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We investigate the applicability of the compact finite difference relaxation method (CFDRM) in solving unsteady boundary layer
flow problems modelled by nonlinear partial differential equations. The CFDRM utilizes the Gauss-Seidel approach of decoupling
algebraic equations to linearize the governing equations and solve the resulting system of ordinary differential equations using
compact finite difference schemes. The CFDRM has only been used to solve ordinary differential equations modelling boundary
layer problems. This work extends its applications to nonlinear partial differential equations modelling unsteady boundary layer
flows. The CFDRM is validated on two examples and the results are compared to results of the Keller-box method.

1. Introduction

The many, important applications associated with boundary
layer flow and heat transfer induced by a stretching surface
havemade them one of themost studied problems in the field
of fluid dynamics. These applications include aerodynamic
extrusion of plastic sheets, the cooling process of metallic
plates in a cooling bath, and the cooling and/or drying of
paper and textiles Sakiadis [1] was the first to study boundary
layer flows induced by a stretching surface. Since then, due to
their industrial importance they have been studied by quite a
number of researchers. Initially, steady flowswere considered,
but since it is not always to maintain steady state conditions,
in recent years the focus has shifted towards unsteady flows.
In this work, we consider unsteady flows modelled by partial
differential equations.

In solving the unsteady boundary layer problems many
researchers have employed the Williams III and Rhyne [2]
transformation. Williams III and Rhyne introduced self-
similar coordinates to transform the equations governing
the unsteady flows by converting the infinite time scale of
unsteady problems to a finite region of integration. Various
analytical and numericalmethods have been used to solve the
transformed equations.TheKeller-boxmethod of Cebeci and

Bradshaw [3] has been very popular in solving this kind of
problems amongst researchers. These include Seshadri et al.
[4] who combined the Keller-box and perturbation series
approach for the solution of unsteady mixed convection flow
along a heated vertical plate. Nazar et al. [5, 6] solved the
unsteady boundary layer flow problem due to an impulsively
stretching surface in a rotating fluid by means of the Keller-
box numerical method, and they obtained a first-order
perturbation approximation of the solution.The limitation of
the perturbation approach, as noted by Liao [7], is that it gives
solutions that are only valid for small time. Liao proposed
the use of the homotopy analysis method (HAM) instead and
since then the HAM has been dominantly used in solving
the unsteady boundary layer flow problems (see [8–16]). The
advantage of the HAM over the perturbation techniques is
that it is able to produce solutions valid for all time.

In this work we propose the use of a new method that
combines the use of higher order compact finite difference
(CFD) schemes and the Gauss-Seidel approach of solving
algebraic equations. The method called compact finite differ-
ence relaxation method (CFDRM) has only been used once
by Dlamini et al. [17] to solve ordinary differential equations.
The CFDRM is based on simple decoupling and rearrange-
ment of the governing equations and numerically integrating
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the resulting equations using the CFD schemes. The use of
higher order CFD schemes is motivated by the fact that
they produce highly accurate solutions on coarser grids
with greater computational efficiency. Various CFD schemes
used for applications such as interpolation, filtering, and
evaluating high-order derivatives were discussed in detail by
Lele [18]. CFD schemes have been used to solve, for exam-
ple, Burger’s equation [19, 20], Navier-Stokes equation [21],
Korteweg-de Vries equation [22], Black-Scholes equation
[23], and many more [24–26]. In this work we explore their
usage in solving unsteady boundary layer flow problems.

We consider two examples, the unsteady one-dimen-
sional MHD laminar boundary layer flow due to an impul-
sively stretching surface that was previously studied by Srini-
vasa and Eswara [27], and the unsteady three-dimensional
MHD flow and heat transfer over an impulsively stretching
plate previously studied by Xu et al. [8]. The main objective
of the study is to investigate the applicability of theCFDRM to
solve unsteady boundary layer problems modelled by partial
differential equations. The results are compared with results
of the Keller-box method.

The rest of the paper is organized as follows. In Section 2,
we discuss the derivation of the compact finite difference
schemes, In Section 3 we discuss the development of the
CFDRM for computing the solution of an unsteady MHD
laminar boundary layer flow due to an impulsively stretching
surface. Section 4 presents CFDRM implementation of an
unsteady three-dimensional MHD flow and heat transfer
over an impulsively stretching plate. Section 5 contains the
results and discussion and the conclusions are given in
Section 6.

