170 0.000170
300 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000010 0.000010
370 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001 0.000001
≥380 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
𝑞+
𝑟

0.078040 0.013960 0.014132 0.014272 0.014383 0.014465 0.014522 0.014556 0.014567 0.014558 0.792539 1.000000

4. Joint Distribution of Queue and Server
Content at Arbitrary Epoch

Utilizing the completely known distribution of queue and
server content at departure epoch of a batch, we develop
the following result in order to acquire the distribution of
queue and server content at arbitrary epoch. The procedure
is similar to the one given in [1, page 62]. However, for the
sake of completeness, results are given here for infinite-buffer
queue.

Theorem 8. The probabilities {𝑝
𝑛,0

, 𝑝
𝑛,𝑟

} and {𝑝+
𝑛,𝑟

, 𝑝+
𝑛
} are

related by

𝑝
𝑛,0

= 𝐸
−1

(

𝑛

∑
𝑗=0

𝑝
+

𝑗
) , 0 ≤ 𝑛 ≤ 𝑎 − 1,

𝑝
𝑛,𝑎

= 𝐸
−1

(

𝑎

∑
𝑗=0

𝑝
+

𝑗
−

𝑛

∑
𝑗=0

𝑝
+

𝑗,𝑎
) , 𝑛 ≥ 0,

𝑝
𝑛,𝑟

= 𝐸
−1

(𝑝
+

𝑟
−

𝑛

∑
𝑗=0

𝑝
+

𝑗,𝑟
) ,

𝑎 + 1 ≤ 𝑟 ≤ 𝑏 − 1, 𝑛 ≥ 0,

𝑝
𝑛,𝑏

= 𝐸
−1

(

𝑏+𝑛

∑
𝑗=𝑏

𝑝
+

𝑗
−

𝑛

∑
𝑗=0

𝑝
+

𝑗,𝑏
) , 𝑛 ≥ 0,

(40)

where 𝐸 = 𝜆𝜔 + ∑
𝑎−1

𝑖=0
(𝑎 − 𝑖)𝑝+

𝑖
and 𝜔 = 𝑠

𝑎
∑
𝑎

𝑖=0
𝑝+
𝑖

+

∑
𝑏

𝑖=𝑎+1
𝑠
𝑖
𝑝+
𝑖
+ 𝑠
𝑏
∑
∞

𝑖=𝑏+1
𝑝+
𝑖
.

Once the joint distribution of queue and server content
at arbitrary epoch is known, we can obtain other signif-
icant distributions such as distribution of queue content,
𝑝
queue
𝑛

, 𝑛 ≥ 0, and distribution of the server content in

undergoing service, 𝑝ser
𝑟

(𝑟 = 0, and 𝑎 ≤ 𝑟 ≤ 𝑏). Moreover,
the distribution of the system content (including number
of customers with the server), 𝑝sys

𝑛
, 𝑛 ≥ 0, which is more

relevant, is given by

𝑝
sys
𝑛

=

{{{{{{{{

{{{{{{{{

{

𝑝
𝑛,0

0 ≤ 𝑛 ≤ 𝑎 − 1,

min(𝑏,𝑛)
∑
𝑟=𝑎

𝑝
𝑛−𝑟,𝑟

𝑎 ≤ 𝑛 ≤ 𝑏,

𝑏

∑
𝑟=𝑎

𝑝
𝑛−𝑟,𝑟

𝑛 ≥ 𝑏 + 1.

(41)

As all the state probabilities are known, the utmost perfor-
mance measures of the present model can be easily evaluated
and are presented as follows:

(i) Average number of customers in the queue (𝐿
𝑞
) =

∑
∞

𝑛=0
𝑛𝑝queue
𝑛

.
(ii) Average number of customers in the system (𝐿) =

∑
∞

𝑛=0
𝑛𝑝sys
𝑛
.

(iii) Average number of customers with the server (𝐿
𝑠
) =

∑
𝑏

𝑟=𝑎
𝑟𝑝

ser
𝑟
.

(iv) Average waiting time of a customer in the queue
(𝑊
𝑞
) = 𝐿
𝑞
/𝜆 as well as in the system 𝑊 = 𝐿/𝜆.

