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Based on a nonlinear fractional complex transformation, the Jacobi elliptic equation method is extended to seek exact solutions for
fractional partial differential equations in the sense of the modified Riemann-Liouville derivative. For demonstrating the validity
of this method, we apply it to solve the space fractional coupled Konopelchenko-Dubrovsky (KD) equations and the space-time
fractional Fokas equation. As a result, some exact solutions for them including the hyperbolic function solutions, trigonometric
function solutions, rational function solutions, and Jacobi elliptic function solutions are successfully found.

1. Introduction

In the nonlinear sciences, it is well known that many nonlin-
ear partial differential equations are widely used to describe
the complex phenomena in various fields. The powerful and
efficient methods to find analytic solutions and numerical
solutions of nonlinear equations have drawn a lot of interest
by a diverse group of scientists. Many efficient methods have
been presented so far (e.g., see [1–9]). Fractional differential
equations are generalizations of classical differential equa-
tions of integer order. In recent decades, fractional differential
equations have gained much attention as they are widely
used to describe various complex phenomena in many fields
such as the fluid flow, signal processing, control theory,
systems identification, and biology and other areas. Many
experts have investigated theoretic problems of fractional
differential equations so far, and the concerned fields include
the existence and uniqueness of solutions to Cauchy type
problems, the methods for explicit and numerical solutions,
and the stability of solutions (e.g., see [10–15]). Among these
investigations for fractional differential equations, research
for seeking analytical or semianalytical solutions of fractional
differential equations has been paid an increasing attention.
Many analytical or semianalytical methods have been pro-
posed to obtain numerical solutions and exact solutions of
fractional differential equations so far. For example, these
methods include the (𝐺/𝐺) method [16–18], the variational

iterative method [19–21], and the fractional subequation
method [22–26]. Based on these methods, a variety of
fractional differential equations have been investigated.

In this paper, we extend the Jacobi elliptic equation
method to seek exact solutions for fractional partial differ-
ential equations in the sense of modified Riemann-Liouville
derivative. Based on a nonlinear fractional complex trans-
formation, certain fractional partial differential equation can
be converted into another ordinary differential equation of
integer order with respect to one new variable, which can
be solved based on the Jacobi elliptic equation. This method
belongs to the categories of fractional subequation methods,
and with the general solutions of the Jacobi elliptic equation,
a series of exact solutions for the fractional partial differential
equation can be obtained.

Definition 1. The modified Riemann-Liouville derivative of
order 𝛼 is defined by the following expression [27–30]:
𝐷
𝛼

𝑡
𝑓 (𝑡)

=

{{{{{

{{{{{

{

1

Γ (1 − 𝛼)

𝑑

𝑑𝑡

×∫

𝑡

0

(𝑡 − 𝜉)
−𝛼

(𝑓 (𝜉) − 𝑓 (0)) 𝑑𝜉, 0 < 𝛼 < 1,

(𝑓
(𝑛)

(𝑡))
(𝛼−𝑛)

, 𝑛 ≤ 𝛼 < 𝑛 + 1, 𝑛 ≥ 1.

(1)
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Definition 2. The Riemann-Liouville fractional integral of
order 𝛼 on the interval [0, 𝑡] is defined by

𝐼
𝛼
𝑓 (𝑡) =

1

Γ (1 + 𝛼)
∫

𝑡

0

𝑓 (𝑠) (𝑑𝑠)
𝛼

=
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑓 (𝑠) 𝑑𝑠.

(2)

Some important properties for the modified Riemann-
Liouville derivative and fractional integral are listed as follows
(see [22–27]) (the interval concerned below is always defined
by [0, 𝑡]):

𝐷
𝛼

𝑡
𝑡
𝑟
=

Γ (1 + 𝑟)

Γ (1 + 𝑟 − 𝛼)
𝑡
𝑟−𝛼

, (3)

𝐷
𝛼

𝑡
(𝑓 (𝑡) 𝑔 (𝑡)) = 𝑔 (𝑡)𝐷

𝛼

𝑡
𝑓 (𝑡) + 𝑓 (𝑡)𝐷

𝛼

𝑡
𝑔 (𝑡) , (4)

𝐷
𝛼

𝑡
𝑓 [𝑔 (𝑡)] = 𝑓



𝑔
[𝑔 (𝑡)]𝐷

𝛼

𝑡
𝑔 (𝑡)

