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The numerical integration of Hamiltonian systems with oscillating solutions is considered in this paper. A diagonally implicit
symplectic nine-stages Runge-Kutta method with algebraic order 6 and dispersion order 8 is presented. Numerical experiments
with some Hamiltonian oscillatory problems are presented to show the proposed method is as competitive as the existing same
type Runge-Kutta methods.

1. Introduction
In the past decades, there has been great research performed
in the area of the numerical symplectic integration of
Hamiltonian systems (see [1–11]), the first-order Hamiltonian
systems can be expressed as

𝑑𝑝
𝑖

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞
𝑖

,
𝑑𝑞
𝑖

𝑑𝑡
=
𝜕𝐻

𝜕𝑝
𝑖

, 𝑖 = 1, 2, . . . , 𝑑, (1)

where 𝑝, 𝑞 ∈ R and 𝐻 is a twice continuously differentiable
function 𝐻 : 𝑈 → R2𝑑 (𝑈 ⊂ R2𝑑 is an open set). Ham-
iltonian systems often arise in different fields of applied
sciences such as celestial mechanics, astrophysics, chemistry,
electronics, and molecular dynamics (see [12]).

Quite often the solution of (1) exhibits an oscillatory char-
acter, so a numerical method which solved the Hamiltonian
systems with oscillating solutions should be designed to pay
attention to both the symplecticity and the oscillatory char-
acter. The phase-lag (or dispersion) property was introduced
by Brusa and Nigro [13]. In the past few years, lots of work
have been done in the construction symplectic methods for
oscillating problems (see [6–8, 14–18]).

The general 𝑠-stage Runge-Kutta method is defined by

𝑌
𝑖
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𝑛
+ ℎ

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑥
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
𝑗
) , 𝑖 = 1, 2, . . . , 𝑠,

𝑦
𝑛+1

= 𝑦
𝑛
+ ℎ

𝑠

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑥
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) .

(2)

Lemma 1. Assume that the coefficients of the method (2)
satisfy the following relationship:

𝑏
𝑖
𝑎
𝑖𝑗
+ 𝑏
𝑗
𝑎
𝑗𝑖
− 𝑏
𝑖
𝑏
𝑗
= 0, 1 ≤ 𝑖, 𝑗 ≤ 𝑠. (3)

Then the method is symplectic.

We consider constructing symplectic Runge-Kutta meth-
ods with high algebraic and dispersion order of the following
format which is represented in a Butcher tableau, and the
methods satisfy the condition (3) naturally,

𝑐 𝐴
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𝑇 =

𝑐
1

𝑏
1
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𝑐
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𝑏
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...

...
... d
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𝑠
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𝑏
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⋅ ⋅ ⋅
𝑏
𝑠

2
𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑠

, (4)

where 𝑐
𝑖
= ∑
𝑠

𝑗=1
𝑎
𝑖𝑗
, 𝑏
𝑖

̸= 0 (𝑖 = 1, 2, . . . , 𝑠), 𝑎
𝑖𝑗
= 0 (𝑖 < 𝑗).

The design and construction of numerical methods
for Hamiltonian systems have been considered by several
authors. In [3], a class of rational explicit symplectic integra-
tors for one-dimensional oscillatoryHamiltonian problems is
presented. In [4], Hairer andWanner constructed symplectic
Runge-Kutta methods using the W-transformation. In [6],
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Iserles constructed symplectic Runge-Kutta methods with
real eigenvalues with the help of perturbed collocation. In
[11], Sun gave a simple way to symplectic methods with the
help of symplecticity conditions of partitioned Runge-Kutta
methods. In [19], Sanz-Serna and Abia gave order conditions
of symplectic Runge-Kutta methods.

The special symplectic methods (4) have been discussed
by Suris [14], Qin and Zhang [10], Kalogiratou et al. [7, 8],
Cong and Jiang [1], and Franco and Gómez [2]. In [14],
method was derived with order 𝑝 = 3. In [10], method was
derivedwith order𝑝 = 4. In [2], five-stage symmetricmethod
with algebraic order 4 and dispersion order 6 was presented.
In [8], seven-stage method with algebraic order 5 disper-
sion order 6 and seven-stage method with algebraic order
4 dispersion order 8 were presented. In [1], method was
derived with algebraic order 6.