(v) The probability that the server is idle 𝑃idle = 𝑝ser
0

=

∑
𝑎−1

𝑛=0
𝑝
𝑛,0
.

The above performance measures play a significant role in
evaluating the real system.

5. Numerical Illustration

Based on the theoretical analysis in Sections 3 and 4, we illus-
trate numerical results for assorted service time distributions,
namely, exponential (𝑀), Erlang (𝐸

4
), and deterministic (𝐷).
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Table 3: Joint distribution of queue and server content at departure epoch (𝑝+
𝑛,𝑟
) of an 𝑀/𝐺(7,15)

𝑛
/1 queue with 𝐺 ∼ 𝐸

4
, 𝜆 = 80, 𝜇 = 0.75,

𝜇
𝑟
= (𝑟 − 1)𝜇, and 𝜌 = 0.507936.

𝑛 𝑝+
𝑛,7

𝑝+
𝑛,8

𝑝+
𝑛,9

𝑝+
𝑛,10

𝑝+
𝑛,11

𝑝+
𝑛,12

𝑝+
𝑛,13

𝑝+
𝑛,14

𝑝+
𝑛,15

𝑝+
𝑛

0 0.000258 0.000099 0.000153 0.000219 0.000292 0.000370 0.000448 0.000524 0.000594 0.002957
1 0.000842 0.000315 0.000473 0.000655 0.000850 0.001048 0.001237 0.001410 0.002109 0.008939
2 0.001719 0.000624 0.000910 0.001225 0.001546 0.001854 0.002133 0.002369 0.004502 0.016882
3 0.002806 0.000989 0.001401 0.001832 0.002249 0.002626 0.002942 0.003185 0.007498 0.025528
4 0.004009 0.001371 0.001886 0.002397 0.002862 0.003253 0.003551 0.003748 0.010738 0.033815
5 0.005237 0.001737 0.002321 0.002867 0.003331 0.003685 0.003918 0.004031 0.013887 0.041014
6 0.006412 0.002064 0.002678 0.003216 0.003634 0.003913 0.004053 0.004065 0.016684 0.046719
7 0.007477 0.002335 0.002943 0.003434 0.003775 0.003957 0.003993 0.003904 0.018962 0.050780
8 0.008393 0.002544 0.003113 0.003531 0.003775 0.003853 0.003787 0.003609 0.020643 0.053248
9 0.009135 0.002687 0.003193 0.003520 0.003661 0.003637 0.003482 0.003235 0.021717 0.054267
10 0.009695 0.002767 0.003193 0.003421 0.003461 0.003347 0.003122 0.002827 0.022220 0.054053
20 0.007889 0.001665 0.001434 0.001156 0.000887 0.000656 0.000470 0.000330 0.012376 0.026862
30 0.003194 0.000499 0.000320 0.000194 0.000113 0.000064 0.000035 0.000019 0.003808 0.008246
40 0.000949 0.000110 0.000052 0.000024 0.000010 0.000004 0.000002 0.000000 0.000961 0.002112
60 0.000053 0.000003 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000046 0.000102
80 0.000002 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000002 0.000004
≥85 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
𝑞
+

𝑟
0.226652 0.053249 0.054267 0.054053 0.052844 0.050871 0.048344 0.045446 0.414272 1.000000

Extensive computation work has been executed using Maple
13 http://www.maplesoft.com/products/maple/ on PC run-
ning on Windows 7 with Intel Core i5-3470 CPU Processor
@ 3.20GHz with 4.00GB of RAM, for both the high and
low values of the model parameters. Although a vast number
of tables can be generated, only a few of them that contain
significant results are appended here. Parameter values are
displayed at the title of the each table while the bottoms of
the tables contain some performance measures.

First we present the joint distribution 𝑝
+

𝑛,𝑟
and 𝑝

𝑛,𝑟
, 𝑛 ≥

0, 𝑎 ≤ 𝑟 ≤ 𝑏, for exponential (𝑀) service time distribution
in Tables 1-2. The objective of this example is to match our
results with the existing results available in the literature.

The numerical results given in Table 2 using our method-
ology for exponential (𝑀) service time distribution exactly
match with the existing results of Table 3 given in Maity and
Gupta [8]. The results presented in column 2 and row 1 of
Table 2 match exactly with the last two rows of Table 3 of [8]
which was obtained as a special case from𝑀/𝑀

(𝑎,𝑌)

𝑛
/1 queue.

