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The notion of fuzzy soft sets is a hybrid soft computing model that integrates both gradualness and parameterization methods
in harmony to deal with uncertainty. The decomposition of fuzzy soft sets is of great importance in both theory and practical
applications with regard to decision making under uncertainty. This study aims to explore decomposition of fuzzy soft sets with
finite value spaces. Scalar uni-product and int-product operations of fuzzy soft sets are introduced and some related properties are
investigated. Using t-level soft sets, we define level equivalent relations and show that the quotient structure of the unit interval
induced by level equivalent relations is isomorphic to the lattice consisting of all t-level soft sets of a given fuzzy soft set. We also
introduce the concepts of crucial threshold values and complete threshold sets. Finally, some decomposition theorems for fuzzy
soft sets with finite value spaces are established, illustrated by an example concerning the classification and rating of multimedia
cell phones. The obtained results extend some classical decomposition theorems of fuzzy sets, since every fuzzy set can be viewed
as a fuzzy soft set with a single parameter.

1. Introduction

With the development of modern science and technology,
modelling various uncertainties has become an important
task for a wide range of applications including data mining,
pattern recognition, decision analysis, machine learning,
and intelligent systems. The concept of uncertainty is too
complicated to be captured within a single mathematical
framework. In response to this situation, a number of
approaches including probability theory, fuzzy sets [1], and
rough sets [2] have been developed. Generally speaking,
these theories deal with uncertainty from distinct angle of
views, namely, randomness, gradualness, and granulation,
respectively. Molodtsov’s soft set theory [3] is a relatively
new mathematical model for coping with uncertainty from
a parametrization point of view. Zhu and Wen [4] redefined
and improved some set-theoretic operations of soft sets that
inherit all basic properties of operations on classical sets.
Maji et al. [5] initiated the notion of fuzzy soft sets, which
is a hybrid soft computing model in which the viewpoints of

gradualness and parametrization for dealingwith uncertainty
are combined effectively. Majumdar and Samanta [6] further
considered generalized fuzzy soft sets and applied them to
decision making and medical diagnosis problems. Yang et
al. [7] generalized fuzzy soft sets to interval-valued fuzzy
soft sets. Up to now, fuzzy soft sets have proven to be
useful in various fields such as flood alarm prediction [8],
medical diagnosis [9], combined forecasting [10], supply
chains risk management [11], topology [12], decision making
under uncertainty [13–15], and algebraic structures [16–24].

The notion of level soft sets plays a crucial role in solving
uncertain decision-making problems based on fuzzy soft sets
[13]. In particular, it is important to figure out how many
different 𝑡-level soft sets could be obtained from a given fuzzy
soft set by choosing distinct threshold values 𝑡 ∈ [0, 1]. On
the other hand, it is well known that decomposition theorems
are of great theoretical importance in exploring various types
of fuzzy structures. Thus decomposition of fuzzy soft sets
is a topic of both theoretical and practical value. Motivated
by this consideration, Feng et al. investigated some basic
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properties of level soft sets based on variable thresholds
and obtained some decomposition theorems of fuzzy soft
sets by considering variable thresholds [25]. Moreover, Feng
and Pedrycz [26] carried out a detailed research on scalar
products and decomposition of fuzzy soft sets. Particularly,
They have shown that scalar product operations can be
regarded as semimodule actions and algebraic structures
like ordered idempotent semimodules of fuzzy soft sets over
ordered semirings can be constructed [26]. In most real
applications, especially those involving the use of computers
and programs, we only need to consider a finite universe
of discourse associated with finite number of parameters.
Consequently, in this study, we shall follow the research line
above and concentrate on decomposition of fuzzy soft sets
with finite value spaces.

The remainder of this paper is organized as follows.
Section 2 first recalls some basic notions concerning fuzzy
sets, soft sets, and fuzzy soft sets. Section 3 mainly introduces
𝑡-level soft sets and scalar uniproduct operations of fuzzy
soft sets. Then we explore some lattice structures associated
with level soft sets in detail. In Section 5, we consider the
decomposition of fuzzy soft sets with finite value spaces and
establish some useful decomposition theorems, supported by
illustrative examples. Finally, the last section summarizes the
study and suggests possible directions for future work.

2. Preliminaries

In this section, we briefly review some basic concepts con-
cerning fuzzy sets, soft sets, and fuzzy soft sets, respectively.

2.1. Fuzzy Sets. The theory of fuzzy sets [1] provides an appro-
priate framework for representing and processing vague
concepts by admitting a notion of a partial membership.
Recall that a fuzzy set 𝜇 in a universe 𝑈 is defined by (and
usually identified with) its membership function 𝜇 : 𝑈 →

[0, 1]. For 𝑥 ∈ 𝑈, the membership value 𝜇(𝑥) essentially
specifies the degree to which 𝑥 ∈ 𝑈 belongs to the fuzzy set
𝜇. By 𝜇 ⊆ ], we mean that 𝜇(𝑥) ≤ ](𝑥) for all 𝑥 ∈ 𝑈. Clearly
𝜇 = ] if 𝜇 ⊆ ] and ] ⊆ 𝜇. That is, 𝜇(𝑥) = ](𝑥) for all 𝑥 ∈ 𝑈.
Let 𝑡̂ denote the fuzzy set in 𝑈 with a constant membership
value 𝑡 ∈ [0, 1]; that is, 𝑡̂(𝑥) = 𝑡 for all 𝑥 ∈ 𝑈. In what follows,
we denote byF(𝑈) the set of all fuzzy sets in 𝑈.

Let 𝑡 ∈ [0, 1] and 𝜇 ∈ F(𝑈). Recall that the scalar product
of 𝑡 and 𝜇 is a fuzzy set 𝑡𝜇 ∈ F(𝑈) defined by 𝑡𝜇(𝑥) = 𝑡 ∧

𝜇(𝑥) for all 𝑥 ∈ 𝑈. There are different definitions for fuzzy
set operations.With themin-max systemproposed by Zadeh,
fuzzy set intersection, union, and complement are defined as
follows:

(i) (𝜇 ∩ ])(𝑥) = min{𝜇(𝑥), ](𝑥)},
(ii) (𝜇 ∪ ])(𝑥) = max{𝜇(𝑥), ](𝑥)},
(iii) 𝜇𝑐(𝑥) = 1 − 𝜇(𝑥),

where 𝜇, ] ∈ F(𝑈) and 𝑥 ∈ 𝑈.

2.2. Soft Sets. Soft set theory was proposed by Molodtsov [3]
in 1999, which provides a general mechanism for uncertainty

modelling in a wide variety of applications. Let 𝑈 be the
universe of discourse and let 𝐸 be the universe of all
possible parameters related to the objects in𝑈. In most cases,
parameters are considered to be attributes, characteristics, or
properties of objects in 𝑈. The pair (𝑈, 𝐸) is also known as a
soft universe. The power set of 𝑈 is denoted byP(𝑈).

Definition 1 (see [3]). A pairS = (𝐹, 𝐴) is called a soft set over
𝑈, where𝐴 ⊆ 𝐸 and 𝐹 : 𝐴 → P(𝑈) is a set-valuedmapping,
called the approximate function of the soft setS.

By means of parametrization, a soft set gives a series
of approximate descriptions of a complicated object being
perceived from distinct aspects. For each parameter 𝜖 ∈ 𝐴,
the subset 𝐹(𝜖) ⊆ 𝑈 is known as the set of 𝜖-approximate
elements [3]. It is worth noting that 𝐹(𝜖) may be arbitrary:
some of them may be empty, and some may have nonempty
intersections. In what follows, the collection of all soft sets
over 𝑈 with parameter sets contained in 𝐸 is denoted by
S𝐸(𝑈). Moreover, we denote by S

𝐴
(𝑈) the collection of all

soft sets over 𝑈 with a fixed parameter set 𝐴 ⊆ 𝐸.
Maji et al. [27] introduced the concept of soft M-subsets

and soft M-equal relations in the following manner.