2. Compact Finite Difference Schemes

In the derivation of the CFD schemes we consider a one-
dimensional uniform mesh on the region [𝑎, 𝑏] with nodes
𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑁), where

𝑎 = 𝑥
1
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2
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𝑁
= 𝑏, (1)

and a corresponding function 𝑦
𝑖
= 𝑦(𝑥

𝑖
) at the nodes. The

distance between any two successive nodes is a constant ℎ =

𝑥
𝑖
−𝑥
𝑖−1

. Sixth-order approximations of the first, second, and
third derivatives at interior nodes can be obtained using the
following schemes (see [18] for details):
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For illustrative purposes we describe the application of
the CFD schemes to second-order differential equations for

𝑦(𝑥) with known boundary conditions at 𝑦(𝑎) and 𝑦(𝑏).
Consider the nonlinear differential equations
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where 𝑓(𝑥, 𝑦, 𝑦

) is a nonlinear function, 𝑝(𝑥) and 𝑞(𝑥) are

known functions of 𝑥, and 𝑦
𝑎
and 𝑦
𝑏
are known constants. In

solving (4) we apply the CFD approximation for the first and
second derivatives given by (2) and (3), respectively, at the
interior nodes (𝑖 = 2, . . . , 𝑁 − 1). Since we know boundary
conditions at 𝑖 = 1 and 𝑖 = 𝑁, the CFD schemes must be
adjusted for the nodes near the boundary points. In order to
maintain the order 𝑂(ℎ

6
) accuracy at the boundary points as

in the interior points and to maintain the same tridiagonal
format, we use the following one sided scheme at 𝑖 = 2:
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and when 𝑖 = 𝑁 − 1 we use
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where 𝑎
𝑖
, 𝑏
𝑖
(𝑖 = 1, . . . , 7) are constants to be determined.

To obtain a sixth-order accurate scheme we use Taylor series
expansion about 𝑥

1
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7
), in (5) and (6),

respectively, and equate terms of order ℎ. In each case, we
obtain a system of seven linear algebraic equations in seven
unknowns which are solved to give
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Similarly, for the second derivatives, we use
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at 𝑖 = 2 and

2

11
𝑦


𝑁−2
+ 𝑦


𝑁−1

=
1

ℎ2
(𝑑
1
𝑦
𝑁

+ 𝑑
2
𝑦
𝑁−1

+ 𝑑
3
𝑦
𝑁−3

+ 𝑑
4
𝑦
𝑁−4

+𝑑
5
𝑦
𝑁−5

+ 𝑑
6
𝑦
𝑁−6

+ 𝑑
7
𝑦
𝑁−7

+ 𝑑
8
𝑦
𝑁−8

) ,

(9)

at 𝑖 = 𝑁 − 1. The parameters 𝑐
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by expanding (8) and (9) using Taylor series and equating
powers of ℎ and subsequently solving the resulting equations.
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Using the above equations, the equations for approximat-
ing the first- and second-order derivatives can be expressed
as
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3. Unsteady MHD Laminar Boundary
Layer Flow Due to an Impulsively
Stretching Surface

We consider the unsteady, laminar incompressible flow of a
vicious electrically conducting fluid over a linear surface.This
problemwas studied by Srinivasa and Eswara [27].They used
the Keller-box method to solve the problem. After applying
Williams III and Rhyne [2] similarity transformation to
the original equation governing this flow they obtained the
following dimensionless governing equation for the flow
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subject to the boundary conditions
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with 𝑏 as positive constant and 𝑡 as the time variable. In the
analysis of boundary layer flow problems, a quantity that is
of physical interest is the skin friction which in this model is
given [4, 5, 7], in dimensionless form, as

𝐶
𝑓
Re1/2
𝑥

= 𝜉
−1/2

𝑓

(𝜉, 0) , (18)

where Re
𝑥
is the local Reynolds number.

The initial unsteady solution at 𝜉 = 0 (𝜏 = 0) for
the governing equation (15) is obtained as a solution of the
equation
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where the primes denote differentiation with respect to 𝜂.
Solving (19) gives
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The steady state solution when 𝜉 = 1, corresponding to
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The solution to the above equation is

𝑓 (𝜂, 1) = 1 − exp (𝜂) . (23)

Now we discuss the development of the CFDRM to solve
the partial differential equation (15). The CFDRM works for
systems of differential equations and hence it is convenient to
reduce the order of (15) from three to two. We set 𝑓 = 𝑢, so
that (15) becomes
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The CFDRM algorithm uses the same ideas as the SRM
described in [28–30]. Both employ the Gauss Seidel idea
of decoupling systems of algebraic equations to decouple
differential equations. In the framework of the SRM the
resulting linear system of differential equations is integrated
by the spectral collocation method. Instead of using spectral
method, the CFDRM uses the compact finite differences
to integrate the linearized system of differential equations.
Applying the CFDRM on (24) we obtain the following linear
PDEs:
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Here, 𝑟 denotes the iteration level. All linear terms are
evaluated at current iteration level (𝑟+1) and nonlinear terms
at the previous iteration level (𝑟). The initial approximations
for solving (25)-(26) are obtained as the solutions at 𝜉 = 0.
Thus 𝑓
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Starting from given initial approximations (29), the iteration
scheme (25) can be solved iteratively for 𝑢
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+ a
1,𝑟
E
1
] 𝑈
𝑟+1