Themethodology used in [8] is the matrix geometric method
whilewe use probability generating function approach. Itmay
be remarked here that, in [8], there is a misprint in the value
of the arrival rate 𝜆 = 232. It should be 𝜆 = 252 and other
parameters (which are shown in Table 2) in our example are
taken the same as in [8].

Now we focus on other service time distributions. We
have shown the occurrence of multiple roots in case of 𝐸

4

service time distribution with each phase mean 1/4𝜇
𝑖
so that

total mean is 1/𝜇
𝑖
, 𝑎 ≤ 𝑖 ≤ 𝑏. The purpose of this example is

to demonstrate the occurrence of multiple roots in queueing
models which was often a major concern of the researchers.
In this context, we point out that themultiple roots occur only
for 𝐸
𝑚

(𝑚 ≥ 2) service time distribution. The occurrence of

multiple roots is caused by the terms 𝐾
(𝑖)(𝑧) = (𝑚𝜇

𝑖
/(𝑚𝜇
𝑖
+

𝜆 − 𝜆𝑧))
𝑚

, 𝑖 = 𝑎, . . . , 𝑏 − 1:

(i) The number of multiple roots depends on the values
of “𝑎” and “𝑏.” The exact number of distinct multiple
roots is (𝑏 − 𝑎).

(ii) The multiplicity of each root depends on the parame-
ter 𝑚 (𝑚 ≥ 2), of Erlang distribution.

For 𝐸
4
distribution with parameters 𝑎 = 7, 𝑏 = 15, 𝜆 = 80,

𝜇 = 0.75, 𝜇
𝑟

= (𝑟 − 1)𝜇, and 𝜌 = 0.507936, we have
encountered 8 multiple roots: 1.225000, 1.262500, 1.300000,
1.337500, 1.375000, 1.412500, 1.450000, and 1.487500 each of
multiplicity 4. The joint distribution of 𝑝

+

𝑛,𝑟
and 𝑝

𝑛,𝑟
, 𝑛 ≥

0, 𝑎 ≤ 𝑟 ≤ 𝑏, is displayed in Tables 3-4.
In Tables 5-6, similar results are provided for determin-

istic (𝐷) service time distribution. As the L.-S.T. of deter-
ministic (𝐷) distribution is a transcendental function, we use
Padé approximation to approximate its L.-S.T as a rational
function of the form 𝑃(𝜃)/𝑄(𝜃). For more details, see Singh
et al. [9], where they have discussed choice for parameters for
Padé approximation.

After the tabular representation of the numerical results,
we turn our attention for inspection on the tail probabilities
(using (39)) for exponential and deterministic service time
distributions. In Figure 1(a), we plot exact and tail distribu-
tion of 𝑝+

𝑛,𝑏
in case of exponential (𝑀) distribution with the

parameters 𝑎 = 12, 𝑏 = 20, 𝜆 = 80, 𝜇
𝑟
= 0.25𝑟, 𝑎 ≤ 𝑟 ≤ 𝑏, and

𝜌 = 0.8. Figure 1(b) replicates similar results for deterministic
(𝐷) service time distribution with parameters 𝑎 = 4, 𝑏 = 8,
𝜆 = 15, 𝜇

𝑟
= 0.25𝑟, 𝑎 ≤ 𝑟 ≤ 𝑏, and 𝜌 = 0.9375. It can be seen

from Figures 1(a) and 1(b) that exact and tail distributions
match approximately for 𝑛 ≥ 150 and 𝑛 ≥ 20, respectively.
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Table 5: Joint distribution of queue and server content at departure epoch (𝑝+
𝑛,𝑟
) of an 𝑀/𝐺(5,11)

𝑛
/1 queue with 𝐺 ∼ 𝐷, 𝜆 = 9, 𝜇 = 0.25,

𝜇
𝑟
= 𝑟𝜇, and 𝜌 = 0.297521.

