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Safety analysis studies in nuclear engineering, more specifically system reliability, usually handle a great number of components,
so that computational difficulties may arise. To face the problem of many component systems a method for simplifying the state
transition diagram in Markovian reliability analyses has been proposed, using the edges which can be cut, since these latter have
a smaller influence on system failure probability. In order to extend the application of GPT (Generalized Perturbation Theory),
this work uses GPT formalism to reduce the number of states in a transition diagram, not considering the state probability as the
integral quantity of interest, but the mean system unavailability instead.Therefore, after simplifying the original diagram, the mean
unavailability for the new system was calculated and the results were very close to those of the original diagram integral quantity
(giving a relative error of about 2%), showing that the proposed simplification is quite reasonable and simple to apply.

1. Introduction

Computational resources available are an important ele-
ment to be considered in system reliability analysis of large
industrial facilities when working with systems with a large
number of components. The computational capacity may be
a factor of interest because of the need, in many cases, to
consider dependencies between failure events, besides the
large number of system states to be considered.

It is well known that the solution of a Markovian relia-
bility model for obtaining time-dependent and steady-state
system probabilities can be simplified if certain sets of states
can be combined to form single states [1]. This lumpability or
mergeability feature is further discussed in [2, 3].

References [4, 5] discuss this feature and present prac-
tical applications in which system symmetries are explored.
These symmetries give rise to superstates which result from
symmetrical states merging. One possibility for this case is
the existence of similar components in the analyzed system.
Suppose, for example, that components 𝐴 and 𝐵 are similar
control valves. The state for which 𝐴 is failed and 𝐵 is on is

quite similar to the one for which 𝐴 is on and 𝐵 is failed.
These two states are eligible for merging and, thus, form
a superstate. In this case, the lumpability or mergeability
approach will not be useful as will be clear for the case
study to be discussed in this paper, due to the lack of system
symmetries.

To address the issue of modeling large systems, Takaragi
et al. [6] proposed a method for reducing the number of
states in the state transition diagram in aMarkovian reliability
analysis, making use of ineffective edges, which can be cut
with little influence on the system failure probability, that is,
in conceptual terms, to retain the most important states only.

Another model was presented by Gandini [7] who
proposed to make the edge cuts using the Generalized
PerturbationTheory (GPT), using as the integral quantity the
probability of the system being in each state.

The objective of this work is to investigate an alternative
way, which has as a theoretical basis the methodology
employed by Takaragi et al. [6], which uses as an inte-
gral parameter the system average unavailability plus the
methodology reported byGandini [7], whoproposed tomake
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Figure 1: System logical diagram [6].

Table 1: Component parameters for the analysis [6].

Component Failure rate (hr−1) Repair rate (hr−1)
A 𝜆

1

= 1.0 × 10
−5

𝜇
1

= 1.0 × 10
−2

B 𝜆
2

= 8.0 × 10
−5

𝜇
2

= 1.0 × 10
−2

C 𝜆
3

= 1.0 × 10
−4

𝜇
3

= 1.0 × 10
−2

D 𝜆
4

= 5.0 × 10
−4

𝜇
4

= 2.0 × 10
−3

the edge cut study considering GPT, using the importance
concept and obtaining the derivatives that will aid in cutting
the less unimportant edges and simplifying the system state
transition diagram.

In an earlier paper, we have discussed the application
of the Generalized Perturbation Theory to the sensitivity
analysis of the accident rate of plants equippedwith protective
channel systems [8].

This paper is organized as follows. Section 2 discusses
the case study and its Markovian model, considering all
relevant features, including adopted repair policies. Section 3
is dedicated to the discussion of how GPT can be applied to
simplify the state transition diagram.The results obtained are
discussed in Section 4 and the simplified transition diagram
is presented and the results compared with those of the
original transition diagram. Finally, Section 5 displays the
conclusions reached.

2. The Markovian Model and the Model Case

The starting point for using the GPT formalism is to set the
state transition diagram for the Markovian analysis. Figure 1
[6] displays the system block diagramwhose relevant features
are as follows:

(a) system has four components/pumps;
(b) there is a series system with two components/pumps

and a parallel system also with two components/
pumps and both systems communicate;

(c) there is one repairman available;
(d) component failure rates are much smaller than their

repair rates;
(e) components 𝐴 and 𝐵 have a higher repair priority

than components 𝐶 and𝐷;
(f) the repair strategy adopted for components 𝐴 and 𝐵

and 𝐶 and𝐷 is first in, first out.