Definition 2 (see [27]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft
sets over 𝑈. Then (𝐹, 𝐴) is called a soft M-subset of (𝐺, 𝐵),
denoted by (𝐹, 𝐴)⊆̃

𝑀
(G, 𝐵), if 𝐴 ⊆ 𝐵 and 𝐹(𝑎) = 𝐺(𝑎) (i.e.,

𝐹(𝑎) and 𝐺(𝑎) are identical approximations) for all 𝑎 ∈ 𝐴.
Two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) are said to be soft M-equal,
denoted by (𝐹, 𝐴) =

𝑀
(𝐺, 𝐵), if (𝐹, 𝐴)⊆̃

𝑀
(𝐺, 𝐵) and (𝐺, 𝐵)⊆̃

𝑀

(𝐹, 𝐴).

Another different type of soft subsets and soft equal
relations can be defined as follows.

Definition 3 (see [28]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be two soft sets
over𝑈. Then (𝐹, 𝐴) is called a soft F-subset of (𝐺, 𝐵), denoted
by(𝐹, 𝐴)⊆̃

𝐹
(𝐺, 𝐵), if 𝐴 ⊆ 𝐵 and 𝐹(𝑎) ⊆ 𝐺(𝑎) for all 𝑎 ∈ 𝐴.

Two soft sets (𝐹, 𝐴) and (𝐺, 𝐵) are said to be soft F-equal,
denoted by (𝐹, 𝐴) =

𝐹
(𝐺, 𝐵), if (𝐹, 𝐴)⊆̃

𝐹
(𝐺, 𝐵) and (𝐺, 𝐵)⊆̃

𝐹

(𝐹, 𝐴).

It is easy to see that, for two soft sets S = (𝐹, 𝐴) and
T = (𝐺, 𝐵), if S is a soft M-subset of T, then S is also a
soft F-subset of T. However, the converse may not be true
(see Example 2.6 in [29]). As shown in [29], the soft equal
relations =

𝑀
and =

𝐹
coincide with each other. Hence in what

follows, we just call them soft equal relations and simply write
= instead of =

𝑀
or =
𝐹
unless stated otherwise.

Definition 4 (see [30]). Let S = (𝐹, 𝐴) be a soft set over 𝑈.
Then

(a) S is called a relative null soft set (with respect to the
parameter set 𝐴), denoted by Φ

𝐴
, if 𝐹(𝑎) = 0 for all

𝑎 ∈ 𝐴;

(b) S is called a relative whole soft set (with respect to the
parameter set 𝐴), denoted by U

𝐴
, if 𝐹(𝑎) = 𝑈 for all

𝑎 ∈ 𝐴.
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2.3. Fuzzy Soft Sets. By combining fuzzy sets with soft sets,
Maji et al. [5] initiated a hybrid soft computing model called
fuzzy soft sets as follows.

Definition 5 (see [5]). A pairS = (𝐹, 𝐴) is called a fuzzy soft
set over𝑈, where𝐴 ⊆ 𝐸 and𝐹 is amapping given by𝐹 : 𝐴 →

F(𝑈).

Conventionally, the mapping 𝐹 : 𝐴 → F(𝑈) is referred
to as the approximate function of the fuzzy soft set (𝐹, 𝐴). It is
easy to see that fuzzy soft sets extend Molodtsov’s soft sets by
substituting fuzzy subsets for crisp subsets. Note also that a
fuzzy set could be viewed as a fuzzy soft set whose parameter
set reduces to a singleton. This means that fuzzy soft sets
can be seen as a parameterized extension of fuzzy sets and it
can be used to model those complicate fuzzy concepts which
cannot be described using a single fuzzy set or simply by the
intersection of some fuzzy sets.

As in the case of soft sets, different types of fuzzy soft
subsets can be introduced. Given two fuzzy soft sets (𝐹, 𝐴)
and (𝐺, 𝐵) over 𝑈, we say that (𝐹, 𝐴) is a fuzzy soft F-subset
of (𝐺, 𝐵), denoted by (𝐹, 𝐴) ⊆̃

𝐹
(𝐺, 𝐵), if 𝐴 ⊆ 𝐵 and 𝐹(𝑎)

is a fuzzy subset of 𝐺(𝑎) for all 𝑎 ∈ 𝐴. On the other hand,
(𝐹, 𝐴) is called a fuzzy soft M-subset of (𝐺, 𝐵), denoted by
(𝐹, 𝐴) ⊆̃

𝑀
(𝐺, 𝐵), if𝐴 ⊆ 𝐵 and𝐹(𝑎) = 𝐺(𝑎) for all 𝑎 ∈ 𝐴. Two

fuzzy soft sets (𝐹, 𝐴) and (𝐺, 𝐵) over𝑈 are said to be fuzzy soft
equal if they are identical; that is, 𝐴 = 𝐵 and 𝐹(𝑎) = 𝐺(𝑎) for
all 𝑎 ∈ 𝐴. This is denoted by (𝐹, 𝐴) = (𝐺, 𝐵).

Definition 6. Let S = (𝐹, 𝐴) be a fuzzy soft set over 𝑈 and
𝑡 ∈ [0, 1]. ThenS is called a 𝑡-constant fuzzy soft set, denoted
by C̃𝑡
𝐴
, if 𝐹(𝑎) = 𝑡̂ for all 𝑎 ∈ 𝐴.

In particular, C̃0
𝐴
and C̃1

𝐴
are called the relative null fuzzy

soft set and relative whole fuzzy soft setry 23
(with respect to the parameter set 𝐴), respectively.

Definition 7 (see [25]). Let (𝐹, 𝐴) and (𝐺, 𝐵) be two fuzzy soft
sets over 𝑈.

(1) The extended union of (𝐹, 𝐴) and (𝐺, 𝐵) is defined as
the fuzzy soft set (𝐻̃, 𝐶) = (𝐹, 𝐴)∪E(𝐺, 𝐵), where 𝐶 =

𝐴 ∪ 𝐵 and for all 𝑐 ∈ 𝐶,

𝐻̃ (𝑐) =

{{

{{

{

𝐹 (𝑐) , if 𝑐 ∈ 𝐴 \ 𝐵,

𝐺 (𝑐) , if 𝑐 ∈ 𝐵 \ 𝐴,

𝐹 (𝑐) ∪ 𝐺 (𝑐) , if 𝑐 ∈ 𝐴 ∩ 𝐵.

(1)

(2) The extended intersection of (𝐹, 𝐴) and (𝐺, 𝐵) is
defined as the fuzzy soft set (𝐻̃, 𝐶) = (𝐹, 𝐴)∩E(𝐺, 𝐵),
where 𝐶 = 𝐴 ∪ 𝐵 and for all 𝑐 ∈ 𝐶,

𝐻̃ (𝑐) =

{{

{{

{

𝐹 (𝑐) , if 𝑐 ∈ 𝐴 \ 𝐵,

𝐺 (𝑐) , if 𝑐 ∈ 𝐵 \ 𝐴,

𝐹 (𝑐) ∩ 𝐺 (𝑐) , if 𝑐 ∈ 𝐴 ∩ 𝐵.

(2)

(3) The restricted intersection of (𝐹, 𝐴) and (𝐺, 𝐵) is
defined as the fuzzy soft set (𝐻̃, 𝐶) = (𝐹, 𝐴)∩R(𝐺, 𝐵),

where 𝐶 = 𝐴 ∩ 𝐵 ̸= 0 and 𝐻̃(𝑐) = 𝐹(𝑐) ∩ 𝐺(𝑐) for all
𝑐 ∈ 𝐶.

(4) The restricted union of (𝐹, 𝐴) and (𝐺, 𝐵) is defined as
the fuzzy soft set (𝐻̃, 𝐶) = (𝐹, 𝐴)∪R(𝐺, 𝐵), where𝐶 =

𝐴 ∩ 𝐵 ̸= 0 and 𝐻̃(𝑐) = 𝐹(𝑐) ∪ 𝐺(𝑐) for all 𝑐 ∈ 𝐶.

In what follows, the collection of all fuzzy soft sets over𝑈
with parameter sets contained in 𝐸 is denoted by FS𝐸(𝑈).
Taking any parameter set 𝐴 ⊆ 𝐸, one can consider the
collection consisting of all fuzzy soft sets over𝑈with the fixed
parameter set𝐴, which is denoted byFS

𝐴
(𝑈).The following

result can easily be obtained using the above definitions.