= 𝐷
𝛼

𝑔
𝑓 [𝑔 (𝑡)] (𝑔



(𝑡))
𝛼

,

(5)

𝐼
𝛼
(𝐷
𝛼

𝑡
𝑓 (𝑡)) = 𝑓 (𝑡) − 𝑓 (0) , (6)

𝐼
𝛼
(𝑔 (𝑡)𝐷

𝛼

𝑡
𝑓 (𝑡)) = 𝑓 (𝑡) 𝑔 (𝑡) − 𝑓 (0) 𝑔 (0)

− 𝐼
𝛼
(𝑓 (𝑡)𝐷

𝛼

𝑡
𝑔 (𝑡)) .

(7)

The rest of this paper is organized as follows. In Section 2,
we give the description of the Jacobi elliptic equationmethod
for solving fractional partial differential equations. Then in
Section 3 we apply this method to establish exact solutions
for the space fractional coupled Konopelchenko-Dubrovsky
(KD) equations and the space-time fractional Fokas equation.
Some conclusions are presented at the end of the paper.

2. Description of the Jacobi Elliptic
Equation Method for Solving Fractional
Partial Differential Equations

In this section we give the description of the Jacobi elliptic
equation method for solving fractional partial differential
equations.

Suppose that a fractional partial differential equation, say
in the independent variables 𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
, is given by

𝑃 (𝑢
1
, . . . , 𝑢

𝑘
, 𝐷
𝛼

𝑡
𝑢
1
, . . . , 𝐷

𝛼

𝑡
𝑢
𝑘
, 𝐷
𝛽

𝑥
1

𝑢
1
, . . . , 𝐷

𝛽

𝑥
1

𝑢
𝑘
, . . . ,

𝐷
𝛾

𝑥
𝑛

𝑢
1
, . . . , 𝐷

𝛾

𝑥
𝑛

𝑢
𝑘
, . . .) = 0,

(8)

where 𝑢
𝑖
= 𝑢
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
), 𝑖 = 1, . . . , 𝑘, are unknown

functions and𝑃 is a polynomial in 𝑢
𝑖
and their various partial

derivatives including fractional derivatives.

Step 1. Execute a certain nonlinear fractional complex trans-
formation for 𝜉:

𝑢
𝑖
(𝑡, 𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) = 𝑈
𝑖
(𝜉) , 𝜉 = 𝜉 (𝑡, 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) ,

(9)

such that (8) can be turned into the following ordinary
differential equation of integer order with respect to the
variable 𝜉:

�̃� (𝑈
1
, . . . , 𝑈

𝑘
, 𝑈


1
, . . . , 𝑈



𝑘
, 𝑈


1
, . . . , 𝑈



𝑘
, . . .) = 0. (10)

In fact, take 𝐷
𝛼

𝑡
𝑢
1
; for example, one can suppose a

nonlinear fractional complex transformation 𝜉 = 𝑐(𝑡
𝛼
/Γ(1 +

𝛼)), and then by using (3) obtain𝐷𝛼
𝑡
𝑢
1
= 𝑈


1
(𝜉)𝐷
𝛼

𝑡
𝜉 = 𝑐𝑈



1
(𝜉).

Step 2. Suppose that the solution of (10) can be expressed by
a polynomial in (𝐺


/𝐺) as follows:

𝑈
𝑗
(𝜉) =

𝑚
𝑗

∑

𝑖=0

𝑎
𝑗,𝑖
(
𝐺


𝐺
)

𝑖

, 𝑗 = 1, 2, . . . , 𝑘, (11)

where 𝑎
𝑗,𝑖
, 𝑖 = 0, 1, . . . , 𝑚

𝑗
, 𝑗 = 1, 2, . . . , 𝑘, are constants

to be determined later, 𝑎
𝑗,𝑚

̸= 0, the positive integer 𝑚
𝑗
can

be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms
appearing in (10), and 𝐺 = 𝐺(𝜉) satisfies the following Jacobi
elliptic equation [31]:

(𝐺

)
2

= 𝑒
2
𝐺
4
+ 𝑒
1
𝐺
2
+ 𝑒
0
, (12)

where 𝑒
0
, 𝑒
1
, and 𝑒

2
are arbitrary constants.