Table 1 [6] displays the parameters for the analysis.
Figure 2 displays the system state transition diagram [6].

State number 1 means that all system components are on

and there is no system degradation. The next four states (2,
3, 4, and 5) display one failed component each. Each failed
component is identified by the grey color. The third column
displays the next degradation level forwhich two components
are down. In this case, nine failed states are generated, those
from 6 to 14. The fourth column displays the next system
degradation level for which three out of four components
are failed. All of them are subject to repair but there can
be no superposition between subject to repair and repair
priority required between components 𝐶 and𝐷. Thus, seven
possible states are generated (from 15 to 21). Finally, for the
last degradation level all four components are failed.The only
difference is the position variation between subject to repair
and required repair priority, which generates four states (from
22 to 25).

According to the state transition diagram of Figure 2 one
obtains the following system of coupled ordinary differential
equations:
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Figure 2: Markov state transition diagram: four-component system with a repairman.
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The system represented by (1) can be recast into matrix
form as

𝑑𝑝
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(𝑡)
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(𝑡) are the probabilities of being in
each of the 25 defined system states.
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𝑇

. (4)

This initial condition means that all system components are
working at the beginning of system mission. Also, 𝑀 is
the system transition rate matrix whose nonzero entries are
defined as follows:
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(5)

It may be seen from the state transition diagram of
Figure 2 that the system is working only when it is in states
1, 2, or 3 and that it is failed when it is in states from 4 to 25.
In this way, the system point unavailability may be calculated
from

𝐴 (𝑡) =

25

∑

𝑖=4

𝑝
𝑖

(𝑡) . (6)

For evaluating the system mean availability for a given
mission period or time, one uses [9]:
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1

𝑇
∫

𝑇

0

𝐴 (𝑡) 𝑑𝑡, (7)

where 𝐴(𝑡) is the system availability, that is, the probability
that the system works satisfactorily at time 𝑡.

The system average unavailability will be given by
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Wewill useGPT formalism to simplify the state transition
diagram and so reduce the number of coupled ordinary
differential equations to be solved.

3. Using GPT to Analyze the System
Mean Unavailability

The development used to obtain the derivatives that will
assist in simplifying Markovian state transition models for
reliability analysis is presented below. This will be done by
using the GPT formalism developed by Gandini [10], with
the response of interest (integral quantity) being the average
system unavailability.Then, the average system unavailability
defined by (9) can be written as
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As ℎ

̃

+

(𝑡) does not depend on the transition matrix entries
then 𝜕ℎ

̃

+

/𝜕𝑎
𝑖𝑗

= 0
̃
, and (12) may be written as

𝜕𝑄

𝜕𝑎
𝑖𝑗

= ∫

𝑇

0

ℎ
̃

+

𝑇
𝜕𝑝

̃

(𝑡)

𝜕𝑎
𝑖𝑗

𝑑𝑡. (13)

Functions 𝜕𝑝
̃

(𝑡)/𝜕𝑎
𝑖𝑗

may be obtained from (2) as follows:

𝑑

𝑑𝑡
(

𝜕𝑝

̃

(𝑡)

𝜕𝑎
𝑖𝑗

) = 𝑀(

𝜕𝑝

̃

(𝑡)

𝜕𝑎
𝑖𝑗

) +
𝜕𝑀

𝜕𝑎
𝑖𝑗

𝑝

̃

(𝑡) . (14)

But, according to the GPT formalism, more specifically,
according to the principle of importance conservation and
also to the source reciprocity relationship [11], the integral
quantity defined in (13) may be obtained from

𝜕𝑄

𝜕𝑎
𝑖𝑗

= ∫

𝑇

0

𝑝

̃

∗

𝑇

(𝑡)
𝜕𝑀

𝜕𝑎
𝑖𝑗

𝑝

̃

(𝑡) 𝑑𝑡, (15)
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where 𝑝
̃

∗

(𝑡) is the importance function associated with the
integral quantity 𝑄 defined by (10), which is governed by the
following equation:

−

𝑑𝑝

̃

∗

(𝑡)

𝑑𝑡
= 𝑀
𝑇

𝑝

̃

∗

+ ℎ
̃

+

(𝑡) . (16)

As the quantity in entry 𝑎
𝑖𝑗

is also in entry 𝑎
𝑗𝑗

, then one
has

𝜕𝑀

𝜕𝑎
𝑖𝑗

𝑝

̃

(𝑡) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

...
0

−𝑝
𝑗

(𝑡)