Proposition8. Let (F̃, 𝐴) and (𝐺, 𝐴) be two fuzzy soft sets over
𝑈. Then

(1) (𝐹, 𝐴)∪E(𝐺, 𝐴) = (𝐹, 𝐴)∪R(𝐺, 𝐴);
(2) (𝐹, 𝐴)∩E(𝐺, 𝐴) = (𝐹, 𝐴)∩R(𝐺, 𝐴).

The first part of the above assertion states that, for fuzzy
soft sets in FS

𝐴
(𝑈), the extended union ∪E coincides with

the restricted union∪R.That is, the two soft union operations
∪R and ∪E will always lead to the same results when consid-
ering fuzzy soft sets with the same set of parameters. Thus in
this case, we shall use a uniform notation ∪̃ representing both
∪R and ∪E. Analogously ∩R and ∩E will be simply denoted
by ∩̃ if the two operations coincide with each other.

Now we illustrate the notion of fuzzy soft sets by an
example as follows.

Example 9. Suppose that there are six cell phones under
consideration

𝑈 = {𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
, 𝑝
5
, 𝑝
6
} . (3)

The set of parameters is given by 𝐸 = {𝑒
1
, 𝑒
2
, 𝑒
3
,

𝑒
4
, 𝑒
5
, 𝑒
6
, 𝑒
7
, 𝑒
8
}, where 𝑒

𝑖
, respectively, stand for “high quality

of voice call,” “stylish design,” “friendly user interface,” “won-
derful MP3/MP4 playback,” “low price,” “high resolution
camera,” “popular brand” and “large screen”.

Now, let 𝐴 = {𝑒
2
, 𝑒
4
, 𝑒
5
, 𝑒
6
, 𝑒
8
} ⊆ 𝐸 consist of some crucial

features for describing “attractive multimedia cell phones.”
We can arrange an expert group to evaluate these cell phones
and the available information on these mobile phones can
be formulated as a fuzzy soft set S = (𝐹, 𝐴). It provides a
mathematical representation of the complicate fuzzy concept,
called “attractive multimedia cell phones” in daily languages.
Table 1 gives the tabular representation of the fuzzy soft set
S = (𝐹, 𝐴).

Using this illustrative example, we can observe that some
fuzzy concepts in the real world are so complicated that
they can hardly be described using a single fuzzy set or
simply the intersection of some fuzzy sets. Alternatively, these
complicate fuzzy concepts can jointly be represented as a
family of fuzzy sets organized by some useful parameters like
those we list above for describing “attractive multimedia cell
phones.” Based on the viewpoint of parametrization, each
fuzzy set in a fuzzy soft set only produces an approximate (or
partial) description of a complicated fuzzy concept, while the
fuzzy soft set as a whole gives a complete representation.
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Table 1: Tabular representation of the fuzzy soft setS = (𝐹, 𝐴).

𝑈 𝑒
2

𝑒
4

𝑒
5

𝑒
6

𝑒
8

𝑝
1

0.2 0.9 0.6 0.2 0.2
𝑝
2

0.6 0.6 0.2 0.2 0.9
𝑝
3

0.9 0.7 0.9 0.9 0.7
𝑝
4

0.6 0.2 0.2 0.7 0.6
𝑝
5

0.2 0.6 0.2 0.7 0.2
𝑝
6

0.9 0.2 0.7 0.6 0.9

3. Level Soft Sets and Scalar Uni-Products

To solve decision-making problems based on fuzzy soft sets,
Feng et al. [13] introduced the following notion called 𝑡-level
soft sets of fuzzy soft sets.

Definition 10 (see [13]). Let 𝑡 ∈ [0, 1] and S = (𝐹, 𝐴) be a
fuzzy soft set over𝑈. The 𝑡-level soft set of the fuzzy soft setS
is a crisp soft set 𝐿(S; 𝑡) = (𝐹

𝑡
, 𝐴) over 𝑈, where

𝐹
𝑡
(𝑎) = {𝑥 ∈ 𝑈 : 𝐹 (𝑎) (𝑥) ≥ 𝑡} , (4)

for all 𝑎 ∈ 𝐴.

In the above definition, 𝑡 ∈ [0, 1] serves as a fixed
threshold value on membership grades. In practical applica-
tions, these thresholds might be chosen by decision makers
and represent the strength of their general requirements
[13]. Some basic properties of 𝑡-level soft sets have been
investigated by Feng and Pedrycz [26]. Below, we list two
results, which show that the structure of 𝑡-level soft sets is
compatible with some basic algebraic operations of fuzzy soft
sets.

Proposition 11 (see [26]). LetS = (𝐹, 𝐴) andR = (𝐺, 𝐵) be
two fuzzy soft sets inFS𝐸(𝑈). Then, for all 𝑡 ∈ [0, 1], one has

(a) 𝐿(S∪ER; 𝑡) = 𝐿(S; 𝑡)∪E𝐿(R; 𝑡);

(b) 𝐿(S∩ER; 𝑡) = 𝐿(S; 𝑡)∩E𝐿(R; 𝑡).

Proposition 12 (see [26]). Let S = (𝐹, 𝐴) and R = (𝐺, 𝐵)

be two fuzzy soft sets in FS𝐸(𝑈) with 𝐴 ∩ 𝐵 ̸= 0. Then for all
𝑡 ∈ [0, 1], one has

(a) 𝐿(S∪RR; 𝑡) = 𝐿(S; 𝑡)∪R𝐿(R; 𝑡);

(b) 𝐿(S∩RR; 𝑡) = 𝐿(S; 𝑡)∩R𝐿(R; 𝑡).

We also have considered the following scalar product of a
scalar value 𝑡 and a fuzzy soft set in [26].

Definition 13. Let 𝑡 ∈ [0, 1] and 𝑆 = (𝐹, 𝐴) ∈ FS𝐸(𝑈). Then
the scalar product of 𝑡 and 𝑆 is defined to be a fuzzy soft set
𝑡 ⊙ 𝑆 = (𝐺, 𝐴) over 𝑈, such that

𝐺 (𝑎) (𝑥) = (𝑡𝐹 (𝑎)) (𝑥) = 𝑡 ∧ 𝐹 (𝑎) (𝑥) , (5)

where 𝑎 ∈ 𝐴, 𝑥 ∈ 𝑈.

By replacing a single value 𝑡 with a set 𝐽 ⊆ [0, 1] of
thresholds, we immediately obtain an extension of the above
concept.

Definition 14. Let 𝐽 ⊆ [0, 1] and 𝑆 = (𝐹, 𝐴) ∈ FS𝐸(𝑈). Then
the scalar uniproduct of 𝐽 and 𝑆 is defined as

𝐽⊙
∪
𝑆 =

̃
⋃

𝑡∈𝐽

𝑡 ⊙ 𝑆. (6)

Clearly, if 𝐽 = {𝑡} is a singleton, then 𝐽⊙
∪
𝑆 = 𝑡 ⊙ 𝑆. In a

dual way, we can also define the following operation.

Definition 15. Let 𝐽 ⊆ [0, 1] and 𝑆 = (𝐹, 𝐴) ∈ FS𝐸(𝑈). Then
the scalar int-product of 𝐽 and 𝑆 is defined as

𝐽⊙
∩
𝑆 =

̃
⋂

𝑡∈𝐽

𝑡 ⊙ 𝑆. (7)

For 𝐽 = 0, we define 𝐽⊙
∪
𝑆 = 𝐽⊙

∩
𝑆 = C̃0

𝐴
. The following

results give some basic properties of scalar uniproduct oper-
ations. Dually, we can also investigate related properties of
scalar int-product operations.

Proposition 16. Let 𝐽
1
, 𝐽
2
⊆ [0, 1] and 𝑆 ∈ FS𝐸(𝑈). If 𝐽

1
⊆

𝐽
2
, then one has 𝐽

1
⊙
∪
𝑆⊆̃
𝐹
𝐽
2
⊙
∪
𝑆.

Proof. The proof is straightforward and thus omitted.