Some general solutions of (12) are listed as follows:

𝐺 (𝜉) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

−√𝑒
1
sech (√𝑒

1
𝜉) ,

𝑒
2
= −1, 𝑒

1
> 0, 𝑒

0
= 0,

−√𝑒
1
csch (√𝑒

1
𝜉) ,

𝑒
2
= 1, 𝑒

1
> 0, 𝑒

0
= 0,

√−𝑒
1
sec (√−𝑒

1
𝜉) ,

𝑒
2
= 1, 𝑒

1
< 0, 𝑒

0
= 0,

1

𝜉 + 𝐶
0

,

𝑒
2
= 1, 𝑒

1
= 0, 𝑒

0
= 0,

sn (𝜉) ,
𝑒
2
= 𝑚
2
, 𝑒
1
= − (1 + 𝑚

2
) , 𝑒
0
= 0,

cn (𝜉) ,
𝑒
2
= −𝑚

2
, 𝑒
1
= 2𝑚
2
− 1, 𝑒

0
= 1 − 𝑚

2
,

dn (𝜉) ,
𝑒
2
= −1, 𝑒

1
= 2 − 𝑚

2
, 𝑒
0
= 𝑚
2
− 1,

cs (𝜉) ,
𝑒
2
= 1, 𝑒

1
= 2 − 𝑚

2
, 𝑒
0
= 1 − 𝑚

2
,

sd (𝜉) ,
𝑒
2
= 𝑚
2
(𝑚
2
− 1) , 𝑒

1
= 2𝑚
2
− 1, 𝑒

0
= 1,

dc (𝜉) ,
𝑒
2
= 1, 𝑒

1
= − (𝑚

2
+ 1) , 𝑒

0
= 𝑚
2
,

(13)

where 𝐶
0
is a constant, sn(𝜉), cn(𝜉), and dn(𝜉) denote the

Jacobi elliptic sine function, Jacobi elliptic cosine function,
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and the Jacobi elliptic function of the third kind, respectively,
𝑚 is the modulus, and

cs (𝜉) = cn (𝜉)
sn (𝜉)

, sd (𝜉) = sn (𝜉)
dn (𝜉)

, dc (𝜉) = dn (𝜉)
cn (𝜉)

,

sc (𝜉) = 1

cs (𝜉)
, 𝑑𝑠 (𝜉) =

1

sd (𝜉)
,

cd (𝜉) = 1

dc (𝜉)
, nd (𝜉) = 1

dn (𝜉)
,

ns (𝜉) = 1

sn (𝜉)
, nc (𝜉) = 1

cn (𝜉)
.

(14)

Furthermore, one has

(
𝐺

(𝜉)

𝐺 (𝜉)
) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

−√𝑒
1
tanh (√𝑒

1
𝜉) ,

𝑒
2
= −1, 𝑒

1
> 0, 𝑒

0
= 0,

−√𝑒
1
coth (√𝑒

1
𝜉) ,

𝑒
2
= 1, 𝑒

1
> 0, 𝑒

0
= 0,

√−𝑒
1
tan (√−𝑒

1
𝜉) ,

𝑒
2
= 1, 𝑒

1
< 0, 𝑒

0
= 0,

−
1

𝜉 + 𝐶
0

,

𝑒
2
= 1, 𝑒

1
= 0, 𝑒

0
= 0,

cn (𝜉) 𝑑𝑠 (𝜉) ,
𝑒
2
= 𝑚
2
, 𝑒
1
= − (1 + 𝑚

2
) , 𝑒
0
= 0,

−sn (𝜉) dc (𝜉) ,
𝑒
2
= −𝑚

2
, 𝑒
1
= 2𝑚
2
− 1, 𝑒

0
= 1 − 𝑚

2
,

−𝑚
2sn (𝜉) cd (𝜉) ,
𝑒
2
= −1, 𝑒

1
= 2 − 𝑚

2
, 𝑒
0
= 𝑚
2
− 1,

−
dc (𝜉)
sn (𝜉)

,

𝑒
2
= 1, 𝑒

1
= 2 − 𝑚

2
, 𝑒
0
= 1 − 𝑚

2
,

cs (𝜉)
dn (𝜉)

,

𝑒
2
= 𝑚
2
(𝑚
2
− 1) , 𝑒

1
= 2𝑚
2
− 1, 𝑒

0
= 1,

(1 − 𝑚
2
)
sd (𝜉)
cn (𝜉)

,

𝑒
2
= 1, 𝑒

1
= − (𝑚

2
+ 1) , 𝑒

0
= 𝑚
2
.