In this paper, a nine-stage 𝐴-stable diagonally implicit
symplectic Runge-Kutta (DISRK) method with algebraic
order 6 and dispersion order 8 is constructed. The structure
of the paper is as follows. In Section 2, we give some prelim-
inary knowledge of dispersion of Runge-Kutta methods. In
Section 3, nine-stage DISRK method with algebraic order 6
anddispersion order 8 is introduced. In Section 4, the stability
and dispersive character of the proposed method are studied.
In Section 5, numerical results are given to investigate the
Hamiltonian quantity of the proposed method; the proposed
method has been compared with the methods of Franco and
Gómez [2], the methods of Kalogiratou et al. [8], and the
method of Cong and Jiang [1], and they are all Runge-Kutta
methods of the format (4); from the numerical experiments,
the proposed method shows some superiority.

2. Preliminary Knowledge

The application of a Runge-Kutta method to the test problem

𝑦

= 𝑖𝜔𝑦, 𝜔 ∈ R, 𝑖 = √1 (5)

leads to the numerical scheme

𝑦
𝑛+1

= 𝑅 (𝑖𝜔ℎ
𝑛
) 𝑦
𝑛
, (6)

and ℎ
𝑛
= 𝑥
𝑛+1

− 𝑥
𝑛
, where the function 𝑅(𝑖V) = 𝑅(𝑖𝜔ℎ

𝑛
)

satisfies the relation

𝑅 (𝑖V) = 1 + 𝑖V𝑏(𝐼 − 𝑖V𝐴)−1𝑒 =
∞

∑

𝑗=0

𝛽
𝑗(𝑖V)
𝑗
, (7)

and for 𝑗 ≥ 1, 𝛽
𝑗
= 𝑏𝐴
𝑗−1

𝑒, 𝛽
0
= 1, 𝑒 = (1, 1, . . . , 1)

𝑇, the
numbers 𝛽

𝑗
depend only on the coefficients of the methods.

Definition 2. For a Runge-Kutta method the dispersion error
(phase-lag error) and the dissipation error (amplification
error) are given, respectively, by

𝜙 (V) = V − arg (𝑅 (𝑖V)) ,

𝑑 (V) = 1 − |𝑅 (𝑖V)| .
(8)

If 𝜙(V) = 𝑂(V𝑞+1), then the Runge-Kutta method is said to
have dispersion order 𝑞, and if 𝑑(V) = 𝑂(V𝑟+1), then the

Runge-Kutta method is said to have dissipation order 𝑟. If at
a point V, 𝑑(V) = 0, then the Runge-Kutta method has zero
dissipation.

Moreover, if we consider the stability function

𝑅 (𝑖V) = 𝛽
0
+ 𝛽
1
V + 𝛽
2
V2 + ⋅ ⋅ ⋅ + 𝛽

𝑛
V𝑛 + ⋅ ⋅ ⋅ (9)

and collect the real and imaginary parts

𝑅 (𝑖V) = 𝐴 (V2) + 𝑖V𝐵 (V2) , (10)

then the dispersion and dissipation errors can be written in
the form

𝜙 (V) = V − arc tan(V
𝐴(V2)

𝐵 (V2)
) ,

𝑑 (V) = 1 − √𝐴2 (V2) + V2𝐵2 (V2).

(11)

An alternative form for 𝑅(𝑧) (𝑧 = 𝑖V) is

𝑅 (𝑧) =
det (𝐼 + 𝑧 (𝑒𝑏

𝑇
− 𝐴))

det (𝐼 − 𝑧𝐴)
. (12)

For symplectic Runge-Kutta methods of format (12)
always have

𝑅 (𝑧) =
det (𝐼 + 𝑧𝐴)

det (𝐼 − 𝑧𝐴)
, (13)

hence they have |𝑅(𝑧)| = 1, so the method we discussed is
zero dissipative method.

Lemma 3 (see [20]). A Runge-Kutta method is dispersive of
order 𝑞, if the coefficients 𝛽

𝑗
in the 𝑅(V) satisfy the following

conditions:

𝛽
0

𝑗!
−

𝛽
1

(𝑗 − 1)!
+

𝛽
2

(𝑗 − 2)!
− ⋅ ⋅ ⋅ + (−1)

𝑗
𝛽
𝑗
= 0,

𝑗 = 1, 3, . . . , 𝑞 − 1,

(14)

and in addition 𝑞 is even.