Proposition 17. Let 𝐽 ⊆ [0, 1] and 𝑆
1
, 𝑆
2

∈ FS𝐸(𝑈). If
𝑆
1
⊆̃
𝐹
𝑆
2
, then one has 𝐽⊙

∪
𝑆
1
⊆̃
𝐹
𝐽⊙
∪
𝑆
2
.

Proof. The proof is straightforward and thus omitted.

Proposition 18. Let 𝐽 ⊆ [0, 1] and 𝑆
1
, 𝑆
2

∈ FS𝐸(𝑈). If
𝑆
1
⊆̃
𝑀
𝑆
2
, then one has 𝐽⊙

∪
𝑆
1
⊆̃
𝑀
𝐽⊙
∪
𝑆
2
.

Proof. The proof is straightforward and thus omitted.

4. Lattice Structures Associated with
𝑡-Level Soft Sets

In this section, we begin with some basic notions in lattice
theory and then concentrate on exploring some lattice struc-
tures associated with 𝑡-level soft sets of a given fuzzy soft
set. From an algebraic point of view, a lattice (𝐿, ∨, ∧) is a
nonempty set with two binary operations ∨ and ∧ such that

(1) (𝐿, ∨) and (𝐿, ∧) are commutative semigroups;
(2) 𝑎 ∧ (𝑎 ∨ 𝑏) = 𝑎 and 𝑎 ∨ (𝑎 ∧ 𝑏) = 𝑎 for all 𝑎, 𝑏 ∈ 𝐿.

Let (𝐿, ∨, ∧) be a lattice. For every 𝑎 ∈ 𝐿, it is easy to see
that

𝑎 ∨ 𝑎 = 𝑎 ∨ (𝑎 ∧ (𝑎 ∨ 𝑎)) = 𝑎. (8)

Similarly, we can deduce 𝑎∧𝑎 = 𝑎∧ (𝑎∨ (𝑎∧𝑎)) = 𝑎. Thus in
a lattice 𝐿, two operations ∨ and ∧ are both idempotent. That
is, (𝐿, ∨) and (𝐿, ∧) are two semilattices.

If a lattice 𝐿 has identity elements with respect to both ∨

and ∧, then 𝐿 is said to be bounded. Usually identity element
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of 𝐿 with respect to operation ∨ is denoted by ⊥, whereas the
identity with respect to ∧ is denoted by ⊤. In other words,
(𝐿, ∨, ⊥) and (𝐿, ∧, ⊤) are two monoids if (𝐿, ∨, ∧, ⊥, ⊤) is a
bounded lattice.

Definition 19. A lattice (𝐿, ∨, ∧) is called a distributive lattice
if

(1) 𝑎 ∧ (𝑏 ∨ 𝑐) = (𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑐);
(2) 𝑎 ∨ (𝑏 ∧ 𝑐) = (𝑎 ∨ 𝑏) ∧ (𝑎 ∨ 𝑐);

for all 𝑎, 𝑏, 𝑐 ∈ 𝐿.

Example 20. Let us consider the unit interval [0, 1]. For all
𝑎, 𝑏 ∈ 𝐿, we denote max{𝑎, 𝑏} and min{𝑎, 𝑏} by 𝑎 ∨ 𝑏 and 𝑎 ∧

𝑏, respectively. Then, it is easy to verify that ([0, 1], ∨, ∧) is a
distributive lattice.Moreover, ([0, 1], ∨, ∧) is a bounded lattice
with ⊥= 0 and ⊤ = 1.

Proposition 21. Let 𝐽 ⊆ [0, 1] and 𝑆 ∈ FS𝐸(𝑈).Then 𝐽⊙
∪
𝑆 =

(∨𝐽) ⊙ 𝑆.

Proof. Let 𝑆 = (𝐹, 𝐴) be a fuzzy soft set over𝑈. Note first that
𝑡
∗

= ∨𝐽 indeed exists since ([0, 1], ∨, ∧) is a complete lattice.
For any 𝑡 ∈ 𝐽, we write 𝑡 ⊙ 𝑆 = (𝐺

𝑡
, 𝐴). Let 𝑎 ∈ 𝐴 and 𝑥 ∈ 𝑈.

By Definition 13, we have

𝐺
𝑡
(𝑎) (𝑥) = 𝑡 ∧ 𝐹 (𝑎) (𝑥) . (9)

If we write 𝐽⊙
∪
𝑆 = (𝐻̃, 𝐴), then by the complete distributive

laws in the complete lattice ([0, 1], ∨, ∧), we have

𝐻̃ (𝑎) (𝑥) = ⋁

𝑡∈𝐽

𝐺
𝑡
(𝑎) (𝑥) = ⋁

𝑡∈𝐽

(𝑡 ∧ 𝐹 (𝑎) (𝑥))

= (⋁

𝑡∈𝐽

𝑡) ∧ 𝐹 (𝑎) (𝑥) = 𝑡
∗

∧ 𝐹 (𝑎) (𝑥) .

(10)

This implies that 𝐽⊙
∪
𝑆 = 𝑡
∗

⊙ 𝑆 = (∨𝐽) ⊙ 𝑆.

Now, we consider the collection of all fuzzy soft sets
over 𝑈 with a fixed parameter set 𝐴. This collection forms
a lattice structure with respect to soft union and intersection
operations as shown in [26].

Theorem 22. (FS
𝐴
(𝑈), ∪̃, ∩̃, C̃0

𝐴
, C̃1
𝐴
) is a bounded distribu-

tive lattice.

Proof. Let 𝑆
𝑘

= (𝐹
𝑘
, 𝐴) ∈ FS

𝐴
(𝑈) (𝑘 = 1, 2, 3). Write

𝑆
1
∪̃𝑆
2
= (𝐻̃, 𝐴) and 𝑆

2
∪̃𝑆
1
= (𝑅̃, 𝐴). Then for all 𝑡 ∈ 𝐴, we

have

𝐻̃ (𝑡) = 𝐹
1
(𝑡) ∪ 𝐹

2
(𝑡) = 𝐹

2
(𝑡) ∪ 𝐹

1
(𝑡) = 𝑅̃ (𝑡) . (11)

This shows that the soft union operation of fuzzy soft
sets is commutative. Moreover, we can prove that this
operation is associative. By definition of the relative null
fuzzy soft set C̃0

𝐴
, it is easy to see that 𝑆

1
∪̃C̃0
𝐴

= 𝑆
1
.

Hence (FS
𝐴
(𝑈), ∪̃, C̃0

𝐴
) is a commutative monoid. Dually,

we deduce that (FS
𝐴
(𝑈), ∩̃, C̃1

𝐴
) is a commutative monoid.

Next, let 𝑆
1
∩̃(𝐻̃, 𝐴) = (𝐾̃, 𝐴). Then for all 𝑡 ∈ 𝐴, we have

𝐾̃ (𝑡) = 𝐹
1
(𝑡) ∩ 𝐻̃ (𝑡) = 𝐹

1
(𝑡) ∩ (𝐹

1
(𝑡) ∪ 𝐹

2
(𝑡)) = 𝐹

1
(𝑡) ,

(12)

and so 𝑆
1
∩̃(𝑆
1
∪̃𝑆
2
) = 𝑆
1
. In a similar fashion, we can deduce

𝑆
1
∪̃(𝑆
1
∩̃𝑆
2
) = 𝑆
1
. Thus (FS

𝐴
(𝑈), ∪̃, ∩̃, C̃0

𝐴
, C̃1
𝐴
) is a bounded

lattice. In addition, we write 𝑆
1
∪̃𝑆
3
= (𝐺, 𝐴) and 𝑆

2
∩̃𝑆
3
=

(𝐽, 𝐴). Then we have

𝐹
1
(𝑡) ∪ 𝐽 (𝑡) = (𝐹

1
(𝑡) ∪ 𝐹

2
(𝑡)) ∩ (𝐹

1
(𝑡) ∪ 𝐹

3
(𝑡))

= 𝐻̃ (𝑡) ∩ 𝐺 (𝑡) ,

(13)

which implies that 𝑆
1
∪̃(𝑆
2
∩̃𝑆
3
) = (𝑆

1
∪̃𝑆
2
)∩̃(𝑆
1
∪̃𝑆
3
). Dually,

we have 𝑆
1
∩̃(𝑆
2
∪̃𝑆
3
) = (𝑆

1
∩̃𝑆
2
)∪̃(𝑆
1
∩̃𝑆
3
). Therefore,

(FS
𝐴
(𝑈), ∪̃, ∩̃, C̃0

𝐴
, C̃1
𝐴
) is a bounded distributive lattice.