0

...
0

𝑝
𝑗

(𝑡)

0

...
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

←󳨀 row 𝑗

←󳨀 row 𝑖

, if 𝑖 > 𝑗, (17)

or

𝜕𝑀

𝜕𝑎
𝑖𝑗

𝑝

̃

(𝑡) =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0

...
0

𝑝
𝑗

(𝑡)

0

...
0

−𝑝
𝑗

(𝑡)

0

...
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

←󳨀 row 𝑖

←󳨀 row 𝑗

, if 𝑖 < 𝑗. (18)

By putting (17) or (18) into (15), it follows that

𝜕𝑄

𝜕𝑎
𝑖𝑗

= ∫

𝑇

0

𝑝
𝑗

(𝑡) {𝑝
∗

𝑖

(𝑡) − 𝑝
∗

𝑗

(𝑡)} 𝑑𝑡. (19)

Thus, the derivative of the integral quantity of interest
is calculated by means of GPT for nonzero elements 𝑎

𝑖𝑗

of
the state transition matrix from which we can proceed to the
reduction of the state transition diagram.

The cutoff criterion will be the same used in [7], noting
that the integral quantity used is the average system unavail-
ability and the direction of the inequality is the reverse of the
one proposed in [7] due to the change in the integral quantity.
Explicitly, one has for the system unavailability 𝑄

𝜕𝑄

𝜕𝑎
𝑖𝑗

<
𝜕𝑄

𝜕𝑎
󸀠

𝑖𝑗

, (20)

where 𝑎
𝑖𝑗

and 𝑎󸀠
𝑖𝑗

are the repair and failure rates, respectively.
According to [7], if one considers as the integral quantity

the probability of being in each state [𝑄 = 𝑃
𝑖

(𝑡)] the cutoff
criterion is given by

𝜕𝑄

𝜕𝑎
𝑖𝑗

>
𝜕𝑄

𝜕𝑎
󸀠

𝑖𝑗

. (21)

We have adopted (20) as our cutoff criterion, instead of
(21), because our integral quantity is the system unavailability
and not the probability of being in a given success state.

4. Results

The integral quantity 𝑄 (average system unavailability) was
calculated for the whole state transition diagram (25 system
states) for a period of 12,500 mission hours, having a value of
1.501 × 10−2, the same as the one found in [6]. Importance cal-
culations for the original transition diagram were also made.
Finally, the derivatives that are to be used for establishing
the cutoff criterion were also evaluated (Table 2). A total of
66 derivatives were calculated although not all of them were
effectively used.

Note that the only transition cut that differs from the
reference work is the cut made in state 10, which is not
performed in [6]. In this sense, we have obtained a simpler
transition diagram having 9 states instead of the 10 originally
obtained in [6]. Figure 3 shows the cut in the initial state
transition diagram.

Once the reduced state transition diagram is obtained,
which can be seen in Figure 3, the new state transitionmatrix
is made up by the following states: 1, 2, 3, 4, 5, 6, 7, 8, and
12 and the new integral quantity of interest (average system
unavailability) has the value 𝑄 = 1.469 × 10−2 for the mission
period of 12,500 hours. The set of differential equations for
the reduced diagram is

𝑑𝑝
1

(𝑡)

𝑑𝑡
= − (𝜆

1

+ 𝜆
2

+ 𝜆
3

+ 𝜆
4

) 𝑝
1

(𝑡) + 𝜇
4

𝑝
2

(𝑡)

+ 𝜇
3

𝑝
3

(𝑡) + 𝜇
2

𝑝
4

(𝑡) + 𝜇
1

𝑝
5

(𝑡) ,

𝑑𝑝
2

(𝑡)

𝑑𝑡
= 𝜆
4

𝑝
1

(𝑡) − (𝜇
4

+ 𝜆
2

+ 𝜆
3

) 𝑝
2

(𝑡)

+ 𝜇
3

𝑝
7

(𝑡) + 𝜇
2

𝑝
8

(𝑡) ,

𝑑𝑝
3

(𝑡)

𝑑𝑡
= 𝜆
3

𝑝
1

(𝑡) − (𝜇
3

+ 𝜆
4

) 𝑝
3

(𝑡) + 𝜇
4

𝑝
6

(𝑡) ,

𝑑𝑝
4

(𝑡)