3. Construction of the New Method

Butcher proves that, if the stage number 𝑠 and the
coefficients 𝑎

𝑖𝑗
, 𝑏
𝑖
are regarded as free parameters, then each

equation of order conditions is independent of the others.
However, as the Runge-Kutta methods (4), which satisfy
the symplectic condition (3), the method coefficients are no
longer free parameters and some order conditions turn out
to be superfluous; Table 1 shows the number of order condi-
tions of symplectic Runge-Kutta methods (SRK) and general
Runge-Kutta methods (RK).
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Table 1: Number of order conditions for RK and SRK to order 6.

Order RK Method SRK Method
1 1 1
2 2 1
3 4 2
4 8 3
5 17 6
6 37 10

For the method of the format (4), the order conditions up
to order 6 are (see [1])
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𝑖

𝑏
𝑖
𝑐
2

𝑖
=
1

3
,

(4rd) ∑

𝑖

𝑏
𝑖
𝑐
3

𝑖
=
1

4
,

(15)

(5th) ∑

𝑖

𝑏
𝑖
𝑐
4

𝑖
=
1

5
, ∑

𝑖,𝑗

𝑏
𝑖
𝑐
2

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
=

1

10
,

∑

𝑖,𝑗,𝑘

𝑏
𝑖
𝑎
𝑖𝑗
𝑐
𝑗
𝑎
𝑖𝑘
𝑐
𝑘
=

1

20
,

(16)
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,
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(17)

From Lemma 3, a SRKmethod of algebraic order 𝑝 has at
least dispersion order 𝑝+1 if 𝑝 is odd, 𝑝 if 𝑝 is even, so, a SRK
method satisfying the above algebraic order conditions is the
one with dispersion order 6, In order to achieve dispersion
order 8; solving the dispersion condition (14), we get 𝛽

7
=

1/7!; that is,

∑
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Conditions (15), (16), (17), and (18) can be rewritten in the
following form:
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3
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4
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5
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6
, 𝜏
7
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8
, 𝜏
9
, 𝜏
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, 𝜏
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(19)

To construct a nine-stage diagonally implicit symplectic
Runge-Kutta method with algebraic order 6 and dispersion
order 8, we only need to choose the free parameters 𝑏

𝑖
(𝑖 =

1, 2, . . . , 9) to minimize the error norm,

𝐴 = ‖𝑇‖2. (20)

Minimizing the error norm, we have the DISRKmethods
parameters in Table 2 (M968: the first number denotes the
number of stages, the second denotes the algebraic order, and
the third denotes the dispersion order of the method).

4. Stability and Dispersive Error Analysis

In this section, we will investigate stability and dispersion
character of the new method M968.

4.1. Stability. Considering a scalar test ordinary differential
equation,

𝑦

= 𝜆𝑦, 𝜆 ∈ 𝐶 Re (𝜆) < 0. (21)

Applying (2) to the test equation yields the stability dif-
ference equation of the form

𝑦
𝑛+1

= 𝑅 (𝑧) 𝑦𝑛, 𝑅 (𝑧) = 1 + 𝑧𝑏
𝑇
(𝐼 − 𝑧𝐴)

−1
𝑒, (22)

where 𝑅(𝑧) is the stability function of the method and 𝐼 is an
identity matrix of size 𝑠×𝑠, so 𝑦

𝑛
→ 0 as 𝑛 → ∞ if and only

if |𝑅(𝑧)| < 1, and themethod is absolutely stable for those val-
ues of 𝑧 for |𝑅(𝑧)| < 1 holds. The stability region is defined as
{𝑧 ∈ 𝐶 : |𝑅(𝑧)| ≤ 1}.

Definition 4 (see [21]). A Runge-Kutta method is said to be
A-stable if its stability region contains 𝐶−1, that is, the non-
positive half-plane {𝑧 | Re(𝑧) < 0}.

For symplectic Runge-Kutta methods of format (4), we
always have |𝑅(𝑧)| = 1. So we have that our new method
M968 is 𝐴-stable.