As an immediate consequence of the above theorem, we
get the following result in [31].

Corollary 23. (S
𝐴
(𝑈), ∪̃, ∩̃, Φ

𝐴
,U
𝐴
) is a bounded distribu-

tive lattice.

Let (𝐿, ∨, ∧) be a lattice. A nonempty set𝑀 ⊆ 𝐿 is called
a sublattice of 𝐿 if 𝑎 ∨ 𝑏 ∈ 𝑀 and 𝑎 ∧ 𝑏 ∈ 𝑀 for all 𝑎, 𝑏 ∈ 𝑀.

Proposition 24. LetS = (𝐹, 𝐴) ∈ FS𝐸(𝑈) and 𝑠, 𝑡 ∈ [0, 1].
Then

(a) 𝐿(S; 𝑠 ∨ 𝑡) = 𝐿(S; 𝑠)∩̃𝐿(S; 𝑡);
(b) 𝐿(S; 𝑠 ∧ 𝑡) = 𝐿(S; 𝑠)∪̃𝐿(S; 𝑡).

Proof. We only show that (a) is valid and (b) can be proved
in a similar way. Let 𝐿(S; 𝑠) = (𝐹

𝑠
, 𝐴), 𝐿(S; 𝑡) = (𝐹

𝑡
, 𝐴), and

𝐿(S; 𝑠 ∨ 𝑡) = (𝐹
𝑠∨𝑡
, 𝐴). Also, write 𝐿(S; 𝑠)∩̃𝐿(S; 𝑡) = (𝐻,𝐴).

For all 𝑒 ∈ 𝐴 and 𝑢 ∈ 𝑈, we have

𝑢 ∈ 𝐻 (𝑒) ⇐⇒ 𝑢 ∈ 𝐹
𝑠
(𝑒) ∩ 𝐹

𝑡
(𝑒) ⇐⇒ 𝐹 (𝑒) (𝑢) ≥ 𝑠 ∨ 𝑡

⇐⇒ 𝑢 ∈ 𝐹
𝑠∨𝑡

(𝑒) ,

(14)

and so 𝐻(𝑒) = 𝐹
𝑠∨𝑡
(𝑒) for all 𝑒 ∈ 𝐴. Thus 𝐿(S; 𝑠 ∨ 𝑡) =

𝐿(S; 𝑠) ∩̃ 𝐿(S; 𝑡) as required.

Let S = (𝐹, 𝐴) be a fuzzy soft set over 𝑈. We denote
the collection of all 𝑡-level soft sets of the fuzzy soft set S
by L(S) = {𝐿(S; 𝑡) : 𝑡 ∈ [0, 1]}. Clearly, L(S) is a
nonempty subset ofS

𝐴
(𝑈) sinceU

𝐴
= 𝐿(S; 0). In addition,

by Proposition 24, we can immediately deduce the following
result.

Theorem 25. L(S) is a sublattice of the lattice (S
𝐴
(𝑈), ∪̃, ∩̃).

Definition 26. LetS ∈ FS𝐸(𝑈) and 𝑠, 𝑡 ∈ [0, 1]. Then 𝑠 and
𝑡 are said to be level equivalent, denoted by 𝑠∼S𝑡, if 𝐿(S; 𝑠) =

𝐿(S; 𝑡).

Definition 27. Let 𝐿
1
and 𝐿

2
be two lattices. A mapping 𝜓 :

𝐿
1
→ 𝐿
2
is a homomorphism of lattices if 𝜓(𝑎 ∨ 𝑏) = 𝜓(𝑎) ∨

𝜓(𝑏) and 𝜓(𝑎 ∧ 𝑏) = 𝜓(𝑎) ∧ 𝜓(𝑏) for all 𝑎, 𝑏 ∈ 𝐿
1
.



6 The Scientific World Journal

A homomorphism 𝜓 : 𝐿
1

→ 𝐿
2
of lattices is called a

monomorphism (resp., epimorphism and isomorphism) if 𝜓 is
injective (resp., surjective and bijective). If 𝜓 : 𝐿

1
→ 𝐿

2

is an isomorphism of lattices, then 𝐿
1
and 𝐿

2
are said to be

isomorphic, written as 𝐿
1
≅ 𝐿
2
.

Definition 28. Let 𝜓 : 𝐿
1

→ 𝐿
2
be a homomorphism of

lattices.Then the kernel of𝜓 is a binary relation on 𝐿
1
defined

by

ker (𝜓) = {(𝑎, 𝑏) ∈ 𝐿
1
× 𝐿
1
: 𝜓 (𝑎) = 𝜓 (𝑏)} . (15)

It is easy to check that ker(𝜓) is an equivalence relation
on 𝐿
1
. As a direct consequence, we deduce that the level

equivalent relation ∼S defined above is an equivalence
relation on the unit interval [0, 1].

Proposition 29. LetS be a fuzzy soft set over𝑈 and [0, 1]† =
([0, 1], ∧, ∨). Then the mapping 𝜓S : [0, 1] → L(S) given by
𝜓S(𝑡) = 𝐿(S; 𝑡) is an epimorphism of lattices with ker(𝜓S) =

∼S.

Proof. Note first that from Example 20, ([0, 1], ∨, ∧) is a dis-
tributive lattice. Dually, we deduce that [0, 1]† = ([0, 1], ∧, ∨)

is also a distributive lattice. Using the notations given above,
Proposition 24 implies𝜓S(𝑠∧𝑡) = 𝜓S(𝑠) ∪̃ 𝜓S(𝑡) and𝜓S(𝑠∨

𝑡) = 𝜓S(𝑠) ∩̃ 𝜓S(𝑡). Also it is clear that the mapping 𝜓S :

[0, 1] → L(S) is surjective. Thus it is an epimorphism of
lattices. Moreover, it follows from Definitions 26 and 28 that
ker(𝜓S) = ∼S.

Now, let us consider the quotient set of the unit interval
[0, 1] with respect to the level equivalent relation ∼S. We can
define two operations on the quotient set [0, 1]/∼S as follows:

(i) [𝑠]
∼S

⊓ [𝑡]
∼S

= [𝑠 ∧ 𝑡]
∼S
,

(ii) [𝑠]
∼S

⊔ [𝑡]
∼S

= [𝑠 ∨ 𝑡]
∼S
,

where [𝑠]
∼S

denotes the equivalence class of 𝑠 ∈ [0, 1] under
∼S.

It can be shown that [0, 1]†/∼S = ([0, 1]/∼S, ⊓, ⊔) is a
lattice. In addition, we have the following result.

Theorem 30. Let S be a fuzzy soft set over 𝑈 and
[0, 1]
†

= ([0, 1], ∧, ∨). Then [0, 1]
†

/∼S = ([0, 1]/∼S, ⊓, ⊔) ≅

(L(S), ∪̃, ∩̃).

Proof. Define a mapping 𝜑 : [0, 1]/∼S → L(S) by

𝜑 ([𝑡]
∼S
) = 𝜓S (𝑡) = 𝐿 (S; 𝑡) . (16)

By Proposition 29, the mapping 𝜓S : [0, 1] → L(S) given
by 𝜓S(𝑡) = 𝐿(S; 𝑡) is an epimorphism of lattices. Thus 𝜑 is
surjective. Also we have

𝜑 ([𝑠]
∼S

⊓ [𝑡]
∼S
) = 𝜑 ([𝑠 ∧ 𝑡]

∼S
) = 𝜓S (𝑠 ∧ 𝑡)

= 𝜓S (𝑠) ∪̃𝜓S (𝑡) = 𝜑 ([𝑠]
∼S
) ∪̃𝜑 ([𝑡]

∼S
) .