(15)

Other solutions with 𝑒
2
, 𝑒
1
, and 𝑒

0
taking different values are

omitted here for the sake of simplicity.

Step 3. Substituting (11) into (10) and using (12), the left-hand
side of (10) is converted into another polynomial in 𝐺

𝑖
𝐺
𝑗.

Collecting all coefficients of the same power and equating
them to zero yield a set of algebraic equations for 𝑎

𝑗,𝑖
, 𝑖 =

0, 1, . . . , 𝑚, 𝑗 = 1, 2, . . . , 𝑘.

Step 4. Solving the equations’ system in Step 3, and using the
general solutions of (12), we can construct a variety of exact
solutions for (8).

3. Application of the Jacobi Elliptic
Equation Method to Some Fractional
Partial Differential Equations

3.1. Space Fractional Coupled Konopelchenko-Dubrovsky (KD)
Equations. Consider the space fractional coupled Kono-
pelchenko-Dubrovsky (KD) equations

𝐷
𝛼

𝑡
𝑢 − 𝐷

3𝛽

𝑥
𝑢 − 6𝑏𝑢𝐷

𝛽

𝑥
𝑢 +

3

2
𝑎
2
𝑢
2
𝐷
𝛽

𝑥
𝑢

−3𝐷
𝛾

𝑦
V + 3𝑎𝐷

𝛽

𝑥
(𝑢V) = 0,

𝐷
𝛾

𝑦
𝑢 = 𝐷

𝛽

𝑥
V,

0 < 𝛼, 𝛽, 𝛾 ≤ 1,

(16)

where𝐷𝛼(⋅) denotes the modified Riemann-Liouville deriva-
tive of order 𝛼. Equation (16) is a variation of the coupled
Konopelchenko-Dubrovsky (KD) equations of integer order
[32].

In the following, we will apply the Jacobi elliptic equation
method described in Section 2 to solve (16). To begin with,
we suppose 𝑢(𝑥, 𝑦, 𝑡) = 𝑈(𝜉), V(𝑥, 𝑦, 𝑡) = 𝑉(𝜉), where 𝜉 =

(𝑐/Γ(1 + 𝛼))𝑡
𝛼
+ (𝑘/Γ(1 + 𝛽))𝑥

𝛽
+ (𝑙/Γ(1 + 𝛾))𝑦

𝛾
+ 𝜉
0
, 𝑘, 𝑙, 𝑐,

𝜉
0
are all constants with 𝑘, 𝑙, 𝑐 ̸= 0. Then by use of (3) and the

first equality of (5) we obtain

𝐷
𝛼

𝑡
𝑢 = 𝐷

𝛼

𝑡
𝑈 (𝜉) = 𝑈



(𝜉)𝐷
𝛼

𝑡
𝜉 = 𝑐𝑈



(𝜉) ,

𝐷
𝛽

𝑥
𝑢 = 𝐷

𝛽

𝑥
𝑈 (𝜉) = 𝑈



(𝜉)𝐷
𝛽

𝑥
𝜉 = 𝑘𝑈



(𝜉) ,

𝐷
𝛾

𝑦
𝑢 = 𝐷

𝛾

𝑦
𝑈 (𝜉) = 𝑈



(𝜉)𝐷
𝛾

𝑦
𝜉 = 𝑙𝑈



(𝜉) .

(17)

Then (16) can be turned into the following form:

𝑐𝑈

− 𝑘
3
𝑈

− 6𝑘𝑏𝑈𝑈


+
3

2
𝑘𝑎
2
𝑈
2
𝑈


− 3𝑙𝑉

+ 3𝑎𝑘(𝑈𝑉)


= 0,

𝑙𝑈

= 𝑘𝑉

.

(18)

Suppose that the solution of (18) can be expressed by

𝑈 (𝜉) =

𝑚
1

∑

𝑖=0

𝑎
𝑖
(
𝐺


𝐺
)

𝑖

,

𝑉 (𝜉) =

𝑚
2

∑

𝑖=0

𝑏
𝑖
(
𝐺


𝐺
)

𝑖

,

(19)

where 𝐺 = 𝐺(𝜉) satisfies (12). Balancing the order of 𝑈 and
𝑈
2
𝑈
, 𝑈 and 𝑉

 in (18) we have𝑚
1
= 𝑚
2
= 1. So,

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
(
𝐺


𝐺
) ,

𝑉 (𝜉) = 𝑏
0
+ 𝑏
1
(
𝐺


𝐺
) .