𝑑𝑡
= 𝜆
2

𝑝
1

(𝑡) − (𝜇
2

+ 2𝜆
4

) 𝑝
4

(𝑡) + 𝜇
4

𝑝
12

(𝑡) ,

𝑑𝑝
5

(𝑡)

𝑑𝑡
= 𝜆
1

𝑝
1

(𝑡) − (𝜇
1

) 𝑝
5

(𝑡) ,

𝑑𝑝
6

(𝑡)

𝑑𝑡
= 𝜆
3

𝑝
2

(𝑡) − (𝜇
4

) 𝑝
6

(𝑡) ,

𝑑𝑝
7

(𝑡)

𝑑𝑡
= 𝜆
4

𝑝
3

(𝑡) − (𝜇
3

+ 𝜆
1

+ 𝜆
2

) 𝑝
7

(𝑡)

+ 𝜇
1

𝑝
18

(𝑡) + 𝜇
2

𝑝
20

(𝑡) ,
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Table 2: Derivatives for the edge cutoff criterion.

Case Failure
(𝑗 → 𝑖)

Failure rate
𝜆 (hr−1)

𝜕𝑄

𝜕𝑎
󸀠

𝑖𝑗

Repair
(𝑗 → 𝑖)

Repair rate
𝜇 (hr−1)

𝜕𝑄

𝜕𝑎
𝑖𝑗

Condition
satisfied Cut

1 2 → 6 1.0𝐸 − 4 8.11𝐸 − 4
19 → 6

21 → 6

1.0𝐸 − 2

2.0𝐸 − 2

−4.03𝐸 − 8

−7.29𝐸 − 8
Yes 19 → 6

21 → 6

2 3 → 7 5.0𝐸 − 4 1.66𝐸 − 4
20 → 7

18 → 7
2.0𝐸 − 2

−5.75𝐸 − 9

−4.56𝐸 − 9
Yes 20 → 7

18 → 7

3 2 → 8 8.0𝐸 − 5 3.49𝐸 − 4 17 → 8 2.0𝐸 − 2 5.57𝐸 − 9 Yes 17 → 8

4 1 → 3 1.0𝐸 − 4 3.81𝐸 − 3 9 → 3 2.0𝐸 − 2 −1.20𝐸 − 7 Yes 9 → 3

5 1 → 2 5.0𝐸 − 4 1.52𝐸 − 2 10 → 2 1.0𝐸 − 2 −8.03𝐸 − 7 Yes 10 → 2

6 1 → 3 1.0𝐸 − 4 3.81𝐸 − 3 11 → 3 1.0𝐸 − 2 −7.35𝐸 − 8 Yes 11 → 3

7 4 → 12 5.0𝐸 − 4 5.72𝐸 − 3 17 → 12 1.0𝐸 − 2 −6.25𝐸 − 9 Yes 17 → 12

8 1 → 4 8.0𝐸 − 5 2.27𝐸 − 3 13 → 4 1.0𝐸 − 2 4.41𝐸 − 7 Yes 13 → 4

9 1 → 5 1.0𝐸 − 5 3.52𝐸 − 3 14 → 5 2.0𝐸 − 2 −7.60𝐸 − 9 Yes 14 → 5

Higher repair priority between C and D

Subject to repair
Failed component

∗
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Figure 3: State transition diagram with cut performed (retained states to the left of the red line).

𝑑𝑝
8

(𝑡)

𝑑𝑡
= 𝜆
2

𝑝
2

(𝑡) + 𝜆
4

𝑝
4

(𝑡) − (𝜇
2

) 𝑝
8

(𝑡) ,

𝑑𝑝
12

(𝑡)

𝑑𝑡
= 𝜆
4

𝑝
4

(𝑡) − (𝜇
4

) 𝑝
12

(𝑡) .

(22)
If, instead of using the original diagram with its average

system unavailability (𝑄 = 1.501 × 10−2), we use the average
system unavailability for the simplified diagram, we would

err by 2.18%. Figure 4 shows the simplified state transition
diagram.

In order to further investigate the relative error, we cal-
culated the average system reliability considering the original
state transition diagram with the 25 states and the simplified
diagram for different mission times. Figure 5 displays the
results. It may be seen that even considering mission times
from 1.5 months up to about 3.5 years the relative error
variation is 2.18% at most.
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Figure 4: Simplified state transition diagram obtained by means of GPT.
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Figure 5: Variation of relative error with mission time.