(17)

Similarly, we can get 𝜑([𝑠]
∼S

⊔ [𝑡]
∼S
) = 𝜑([𝑠]

∼S
)∩̃𝜑([𝑡]

∼S
).

This shows that 𝜑 : [0, 1]/∼S → L(S) is an epimorphism
of lattices. Now, assume that 𝜑([𝑠]

∼S
) = 𝜑([𝑡]

∼S
). Then we

deduce that

𝐿 (S; 𝑠) = 𝜓S (𝑠) = 𝜑 ([𝑠]
∼S
) = 𝜑 ([𝑡]

∼S
)

= 𝜓S (𝑡) = 𝐿 (S; 𝑡) ,

(18)

which implies that 𝜑 is injective. Hence 𝜑 is an isomorphism
of lattices and so [0, 1]

†

/∼S is isomorphic to (L(S), ∪̃, ∩̃).

Corollary 31. The lattice [0, 1]
†

/∼S = ([0, 1]/∼S, ⊓, ⊔) is
a distributive lattice which can be embedded into the lattice
(S
𝐴
(𝑈), ∪̃, ∩̃).

Proof. By Corollary 23 (S
𝐴
(𝑈), ∪̃, ∩̃) is a distributive lattice.

Also we know that L(S) is a sublattice of the lattice
(S
𝐴
(𝑈), ∪̃, ∩̃). Finally, according to Theorem 30, [0, 1]†/∼S

is isomorphic to the sublattice L(S). Therefore, [0, 1]†/∼S

is distributive and can be embedded into the lattice
(S
𝐴
(𝑈), ∪̃, ∩̃).

5. Decomposition Theorems of Fuzzy Soft Sets

As mentioned above, the notion of 𝑡-level soft sets acts as a
key factor in solving adjustable fuzzy soft decision-making
problems. So it is meaningful to ascertain howmany different
𝑡-level soft sets could be derived from a given fuzzy soft set by
choosing distinct threshold value 𝑡 ∈ [0, 1]. Motivated by this
point, we will explore in this section the problem with regard
to the decomposition of a given fuzzy soft set in terms of its
𝑡-level soft sets.

Definition 32 (see [26]). Let 𝑆 = (𝐹, 𝐴) ∈ FS𝐸(𝑈). The value
space of the fuzzy soft set 𝑆 is a set𝑉(𝑆) = ⋃

𝑎∈𝐴
{𝐹(𝑎)(𝑥) : 𝑥 ∈

𝑈}. A scalar 𝑡 ∈ [0, 1] is called a crucial threshold value of the
fuzzy soft set 𝑆 if 𝑡 ∈ 𝑉(𝑆).

Using the above notions, the authors have established the
following decomposition theorems of fuzzy soft sets in [26].

Theorem 33. Let 𝑆 ∈ FS𝐸(𝑈). Then one has 𝑆 = ̃
⋃
𝑡∈[0,1]

𝑡 ⊙

𝐿(𝑆; 𝑡).

Theorem 34. Let 𝑆 ∈ FS𝐸(𝑈). Then one has 𝑆 =
̃
⋃
𝑡∈𝑉(𝑆)

𝑡 ⊙

𝐿(𝑆; 𝑡).

The second decomposition theorem is especially useful
when the value space of the fuzzy soft set 𝑆 is finite since in
this case we can obtain a finite decomposition of 𝑆. In order to
give a deeper insight into this issue, we propose the following
notions.

Definition 35. Let S ∈ FS𝐸(𝑈) and ∼S be the level
equivalent relation induced by S. Then 𝐽 ⊆ [0, 1] is called
a complete threshold set of S if it consists of precisely one
element from each equivalence class of [0, 1]/∼S.
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Definition 36. Let S ∈ FS𝐸(𝑈) and ∼S be the level
equivalent relation induced by S. Then a mapping 𝑓 :

[0, 1]/∼S → [0, 1] is called a threshold choice function ofS
if𝑓([𝑡]

∼S
) ∈ [𝑡]

∼S
.The image of the threshold choice function

𝑓 is denoted by Im(𝑓).

In view of the above definitions, we immediately deduce
that the image of the threshold choice function 𝑓 is a
complete threshold set. It is also evident that, in general
cases, both the threshold choice function and the complete
threshold set of a given fuzzy soft setSmight not be unique.

Proposition 37. Let 𝑆 be a fuzzy soft set over 𝑈 with a finite
value space 𝑉(𝑆) = {V

1
, . . . , V

𝑛
} such that V

1
< V
2
< ⋅ ⋅ ⋅ < V

𝑛
.

One has the following.

(1) If 1 ∈ 𝑉(𝑆), then [0, 1]/∼
𝑆

= {[0, V
1
], (V
1
, V
2
], . . . ,

(V
𝑛−1

, V
𝑛
]}.

(2) If 1 ∉ 𝑉(𝑆), then [0, 1]/∼
𝑆

= {[0, V
1
], (V
1
, V
2
], . . . ,

(V
𝑛−1

, V
𝑛
], (V
𝑛
, 1]}.

Proof. First, we assume that V
𝑛
< 1. For 𝑡 ∈ [0, 1], we have

the following cases.

(i) Case 1: 𝐿(𝑆; 𝑡) = 𝐿(𝑆; V
1
) = U

𝐴
⇔ 𝑡∼
𝑆
V
1
⇔ 𝑡 ∈ [0, V

1
].

(ii) Case 2: 𝐿(𝑆; 𝑡) = 𝐿(𝑆; V
𝑖
) ⇔ 𝑡∼

𝑆
V
𝑖
⇔ 𝑡 ∈ (V

𝑖−1
, V
𝑖
], (𝑖 =

2, . . . , 𝑛).
(iii) Case 3: 𝐿(𝑆; 𝑡) = 𝐿(𝑆; 1) = Φ

𝐴
⇔ 𝑡∼
𝑆
1 ⇔ 𝑡 ∈ (V

𝑛
, 1].

Thus we obtain that
[0, 1]

∼
𝑆

= {[0, V
1
] , (V
1
, V
2
] , . . . , (V

𝑛−1
, V
𝑛
] , (V
𝑛
, 1]} . (19)

Note also that if 1 ∈ 𝑉(𝑆), then V
𝑛
= 1 and (V

𝑛
, 1] = 0

should be removed in the above equality (Case 3 simply does
not arise). Therefore, it follows that

[0, 1]

∼
𝑆

= {[0, V
1
] , (V
1
, V
2
] , . . . , (V

𝑛−1
, V
𝑛
]} (20)

holds when V
𝑛
= 1. This completes the proof.

Remark 38. The above statement gives an explicit description
of the structure of the lattice [0, 1]

†

/∼
𝑆

= ([0, 1]/∼
𝑆
, ⊓, ⊔)

discussed in Theorem 30 and Corollary 31. It says that the
level equivalent relation ∼

𝑆
divides the unit interval [0, 1]

into some subintervals and these subintervals actually form
a distributive lattice under certain operations.

Corollary 39. Let 𝑆 be a fuzzy soft set over𝑈with a finite value
space 𝑉(𝑆). Then 𝑉(𝑆) ∪ {1} is a complete threshold set of 𝑆.

Proof. Let 𝑆 be a fuzzy soft set over𝑈with a finite value space
𝑉(𝑆) = {V

1
, . . . , V

𝑛
} such that V

1
< V
2
< ⋅ ⋅ ⋅ < V

𝑛
. First, we

assume that V
𝑛
< 1. By Proposition 37, we have

[0, 1]

∼
𝑆

= {[0, V
1
] , (V
1
, V
2
] , . . . , (V

𝑛−1
, V
𝑛
] , (V
𝑛
, 1]} . (21)

Let 𝑓 : [0, 1]/∼
𝑆

→ [0, 1] be a mapping given by 𝑓([𝑡]
∼𝑆
) =

∨[𝑡]
∼𝑆
. Then 𝑓 is a threshold choice function of the fuzzy soft

set 𝑆, since every subinterval in [0, 1]/∼
𝑆
contains its least

upper bound. It follows that Im(𝑓) = 𝑉(𝑆)∪ {1} is a complete
threshold set of 𝑆.