(20)

Substituting (20) into (18), using (12), collecting all the
terms with the same power of 𝐺𝑖𝐺𝑗 together, and equating
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each coefficient to zero yield a set of algebraic equations.
Solving these equations yields that

𝑎
0
= −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
, 𝑎

1
= ±

2𝑘

𝑎
,

𝑏
0
= −

𝑐𝑘𝑎
2
+ 2𝑘
4
𝑒
1
𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2
,

𝑏
1
= ±

2𝑙

𝑎
.

(21)

Substituting the result above into (20) and combining
with (15) we can obtain the following exact solutions for (16).

Family 1. When 𝑒
2

= −1, 𝑒
1

> 0, 𝑒
0

= 0, the following
hyperbolic function solution can be obtained:

𝑢
1
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[−√𝑒
1
tanh (√𝑒

1
𝜉)] ,

V
1
(𝑥, 𝑦, 𝑡) = −

𝑐𝑘𝑎
2
+ 2𝑘
4
𝑒
1
𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[−√𝑒
1
tanh (√𝑒

1
𝜉)] ,

(22)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

In Figures 1 and 2, the solitary wave solutions 𝑢
1
(𝑥, 𝑦, 𝑡),

V
1
(𝑥, 𝑦, 𝑡) in (22) with some special parameters are demon-

strated.

Family 2. When 𝑒
2
= 1, 𝑒
1
> 0, 𝑒
0
= 0,

𝑢
2
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[−√𝑒
1
coth (√𝑒

1
𝜉)] ,

V
2
(𝑥, 𝑦, 𝑡) = −

𝑐𝑘𝑎
2
+ 2𝑘
4
𝑒
1
𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[−√𝑒
1
coth (√𝑒

1
𝜉)] ,

(23)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Family 3. When 𝑒
2

= 1, 𝑒
1

< 0, 𝑒
0

= 0, the following
trigonometric function solution can be obtained:

𝑢
3
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
√−𝑒
1
tan (√−𝑒

1
𝜉) ,

V
3
(𝑥, 𝑦, 𝑡) = −

𝑐𝑘𝑎
2
+ 2𝑘
4
𝑒
1
𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
√−𝑒
1
tan (√−𝑒

1
𝜉) ,

(24)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.
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Figure 1: The solitary wave solution 𝑢
1
with 𝑒

1
= 1, 𝑎 = 𝑏 = 𝑐 = 𝑘 =

1 = 1, 𝑡 = 0.1, and 𝛼 = 1/2.
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Figure 2: The solitary wave solution V
1
with 𝑒

1
= 1, 𝑎 = 𝑏 = 𝑐 = 𝑘 =

1 = 1, 𝑡 = 0.1, and 𝛼 = 1/2.

In Figures 3 and 4, the periodic wave solutions 𝑢
3
(𝑥, 𝑦, 𝑡),

V
3
(𝑥, 𝑦, 𝑡) in (24) with some special parameters are demon-

strated.

Family 4. When 𝑒
2
= 1, 𝑒

1
= 0, 𝑒

0
= 0, the following rational

function solution can be obtained:

𝑢
4
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
(−

1

𝜉 + 𝐶
0

) ,

V
4
(𝑥, 𝑦, 𝑡) = −

𝑐𝑘𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
(−

1

𝜉 + 𝐶
0

) ,

(25)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.
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Figure 3: The periodic wave solution 𝑢
3
with 𝑒

1
= −1, 𝑎 = 𝑏 = 𝑐 =

𝑘 = 1 = 1, 𝑡 = 0.5, and 𝛼 = 1/2.

−300

−200

−100

0

100

8
6

4
2

0 0
2

4
6

8
10

x y

Figure 4: The periodic wave solution V
3
with 𝑒

1
= −1, 𝑎 = 𝑏 = 𝑐 =

𝑘 = 1 = 1, 𝑡 = 0.5, and 𝛼 = 1/2.