The stability region of the newmethodM968 is illustrated
in Figure 1; from the figure, we can see that the points in the
nonpositive half-plane and only few points in the right-plane
satisfy |𝑅(𝑧)| ≤ 1; that is, to say the new method M968 we
discussed is 𝐴-stable method.
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Table 2: The value of 𝑏
𝑖
(𝑖 = 1, 2, . . . , 9) and 𝐴.

𝑏
1

𝑏
2

𝑏
3

𝑏
4

𝑏
5

2.44398640327406 −2.46929010453909 0.28158632623993 0.50745789725108 1.17888214306555
𝑏
6

𝑏
7

𝑏
8

𝑏
9

𝐴

−2.31558614555863 2.35136242638295 −1.24653876689005 0.26813982077420 3.496139974472668𝑒 − 014
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Figure 1: Stability region of the M968 method.

4.2. Dispersion Error. We compare the new method M968
to some already known methods; the methods chosen to be
tested are as follows.

(1) MethodM546: fourth-order symmetric DIRK meth-
ods for periodic stiff problems of Franco and Gómez
(see [2]), a symmetric diagonally implicit Runge-
Kutta method with five stages of algebraic order 4
dispersion order 6 was proposed.

(2) MethodM756: diagonally implicit symplectic Runge-
Kutta methods with special properties of Kalogiratou
et al. are a seven-stage method with algebraic order 5
and dispersion order 6 (see [8]).

(3) MethodM748: diagonally implicit symplectic Runge-
Kutta methods with special properties of Kalogiratou
et al. are a seven-stage method with algebraic order 4
and dispersion order 8 (see [8]).

(4) MethodM766: diagonally implicit symplectic Runge-
Kutta methods of fifth- and sixth- order of Cong and
Jiang is a seven-stage method with algebraic order 6
and dispersion order 6 (see [1]).

(5) MethodM968 is proposed in the paper.

Figure 2 shows the dispersion error of the five compared
methods,; from the figures, we see that the dispersive error
curve of M968 and M748 appears to overlap, for they have
the same dispersive order, and this is the case for M766 and
M756. On the other hand, we can see the dispersion orders
of the M968 and M748 are the highest ones in the compared
five methods; the lowest one is the method M546 of Franco
and Gómez ([2]).
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Figure 2: Difference in dispersion. Methods used: (i)–◻–., in red,
our method, M968. (ii)–, in green, M748 ([8]). (iii)–∗–, in blue,
M766 ([1]). (iv)–., in black, M546 ([2]). (v)–⋆–, in pink, M756 ([8]).

5. Numerical Experiments

5.1. Numerical Examples. In this numerical study, we are
interested in the errors of the Hamiltonian quantity. Three
well known Hamiltonian problems from the literature were
chosen for our test.

5.1.1. Harmonic Oscillatory System. Consider

𝑞

= 𝑝, 𝑝


= −𝑞. (23)

The Hamiltonian function is

𝐻 =
1

2
(𝑝
2
+ 𝑞
2
) . (24)

The exact solution is

(
𝑝 (𝑡)

𝑞 (𝑡)
) = (

cos (𝑡) − sin (𝑡)
sin (𝑡) cos (t) ) (

𝑝 (0)

𝑞 (0)
) , (25)

where 𝑝(0) = −0.1, 𝑞(0) = 0.3.
We get the Hamiltonian error GEH = ‖𝐻

𝑛
− 𝐻
0
‖ of the

compared five methods on the interval 𝑡 ∈ [0, 10000] and
the step-size ℎ = 𝜋/300. Figure 3 shows the last 20000-step
Hamiltonian quantity error. From the figure, we can see that
the accuracy of M968 is slightly inferior to the M766 and
more better than M748, M756, and M546. The M766 is of
more accuracy than theM968, for it has lower computational
cost than M968 when solving problem 1, but on the other
hand, the Hamiltonian quantity error of the M766 ranges
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Figure 3: Errors of the Hamiltonian function of (23) on [0, 10000],
with ℎ = 𝜋/300.

from 10
−15 to 10−15.4 in the last 20000 steps; it does not keep

the Hamiltonian quantity unchanged and the same case for
M546 when the step-size ℎ = 𝜋/300.