On the other hand, if V
𝑛

= 1 ∈ 𝑉(𝑆), then by
Proposition 37, we have

[0, 1]

∼
𝑆

= {[0, V
1
] , (V
1
, V
2
] , . . . , (V

𝑛−1
, V
𝑛
]} . (22)

Using similar augments as above, we can show that Im(𝑓) =

𝑉(𝑆) is a complete threshold set of 𝑆. But it is clear that
𝑉(𝑆) = 𝑉(𝑆)∪{1}, since V

𝑛
= 1. Hence,𝑉(𝑆)∪{1} is a complete

threshold set of 𝑆.

The following statement explicitly characterizes the struc-
ture of the lattice L(𝑆), consisting of all level soft sets of
a fuzzy soft set 𝑆. By Theorem 30, the structure of L(𝑆)

is closely related to that of the lattice ([0, 1]/∼
𝑆
, ⊓, ⊔) as

described in Proposition 37.

Theorem 40. Let 𝑆 = (𝐹, 𝐴) be a fuzzy soft set over 𝑈 with a
finite value space 𝑉(𝑆) = {V

1
, . . . , V

𝑛
} such that V

1
< V
2
< ⋅ ⋅ ⋅ <

V
𝑛
. One has the following.

(1) If 1 ∈ 𝑉(𝑆), then the lattice L(𝑆) is a finite ascending
chain as follows:

𝐿 (𝑆; 1) = 𝐿 (𝑆; V
𝑛
) ⊆̃
𝐹
⋅ ⋅ ⋅ ⊆̃
𝐹
𝐿 (𝑆; V

2
) ⊆̃
𝐹
𝐿 (𝑆; V

1
) = U

𝐴
(23)

(2) If 1 ∉ 𝑉(𝑆), then the lattice L(𝑆) is a finite ascending
chain as follows:

Φ
𝐴
= 𝐿 (𝑆; 1) ⊆̃

𝐹
𝐿 (𝑆; V

𝑛
) ⊆̃
𝐹
⋅ ⋅ ⋅ ⊆̃
𝐹
𝐿 (𝑆; V

2
) ⊆̃
𝐹
𝐿 (𝑆; V

1
) = U

𝐴
.

(24)

Proof. Define a mapping 𝜑 : [0, 1]/∼
𝑆
→ L(𝑆) by

𝜑 ([𝑡]
∼𝑆
) = 𝐿 (𝑆; ∨[𝑡]

∼𝑆
) . (25)

ByTheorem 30, the mapping 𝜑 is an isomorphism of lattices.
Then the above result follows from Proposition 37 and its
proof.

Theorem 41. Let 𝑆 = (𝐹, 𝐴) be a fuzzy soft set over 𝑈 with a
finite value space 𝑉(𝑆) and let 𝐽 ⊆ [0, 1] be a finite set. Then
one has

𝑆 =
̃
⋃

𝑡∈𝐽

𝑡 ⊙ 𝐿 (𝑆; 𝑡) ⇐⇒ 𝑉 (𝑆) ⊆ 𝐽. (26)

Proof. Let ̃
⋃
𝑡∈𝐽

𝑡 ⊙ 𝐿(𝑆; 𝑡) = (𝐺, 𝐴). First, we assume that
𝑉(𝑆) ⊆ 𝐽. Then byTheorems 33 and 34, we have

𝑆 =
̃
⋃

𝑡∈𝑉(𝑆)

𝑡 ⊙ 𝐿 (𝑆; 𝑡) ⊆̃
𝐹
(𝐺, 𝐴) ,

(𝐺, 𝐴) ⊆̃
𝐹

̃
⋃

𝑡∈[0,1]

𝑡 ⊙ 𝐿 (𝑆; 𝑡) = 𝑆.

(27)

It follows that 𝑆 = (𝐺, 𝐴) =
̃
⋃
𝑡∈𝐽

𝑡 ⊙ 𝐿(𝑆; 𝑡).
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Conversely, suppose that

(𝐺, 𝐴) =
̃
⋃

𝑡∈𝐽

𝑡 ⊙ 𝐿 (𝑆; 𝑡) = 𝑆 = (𝐹, 𝐴) . (28)

If 𝑉(𝑆) ̸⊆ 𝐽, then there exists a crucial threshold value
𝐹(𝑎
∗

)(𝑢
∗

) = 𝑡
∗

∈ 𝑉(𝑆) \ 𝐽 for some 𝑎∗ ∈ 𝐴 and 𝑢
∗

∈ 𝑈.
Now, we write the finite set 𝐽 as a disjoint union; namely,
𝐽 = 𝐽

− z 𝐽
+, where 𝐽− = {𝑟 ∈ 𝐽 : 𝑟 < 𝑡

∗

} and 𝐽
+

= {𝑟 ∈

𝐽 : 𝑟 ≥ 𝑡
∗

}. Using similar techniques and notations as in the
proof of Theorem 34, we deduce

𝐺 (𝑎
∗

) (𝑢
∗

)

= ⋁

𝑡∈𝐽

𝐺
𝑡
(𝑎) (𝑥) = ⋁

𝑡∈𝐽

𝑡𝐹
𝑡
(𝑎) (𝑥)

= (⋁

𝑡∈𝐽
−

𝑡 ∧ 𝐹
𝑡
(𝑎) (𝑥)) ∨ (⋁

𝑡∈𝐽
+

t ∧ 𝐹
𝑡
(𝑎) (𝑥))

= (⋁

𝑡∈𝐽
−

𝑡 ∧ 1) ∨ (⋁

𝑡∈𝐽
+

𝑡 ∧ 0) = ⋁

𝑡∈𝐽
−

𝑡 < 𝑡
∗

= 𝐹 (𝑎
∗

) (𝑢
∗

) .

(29)

This contradicts to the hypothesis (𝐺, 𝐴) = (𝐹, 𝐴). Hence
𝑉(𝑆) ⊆ 𝐽.

Remark 42. The above result shows that the value space𝑉(𝑆)
is the least threshold set for decomposing a fuzzy soft set 𝑆.
In this case, we can find that 𝑉(𝑆) is of crucial importance
since we cannot decompose a fuzzy soft set correctly if any of
its crucial threshold values is missing. This justifies the term
“crucial threshold values” (seeDefinition 32) for these scalars.

By means of scalar uniproducts proposed in the previous
section, we can further obtain the following decomposition
theorem.

Theorem43. Let 𝑆 be a fuzzy soft set over𝑈with a finite value
space 𝑉(𝑆) = {V

1
, . . . , V

𝑛
} such that V

1
< V
2
< ⋅ ⋅ ⋅ < V

𝑛
. Then

one has

𝑆 =
̃
⋃

2≤𝑖≤𝑛

(V
𝑖−1

, V
𝑖
] ⊙
∪
𝐿 (𝑆; V

𝑖
)
̃
⋃[0, V

1
] ⊙
∪
𝐿 (𝑆; V

1
) . (30)

Proof. Using the definition of scalar uniproducts, we have

[0, V
1
] ⊙
∪
𝐿 (𝑆; V

1
) =

̃
⋃

𝑡∈[0,V1]
𝑡 ⊙ 𝐿 (𝑆; V

1
) = V
1
⊙ 𝐿 (𝑆; V

1
) .

(31)

For 2 ≤ 𝑖 ≤ 𝑛, it can be seen that

(V
𝑖−1

, V
𝑖
] ⊙
∪
𝐿 (𝑆; V

𝑖
)

=
̃
⋃

𝑡∈(V𝑖−1,V𝑖]
𝑡 ⊙ 𝐿 (𝑆; V

𝑖
) = V
𝑖
⊙ 𝐿 (𝑆; V

𝑖
) .

(32)

ByTheorem 34, we know that 𝑆 can be decomposed by using
its crucial threshold values. That is, 𝑆 =

̃
⋃
1≤𝑖≤𝑛

V
𝑖
⊙ 𝐿(𝑆; V

𝑖
).