5. Conclusions

A methodology to simplify state transition diagrams in
Markovian reliability analysis that may have a lot of states
was presented. The implementation of this methodology is
relatively simple compared to that presented in [6].

In this study we analyzed the integral quantity of interest
(average system unavailability) with constant failure and
repair rates and considering the state transition diagram of
the original 25 states. It was not considered in this study that
at least one of the elements could have a time-dependent
failure rate; that is, we have not considered aging. With the
simplified transition diagram (9 states), the new value of the
integral quantity of interest was very close to the original
system.

The integral quantity of interest (system average unavail-
ability) for a mission period of 12,500 hours considering the

state transition diagram of the original 25 states was 𝑄 =
1.501 × 10−2. After simplifying the state transition diagram
by means of GPT, the new average system unavailability was
Q = 1.469 × 10−2..

It was shown that by using GPT formalism it was not
possible to obtain the same edge criterion cut proposed in [6],
which also contained state 10 and whose integral quantity is
given by 𝑄 = 1.487 × 10−2. The reason for this difference in
the simplified transition diagram is a result of the change in
the integral quantity since there may be states that have little
influence when their derivatives with respect to failure and
repair are evaluated for cutting the transition diagram, but in
general the simplified transition diagram will be very close.

However, the proposed edge cut using theGPT formalism
can be considered a good approximation of the original tran-
sition diagram for the calculation of 𝑄, with a relative error
of 2.1%. By varying the system mission time, the maximum
relative error obtained with the edge cutting procedure was
2.18%.

Future studies may investigate whether the behavior of
the cutoff criterion used in this work will be valid for
other integral quantities of interest and will decrease the
relative error. It is recommended tomake a comparative study
considering aging in which at least one of the components is
undergoing aging, which will result in greater complexity for
the systems of differential equations and new issues need to
be considered and perhaps new cutoff proposals might have
to be considered.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.



8 Science and Technology of Nuclear Installations

References

[1] J. Endrenyi, Reliability Modeling in Electric Power Systems,
Wiley, Chichester, UK, 1980.

[2] C. Singh andR. Billington, “Frequency andduration concepts in
system reliability evaluation,” IEEE Transactions on Reliability,
vol. R-24, no. 1, pp. 31–36, 1975.

[3] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Van
Nostrand, Princeton, NJ, USA, 1960.

[4] I. A. Papazoglou and E. P. Gyftopoulos, “Markovian relia-
bility analysis under uncertainty with an application on the
shutdown system of the Clinch River Breeder reactor,” Tech.
Rep. NUREG/CR-0405, U. S. Nuclear Regulatory Commission,
Washington, DC, USA, 1978.

[5] I. A. Papazoglou, “Elements of Markovian reliability analysis,”
in Reliability Engineering, A. Amendola and A. S. Saiz de Bus-
tamante, Eds., pp. 171–204, Kluwer Academic Press, Dodrecht,
The Netherlands, 1988.

[6] K. Takaragi, R. Sasaki, and S. Shingai, “A method of rapid
Markov reliability calculation,” IEEE Transactions on Reliability,
vol. R-34, no. 3, pp. 262–268, 1985.

[7] A. Gandini, “System reliability assessment via sensitivity anal-
ysis,” in Safety Design Criteria for Industrial Plants, M. Cuomo
and A. Naviglio, Eds., pp. 121–135, CRC Press, Boca Ratton, Fla,
USA, 1989.

[8] P. F. Frutuoso eMelo, A. C.M.Alvim, and F. C. Silva, “Sensitivity
analysis on the accident rate of a plant equipped with a
single protective channel by generalized perturbationmethods,”
Annals of Nuclear Energy, vol. 25, no. 15, pp. 1191–1207, 1998.

[9] E. E. Lewis, Introduction to Reliability Engineering, Wiley, New
York, NY, USA, 1996.

[10] A. Gandini, “Importance and sensitivity analysis in assessing
system reliability,” IEEE Transactions on Reliability, vol. 39, no.
1, pp. 61–70, 1990.

[11] A. Gandini, “Generalized PerturbationTheory (GPT)methods.
A Heuristic approach,” in Advances in Nuclear Science and
Technology, J. Lewins and M. Becker, Eds., vol. 19, pp. 205–380,
Plenum Press, New York, NY, USA.



Tribology
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fuels
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of
Petroleum Engineering

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Power Electronics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Combustion
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Renewable Energy

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Structures
Journal of

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nuclear Installations
Science and Technology of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solar Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Wind Energy
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Nuclear Energy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014