5.1.2. The Mathematical Pendulum. It is a famous model of
nonlinear differential equations in classical mechanics that
can be written as

𝑝

= − sin 𝑞, 𝑞


= 𝑝. (26)

The Hamiltonian function is

𝐻 =
1

2
𝑝
2
− cos 𝑞. (27)

The initial values are 𝑝(0) = 0, 𝑞(0) = 0.5.
We get the Hamiltonian error GEH = ‖𝐻

𝑛
− 𝐻
0
‖ of the

compared five methods on the interval 𝑡 ∈ [0, 10000] and
the step-size ℎ = 𝜋/300; Figure 4 shows the last 20000 steps
of Hamiltonian quantity error. From the figure, we can see
that the M968 is the best one in the five compared methods,
the Hamiltonian error of M756 mainly ranges from 10

−11.6

to 10
−10.8; the others can keep the Hamiltonian quantity

unchanged in the last 20000 steps.

5.1.3. The Two-Body Problem. Consider

𝑝


1
= −

𝑞
1

(𝑞2
1
+ 𝑞2
2
)
3/2

, 𝑝


2
= −

𝑞
2

(𝑞2
1
+ 𝑞2
2
)
3/2

,

𝑝


1
= 𝑝
1
, 𝑝



2
= 𝑝
2
.

(28)

The Hamiltonian function is

𝐻(𝑝, 𝑞) =
1

2
(𝑝
2

1
+ 𝑝
2

2
) −

1

(𝑞2
1
+ 𝑞2
2
)
1/2

, (29)
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Figure 4: Errors of the Hamiltonian function of (26) on [0, 10000],
with ℎ = 𝜋/300.

where 𝑝 = (𝑝
1
, 𝑝
2
)
𝑇 and 𝑞 = (𝑞

1
, 𝑞
2
)
𝑇 are the velocity and

position vectors, with the initial conditions

𝑝
1 (0) = 0, 𝑝

2 (0) = 1,

𝑞
1 (0) = 1, 𝑞

2 (0) = 0.

(30)

The exact solution of this initial value problem is given by

𝑝
1 (𝑡) = − sin (𝑡) , 𝑝

2 (𝑡) = cos (𝑡) ,

𝑞
1 (𝑡) = cos (𝑡) , 𝑞

2 (𝑡) = sin (𝑡) .
(31)

The system has the energy 𝐻 = (1/2)(𝑝
1
(𝑡)
2
+ 𝑝
2
(𝑡)
2
) −

(1/(𝑞
1
(𝑡)
2
+ 𝑞
2
(𝑡)
2
)
1/2

) and the angular momentum 𝑀 =

𝑞
1
(𝑡)𝑝
2
(𝑡) − 𝑞

2
(𝑡)𝑝
1
(𝑡) as conserved quantities.

We check the preservation of the Hamiltonian𝐻 and the
angular momentum 𝑀 of the compared five methods when
solving the two-body problem. The last 10000-step global
Hamiltonian error GEH = ‖𝐻

𝑛
− 𝐻
0
‖ and the global angular

momentum error GEM = ‖𝑀
𝑛
−𝑀
0
‖were plotted in Figures

5 and 6 with the interval 𝑡 ∈ [0, 10000] and the step-size
ℎ = 𝜋/60, where𝐻

𝑛
and𝑀

𝑛
are the computed values of𝐻 and

𝑀 at each integration point 𝑡
𝑛
. From the figures, we can see

that the M968 is the best one in the five compared methods.

6. Conclusion

Here we have constructed a diagonally implicit symplectic
nine-stage Runge-Kutta method with algebraic order 6 and
dispersion order 8. Aswe can see from the stability region and
difference in dispersion, the new method is 𝐴-stable method
and more easily implemented than general fully implicit
methods. The numerical experiments carried out with some
oscillatory Hamiltonian systems show that the new method
is as competitive as the existing Runge-Kutta methods of the
same type.
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Figure 5: Errors of the Hamiltonian function of (28) on [0, 10000],
with ℎ = 𝜋/60.
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Figure 6: Errors of the Momentum function of (28) on [0, 10000],
with ℎ = 𝜋/60.
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