Hence, it follows that

𝑆 =
̃
⋃

2≤𝑖≤𝑛

(V
𝑖−1

, V
𝑖
] ⊙
∪
𝐿 (𝑆; V

𝑖
)
̃
⋃[0, V

1
] ⊙
∪
𝐿 (𝑆; V

1
) . (33)

This completes the proof.

Corollary 44. Let 𝑆 be a fuzzy soft set over 𝑈 with a finite
value space 𝑉(𝑆) = {V

1
, . . . , V

𝑛
} such that V

1
< V
2
< ⋅ ⋅ ⋅ < V

𝑛
.

Then one has

𝑆 =
̃
⋃

2≤𝑖≤𝑛

(V
𝑖−1

, V
𝑖
] ⊙
∪
𝐿 (𝑆; V

𝑖
)
̃
⋃[0, V

1
] ⊙
∪
𝐿 (𝑆; V

1
)

×
̃
⋃(V
𝑛
, 1] ⊙
∪
𝐿 (𝑆; 1) .

(34)

Proof. If 1 ∈ 𝑉(𝑆), then V
𝑛
= 1 and (V

𝑛
, 1] = 0. Thus

(V
𝑛
, 1] ⊙
∪
𝐿 (𝑆; 1) = 0⊙

∪
𝐿 (𝑆; 1) = C̃

0

𝐴
. (35)

Otherwise, V
𝑛
< 1 and so we have

̃
⋃(V
𝑛
, 1] ⊙
∪
𝐿 (𝑆; 1) = (V

𝑛
, 1] ⊙
∪
Φ
𝐴
= C̃
0

𝐴
. (36)

Also it is clear that 𝑆 = 𝑆 ∪̃ C̃0
𝐴
. Therefore, we deduce that

𝑆 =
̃
⋃

2≤𝑖≤𝑛

(V
𝑖−1

, V
𝑖
] ⊙
∪
𝐿 (𝑆; V

𝑖
)
̃
⋃[0, V

1
] ⊙
∪
𝐿 (𝑆; V

1
)

×
̃
⋃(V
𝑛
, 1] ⊙
∪
𝐿 (𝑆; 1) .

(37)

This completes the proof.

The above results reveal that a given fuzzy soft set with a
finite value space could be linked to finite number of all its
different 𝑡-level soft sets, which are derived from a partition
of the unit interval [0, 1] determined by all crucial threshold
values of the given fuzzy soft set.

Example 45. Let us reconsider the fuzzy soft set S = (𝐹, 𝐴)

describing “attractive multimedia cell phones” in Example 9.
We hope to give a proper classification and rating of these
multimedia cell phones. Clearly, the value space of S is a
finite set

𝑉 (S) = {0.2, 0.6, 0.7, 0.9} . (38)

By Proposition 37, the level equivalent relation ∼S divides
the unit interval [0, 1] into some subintervals and these
subintervals actually form a distributive lattice. Specifically,
we have

[0, 1]

∼S

= {[0, 0.2] , (0.2, 0.6] , (0.6, 0.7] , (0.7, 0.9] , (0.9, 1]} .

(39)

With regard to the 𝑡-level soft sets of the fuzzy soft setS, we
have the following.
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Table 2: Tabular representation of the soft setT
2
= 𝐿(S; 0.6).

𝑈 𝑒
2

𝑒
4

𝑒
5

𝑒
6

𝑒
8

𝑝
1

0 1 1 0 0
𝑝
2

1 1 0 0 1
𝑝
3

1 1 1 1 1
𝑝
4

1 0 0 1 1
𝑝
5

0 1 0 1 0
𝑝
6

1 0 1 1 1

Table 3: Tabular representation of the soft setT
3
= 𝐿(S; 0.7).

𝑈 𝑒
2

𝑒
4

𝑒
5

𝑒
6

𝑒
8

𝑝
1

0 1 0 0 0
𝑝
2

0 0 0 0 1
𝑝
3

1 1 1 1 1
𝑝
4

0 0 0 1 0
𝑝
5

0 0 0 1 0
𝑝
6

1 0 1 0 1

Table 4: Tabular representation of the soft setT
4
= 𝐿(S; 0.9).

𝑈 𝑒
2

𝑒
4

𝑒
5

𝑒
6

𝑒
8

𝑝
1

0 1 0 0 0
𝑝
2

0 0 0 0 1
𝑝
3

1 0 1 1 0
𝑝
4

0 0 0 0 0
𝑝
5

0 0 0 0 0
𝑝
6

1 0 0 0 1

(i) For V
1
= 0.2, 𝐿(S; V

1
) = U

𝐴
is the relative whole soft

set with respect to the parameter set 𝐴.
(ii) For V

2
= 0.6, 𝐿(S; V

2
) = T

2
is a soft set with its

tabular representation given by Table 2.
(iii) For V

3
= 0.7, 𝐿(S; V

3
) = T

3
is a soft set with its

tabular representation given by Table 3.
(iv) For V

2
= 0.9, 𝐿(S; V

4
) = T

4
is a soft set with its

tabular representation given by Table 4.
(v) For 𝑡 ∈ (0.9, 1], 𝐿(S; 𝑡) = Φ

𝐴
is the relative null soft

set with respect to the parameter set 𝐴.

In addition, byTheorem 40, we also know that the lattice
L(S), consisting of all level soft sets of a fuzzy soft setS, is
a finite ascending chain as follows:

Φ
𝐴
= 𝐿 (S; 1) ⊆̃

𝐹
𝐿 (S; 0.9) ⊆̃

𝐹
𝐿 (S; 0.7)

⊆̃
𝐹
𝐿 (S; 0.6) ⊆̃

𝐹
𝐿 (S; 0.2) = U

𝐴
.

(40)

Finally, by Corollary 44, we can obtain the following decom-
position:

S = [0, 0.2] ⊙
∪
U
𝐴
∪̃ (0.2, 0.6] ⊙

∪
T
2
∪̃ (0.6, 0.7] ⊙

∪

×T
3
∪̃ (0.7, 0.9] ⊙

∪
T
4
∪̃ (0.9, 1] ⊙

∪
Φ
𝐴
.

(41)

It reveals that in total there are five distinct level soft sets
which are corresponding to the given fuzzy soft set S on

different segmentations of the unit interval [0, 1] determined
by all crucial threshold values. For instance,T

2
is the level soft

set corresponding to S on the subinterval (0.2, 0.6]. Using
this level soft set, we can get the following classification and
rating of all the cell phones under our consideration:

{𝑝
3
} ≻ {𝑝

6
} ≻ {𝑝

2
, 𝑝
4
} ≻ {𝑝

1
, 𝑝
5
} . (42)

This means that if we choose any threshold value 0.2 < 𝑡 ≤

0.6, then all the cell phones can be graded into four classes.
Moreover, 𝑝

3
turns out to be the most attractive multimedia

cell phones, while 𝑝
1
and 𝑝

5
form the class of least attractive

multimedia cell phones.

6. Conclusions

We have investigated the decomposition of fuzzy soft sets
with finite value spaces. We proposed scalar uniproduct and
int-product operations of fuzzy soft sets.We also defined level
equivalent relations and investigated some lattice structures
associated with level soft sets. It has been shown that the
collection L(S) of all 𝑡-level soft sets of a given fuzzy
soft set S forms a sublattice of the lattice (S

𝐴
(𝑈), ∪̃, ∩̃). In

addition, we proved that the quotient structure [0, 1]†/∼S =

([0, 1]/∼S, ⊓, ⊔) of the unit interval [0, 1] induced by level
equivalent relations is isomorphic to the lattice L(S) of
𝑡-level soft sets and thus could be embedded into the
lattice (S

𝐴
(𝑈), ∪̃, ∩̃). We also introduced crucial threshold

values and complete threshold sets. Moreover, we established
some decomposition theorems for fuzzy soft sets with finite
value spaces and illustrated its possible practical applications
with an example concerning the classification and rating of
multimedia cell phones. Note also that our results generalize
those classical decomposition theorems of fuzzy sets since
every fuzzy set can simply be viewed as a fuzzy soft set with
only one parameter. To extend this work, one might consider
decomposition of fuzzy soft sets based on variable thresholds
or other related applications of decomposition theorems of
fuzzy soft sets.
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