𝑛 𝑝+
𝑛,5

𝑝+
𝑛,6

𝑝+
𝑛,7

𝑝+
𝑛,8

𝑝+
𝑛,9

𝑝+
𝑛,10

𝑝+
𝑛,11

𝑝+
𝑛

0 0.000349 0.000342 0.000703 0.001060 0.001270 0.001270 0.001092 0.006084
1 0.002515 0.002054 0.003613 0.004769 0.005082 0.004571 0.004202 0.026806
2 0.009056 0.006162 0.009291 0.010729 0.010163 0.008228 0.008241 0.061869
3 0.021734 0.012325 0.015928 0.016094 0.013551 0.009874 0.011017 0.100523
4 0.039120 0.018487 0.020479 0.018106 0.013551 0.008887 0.011330 0.129959
5 0.056333 0.022184 0.021064 0.016295 0.010841 0.006398 0.009592 0.142707
6 0.067600 0.022184 0.018055 0.012221 0.007227 0.003839 0.006987 0.138113
7 0.069532 0.019015 0.013265 0.007857 0.004130 0.001974 0.004516 0.120289
8 0.062578 0.014261 0.008527 0.004419 0.002065 0.000888 0.002650 0.095388
9 0.050063 0.009507 0.004873 0.002210 0.000918 0.000355 0.001436 0.069362
10 0.036045 0.005704 0.002506 0.000994 0.000367 0.000128 0.000728 0.046472
12 0.014156 0.001556 0.000502 0.000152 0.000044 0.000013 0.000158 0.016581
14 0.004032 0.000308 0.000073 0.000017 0.000004 0.000000 0.000029 0.004463
16 0.000871 0.000046 0.000008 0.000001 0.000000 0.000000 0.000004 0.000930
18 0.000147 0.000005 0.000000 0.000000 0.000000 0.000000 0.000000 0.000152
20 0.000020 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000020
≥23 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
𝑞
+

𝑟
0.467958 0.138114 0.120289 0.095390 0.069362 0.046473 0.062414 1.000000
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Figure 1: Exact and tail distribution.

From Figure 1 it is easily noticeable that exact distribution is
more significant than tail distribution.

We also show the influence of model parameters on 𝐿
𝑞

of batch-size-dependent service policy with the one when
service rate of the batches remains constant irrespective of the
size of the batch. In this context, we consider two cases.

Case 1. The service rate of the batches depends on the size of
the batch undergoing service and it increases linearly with the
batch size; that is, 𝜇

𝑟
= 𝑟𝜇 (𝑎 ≤ 𝑟 ≤ 𝑏).

Case 2. The service rate of the batches is independent of the
size of the batch; that is, 𝜇

𝑟
= 𝜇 (𝑎 ≤ 𝑟 ≤ 𝑏).

In Figure 2, themean queue length (𝐿
𝑞
) is depicted versus

the arrival rate (𝜆) for exponential (𝑀) and deterministic (𝐷)
service time distributions for Cases 1 and 2. For both service
time distributions, the input parameters are taken as 𝑎 = 14,
𝑏 = 22, and 𝜇 = 0.25 and 𝜆 varies from 1.0 to 5.0.

It is easily noticeable from Figure 2 that a fixed 𝜆 leads to
a lower value of 𝐿

𝑞
in Case 1 as compared to Case 2 for both
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Figure 2: Impact of 𝜆 on 𝐿
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.

distributions. This influence turned out to be significant in
the sense that applying batch-size-dependent service is more
potent in comparison to the batch-size-independent service.
One can also observe from Figure 2 that as 𝜆 increases 𝐿

𝑞

also increases. But for Case 1 this increases very slowly as
compared to Case 2. Further, for both the distributions (𝑀
and 𝐷), the values of 𝐿

𝑞
coincide in Case 1.

6. Conclusion

In this paper, an analytic expression of bivariate pgf of queue
content as well as server content is derived at departure
epoch of a batch using supplementary variable technique.
Further, the joint distribution of queue and server content
is extracted from this bivariate pgf. A relationship between
departure and arbitrary epoch probabilities is generated to get
the latter one. Moreover, we have discussed a set of pertinent
performancemeasures, bywhich a practitioner can appraise a
batch-service queue. Finally, we illustrate the applicability of
analytical results through assorted numerical exampleswhere
occurrence of multiple zeroes is also investigated.
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