Family 5. When 𝑒
2
= 𝑚
2, 𝑒
1
= −(1+𝑚

2
), 𝑒
0
= 1, the following

Jacobi elliptic function solution can be obtained:

𝑢
5
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
cn (𝜉) 𝑑𝑠 (𝜉) ,

V
5
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
− 2𝑘
4
(1 + 𝑚

2
) 𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
cn (𝜉) 𝑑𝑠 (𝜉) ,

(26)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Family 6. When 𝑒
2
= −𝑚

2, 𝑒
1
= 2𝑚
2
− 1, 𝑒
0
= 1 − 𝑚

2,

𝑢
6
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[−sn (𝜉) dc (𝜉)] ,

V
6
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
+ 2𝑘
4
(2𝑚
2
− 1) 𝑎

2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[−sn (𝜉) dc (𝜉)] ,

(27)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Family 7. When 𝑒
2
= −1, 𝑒

1
= 2 − 𝑚

2, 𝑒
0
= 𝑚
2
− 1,

𝑢
7
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[−𝑚
2sn (𝜉) cd (𝜉)] ,

V
7
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
+ 2𝑘
4
(2 − 𝑚

2
) 𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[−𝑚
2sn (𝜉) cd (𝜉)] ,

(28)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Family 8. When 𝑒
2
= 1, 𝑒
1
= 2 − 𝑚

2, 𝑒
0
= 1 − 𝑚

2,

𝑢
8
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[−

dc (𝜉)
sn (𝜉)

] ,

V
8
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
+ 2𝑘
4
(2 − 𝑚

2
) 𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[−

dc (𝜉)
sn (𝜉)

] ,

(29)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Family 9. When 𝑒
2
= 𝑚
2
(𝑚
2
− 1), 𝑒

1
= 2𝑚
2
− 1, 𝑒
0
= 1,

𝑢
9
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎

cs (𝜉)
dn (𝜉)

,

V
9
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
+ 2𝑘
4
(2𝑚
2
− 1) 𝑎

2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎

cs (𝜉)
dn (𝜉)

,

(30)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.
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Family 10. When 𝑒
2
= 1, 𝑒
1
= −(𝑚

2
+ 1), 𝑒

0
= 𝑚
2,

𝑢
10
(𝑥, 𝑦, 𝑡) = −

2 (𝑎𝑙 − 𝑏𝑘)

𝑎2𝑘
±
2𝑘

𝑎
[(1 − 𝑚

2
)
sd (𝜉)
cn (𝜉)

] ,

V
10
(𝑥, 𝑦, 𝑡)

= −

𝑐𝑘𝑎
2
− 2𝑘
4
(1 + 𝑚

2
) 𝑎
2
+ 6𝑏𝑘𝑎𝑙 − 6𝑏

2
𝑘
2
− 3𝑙
2
𝑎
2

𝑎3𝑘2

±
2𝑙

𝑎
[(1 − 𝑚

2
)
sd (𝜉)
cn (𝜉)

] ,

(31)

where 𝜉 = (𝑐/Γ(1+𝛼))𝑡
𝛼
+(𝑘/Γ(1+𝛽))𝑥

𝛽
+(𝑙/Γ(1+𝛾))𝑦

𝛾
+𝜉
0
.

Remark 3. We note that the exact solutions established in
(22)–(31) are new exact solutions to the space fractional
coupled Konopelchenko-Dubrovsky (KD) equations.

3.2. Space-Time Fractional Fokas Equation. Consider the
space-time fractional Fokas equation [33, 34]

4
𝜕
2𝛼
𝑞

𝜕𝑡𝛼𝜕𝑥
𝛼

1

−
𝜕
4𝛼
𝑞

𝜕𝑥
3𝛼

1
𝜕𝑥
𝛼

2

+
𝜕
4𝛼
𝑞

𝜕𝑥
3𝛼

2
𝜕𝑥
𝛼

1

+ 12
𝜕
𝛼
𝑞

𝜕𝑥
𝛼

1

𝜕
𝛼
𝑞

𝜕𝑥
𝛼

2

+ 12𝑞
𝜕
2𝛼
𝑞

𝜕𝑥
𝛼

1
𝜕𝑥
𝛼

2

− 6
𝜕
2𝛼
𝑞

𝜕𝑦
𝛼

1
𝜕𝑦
𝛼

2

= 0, 0 < 𝛼 ≤ 1.

(32)

In [33, 34], the authors solved (32) by use of the Riccati
equation method and a fractional subequation method,
respectively. Based on the twomethods, some exact solutions
for it were obtained. Now we will apply the Jacobi elliptic
equation method described in Section 2 to solve (32).

Suppose 𝑞(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
) = 𝑈(𝜉), where 𝜉 = (𝑘

1
𝑥
𝛼

1
/Γ(1+

𝛼)) + (𝑘
2
𝑥
𝛼

2
/Γ(1 + 𝛼)) + (𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼)) + (𝑙

2
𝑦
𝛼

2
/Γ(1 + 𝛼)) +

(𝑐𝑡
𝛼
/Γ(1 + 𝛼)) + 𝜉

0
, 𝑘
1
, 𝑘
2
, 𝑙
1
, 𝑙
2
, 𝑐, 𝜉
0
are all constants with

𝑘
1
, 𝑘
2
, 𝑙
1
, 𝑙
2
, 𝑐 ̸= 0. Then by use of (3) and the first equality in

(5), (32) can be turned into the following form:

4𝑐𝑘
1
𝑈

− 𝑘
3

1
𝑘
2
𝑈
(4)

+ 𝑘
3

2
𝑘
1
𝑈
(4)

+ 12𝑘
1
𝑘
2
𝑈
2

+ 12𝑘
1
𝑘
2
𝑈𝑈

− 6𝑙
1
𝑙
2
𝑈

= 0.

(33)

Suppose that the solution of (33) can be expressed by

𝑈 (𝜉) =

𝑛

∑

𝑖=0

𝑎
𝑖
(
𝐺


𝐺
)

𝑖

, (34)

where𝐺 = 𝐺(𝜉) satisfies (12). By balancing the order between
the highest order derivative term and nonlinear term in (33),
we can obtain 𝑛 = 2. So we have

𝑈 (𝜉) = 𝑎
0
+ 𝑎
1
(
𝐺


𝐺
) + 𝑎
2
(
𝐺


𝐺
)

2

. (35)

Substituting (35) into (33), using (12), collecting all the
terms with the same power of 𝐺𝑖𝐺𝑗 together, and equating

each coefficient to zero yield a set of algebraic equations.
Solving these equations yields that

𝑎
0
= −

4𝑘
3𝛼

1
𝑘
𝛼

2
𝑒
1
+ 2𝑐
𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
𝑒
1

6𝑘
𝛼

1
𝑘
𝛼

2

,

𝑎
1
= 0, 𝑎

2
= 𝑘
2𝛼

1
− 𝑘
2𝛼

2
.

(36)

Substituting the result above into (35) and combining
with (15) we can obtain the following exact solutions to (32).

Family 1. When 𝑒
2
= −1, 𝑒

1
> 0, 𝑒
0
= 0,

𝑞
1
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −
4𝑘
3𝛼

1
𝑘
𝛼

2
𝑒
1
+ 2𝑐
𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
𝑒
1

6𝑘
𝛼

1
𝑘
𝛼

2

+ 𝑒
1
(𝑘
2𝛼

1
− 𝑘
2𝛼

2
) tanh2 (√𝑒

1
𝜉) ,

(37)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 2. When 𝑒
2
= 1, 𝑒
1
> 0, 𝑒
0
= 0,

𝑞
2
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −
4𝑘
3𝛼

1
𝑘
𝛼

2
𝑒
1
+ 2𝑐
𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
𝑒
1

6𝑘
𝛼

1
𝑘
𝛼

2

+ 𝑒
1
(𝑘
2𝛼

1
− 𝑘
2𝛼

2
) coth2 (√𝑒

1
𝜉) ,

(38)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 3. When 𝑒
2
= 1, 𝑒
1
< 0, 𝑒
0
= 0,

𝑞
3
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −
4𝑘
3𝛼

1
𝑘
𝛼

2
𝑒
1
+ 2𝑐
𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
𝑒
1

6𝑘
𝛼

1
𝑘
𝛼

2

− 𝑒
1
(𝑘
2𝛼

1
− 𝑘
2𝛼

2
) tan2 (√−𝑒

1
𝜉) ,

(39)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 4. When 𝑒
2
= 1, 𝑒
1
= 0, 𝑒
0
= 0,

𝑞
4
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −
2𝑐
𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
)

1

(𝜉 + 𝐶
0
)
2
,

(40)
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where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 5. When 𝑒
2
= 𝑚
2, 𝑒
1
= −(1 + 𝑚

2
), 𝑒
0
= 0,

𝑞
5
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

−4𝑘
3𝛼

1
𝑘
𝛼

2
(1 + 𝑚

2
) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
+ 4𝑘
3𝛼

2
𝑘
𝛼

1
(1 + 𝑚

2
)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [cn (𝜉) 𝑑𝑠 (𝜉)]2,

(41)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 6. When 𝑒
2
= −𝑚

2, 𝑒
1
= 2𝑚
2
− 1, 𝑒
0
= 1 − 𝑚

2,

𝑞
6
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

4𝑘
3𝛼

1
𝑘
𝛼

2
(2𝑚
2
− 1) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
(2𝑚
2
− 1)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [sn (𝜉) dc (𝜉)]2,

(42)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 7. When 𝑒
2
= −1, 𝑒

1
= 2 − 𝑚

2, 𝑒
0
= 𝑚
2
− 1,

𝑞
7
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

4𝑘
3𝛼

1
𝑘
𝛼

2
(2 − 𝑚

2
) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
(2 − 𝑚

2
)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [𝑚
2sn (𝜉) cd (𝜉)]

2

,

(43)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 8. When 𝑒
2
= 1, 𝑒
1
= 2 − 𝑚

2, 𝑒
0
= 1 − 𝑚

2,

𝑞
8
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

4𝑘
3𝛼

1
𝑘
𝛼

2
(2 − 𝑚

2
) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
(2 − 𝑚

2
)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [

dc (𝜉)
sn (𝜉)

]

2

,

(44)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 9. When 𝑒
2
= 𝑚
2
(𝑚
2
− 1), 𝑒

1
= 2𝑚
2
− 1, 𝑒
0
= 1,

𝑞
9
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

4𝑘
3𝛼

1
𝑘
𝛼

2
(2𝑚
2
− 1) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
− 4𝑘
3𝛼

2
𝑘
𝛼

1
(2𝑚
2
− 1)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [

cs (𝜉)
dn (𝜉)

]

2

,

(45)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Family 10. When 𝑒
2
= 1, 𝑒
1
= −(𝑚

2
+ 1), 𝑒

0
= 𝑚
2,

𝑞
10
(𝑡, 𝑥
1
, 𝑥
2
, 𝑦
1
, 𝑦
2
)

= −

−4𝑘
3𝛼

1
𝑘
𝛼

2
(1 + 𝑚

2
) + 2𝑐

𝛼
𝑘
𝛼

1
− 3𝑙
𝛼

1
𝑙
𝛼

2
+ 4𝑘
3𝛼

2
𝑘
𝛼

1
(1 + 𝑚

2
)

6𝑘
𝛼

1
𝑘
𝛼

2

+ (𝑘
2𝛼

1
− 𝑘
2𝛼

2
) [(1 − 𝑚

2
)
sd (𝜉)
cn (𝜉)

]

2

,

(46)

where 𝜉 = 𝑘
1
𝑥
𝛼

1
/Γ(1 + 𝛼) + 𝑘

2
𝑥
𝛼

2
/Γ(1 + 𝛼) + 𝑙

1
𝑦
𝛼

1
/Γ(1 + 𝛼) +

𝑙
2
𝑦
𝛼

2
/Γ(1 + 𝛼) + 𝑐𝑡

𝛼
/Γ(1 + 𝛼) + 𝜉

0
.

Remark 4. If we put 𝑒
1
= −𝜎,𝐶

0
= 𝜔, then the solutions (37)–

(40) reduce to the results established in [33, (22)]. On the
other hand, as a different subequationwas used here from that
in [34], one can see that our results are essentially different
from those in [34]. Furthermore, we note that the Jacobi
elliptic function solutions denoted in (41)–(46) are new exact
solution to the space-time fractional Fokas equation so far to
the best of our knowledge.

4. Conclusions

Based on nonlinear fractional complex transformation, we
have extended the Jacobi elliptic equation method to seek
exact solutions for fractional partial differential equations in
the sense of modified Riemann-Liouville derivative. By use
of this method, the space fractional coupled Konopelchenko-
Dubrovsky (KD) equations and the space-time fractional
Fokas equation are solved successfully. With the aid of the
mathematical software, a series of exact solutions includ-
ing not only hyperbolic function solutions, trigonometric
function solutions, and rational function solutions but also
Jacobi elliptic function solutions for the two equations have
been found. Being concise and powerful, this method can
be applied to solve many other fractional partial differential
equations.
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