+H
2
+ a
1, 𝑟
H
1
+ a
2, 𝑟

= 𝜉 (1 − 𝜉)
𝑑𝑈
𝑟+1

𝑑𝜉
,

(31)

E
1
𝐹
𝑟+1

+H
1
= 𝑈
𝑟+1

, (32)

𝑓
𝑟+1

(𝜂
𝑁
𝑥

, 𝜉) = 0, 𝑢
𝑟+1

(𝜂
0
, 𝜉) = 0,

𝑢
𝑟+1

(𝜂
𝑁
𝑥

, 𝜉) = 1,

(33)

with initial approximations

𝑓
𝑟+1

(𝜂
𝑗
, 0) = 𝜂

𝑗
erfc(

𝜂
𝑗

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

𝑗

4
)] ,

𝑢
𝑟+1

(𝜂
𝑗
, 0) = erfc(

𝜂
𝑗

2
) , 𝑗 = 0, 1, 2, . . . , 𝑁

𝑥
,

𝑈
𝑟+1

=

[
[
[
[
[
[
[

[

𝑢
𝑟+1

(𝜂
0
, 𝜉)

𝑢
𝑟+1

(𝜂
1
, 𝜉)

...
𝑢
𝑟+1

(𝜂
𝑁
𝑥
−1
, 𝜉)

𝑢
𝑟+1

(𝜂
𝑁
𝑥

, 𝜉)

]
]
]
]
]
]
]

]

, 𝐹
𝑟+1

=

[
[
[
[
[
[
[

[

𝑓
𝑟+1

(𝜂
0
, 𝜉)

𝑓
𝑟+1

(𝜂
1
, 𝜉)

...
𝑓
𝑟+1

(𝜂
𝑁
𝑥
−1
, 𝜉)

𝑓
𝑟+1

(𝜂
𝑁
𝑥

, 𝜉)

]
]
]
]
]
]
]

]

,

a
2, 𝑟

=

[
[
[
[
[
[
[

[

𝑎
2, 𝑟

(𝜂
0
, 𝜉)

𝑎
2, 𝑟

(𝜂
1
, 𝜉)

...
𝑎
2, 𝑟

(𝜂
𝑁
𝑥
−1
, 𝜉)

𝑎
2, 𝑟

(𝜂
𝑁
𝑥

, 𝜉)

]
]
]
]
]
]
]

]

,

a
1, 𝑟

=

[
[
[
[
[

[

𝑎
1, 𝑟

(𝜂
0
, 𝜉)

𝑎
1,𝑟

(𝜂
2
, 𝜉)

d
d

𝑎
1, 𝑟

(𝜂
𝑁
𝑥

, 𝜉)

]
]
]
]
]

]

.

(34)

Next, we apply the finite difference scheme on (31) in
the 𝜉-direction with centering about the midpoint 𝜉𝑛+(1/2) to
obtain

X𝑈
𝑛+1

𝑟+1
= Y𝑈

𝑛

𝑟+1
+ G, (35)

subject to the following boundary and initial conditions:

𝑢
𝑟+1

(𝜂
0
, 𝜉
𝑛
) = 0, 𝑢

𝑟+1
(𝜂
𝑁
𝑥

, 𝜉
𝑛
) = 1,

𝑛 = 0, 1, 2, . . . , 𝑁
𝑡
,

𝑢
𝑟+1

(𝜂
𝑗
, 0) = erfc(

𝜂
𝑗

2
) , 𝑗 = 0, 1, 2, . . . , 𝑁

𝑥
,

(36)

where

X = −
1

2
(E
2
+ a𝑛+(1/2)
1, 𝑟

E
1
) +

𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

Y =
1

2
(E
2
+ a𝑛+(1/2)
1, 𝑟

E
1
) +

𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

G = −H
2
− a
1,𝑟
H
1
− a𝑛+(1/2)
2,𝑟

,

(37)

where I is an (𝑁
𝑥
+1)×(𝑁

𝑥
+1) identity matrix.Thematrices

E
1
,E
2
,H
1
, and H

2
are as described in Section 3 above. Thus,

starting from the initial condition 𝑈
0

𝑟+1
, given by (29), (35)

can be solved iteratively to give approximate solutions for
𝑢
𝑟+1

(𝜂, 𝜉), 𝑟 = 0, 1, 2, . . ., until a solution that converges to
within a given accuracy level is obtained. The solution 𝑢

𝑟+1
is

used in (32) which is, in turn, solved for 𝑓
𝑟+1

.

4. Unsteady Three-Dimensional MHD Flow
and Heat Transfer over an Impulsively
Stretching Plate

We consider the unsteady, three-dimensional flow of an elec-
trically conducting fluid caused by an impulsive stretching
surface in two lateral directions. The fluid is electrically
conducting in a traverse magnetic field. The magnetic field is
neglected under the assumption of a smallmagnetic Reynolds
number. Xu et al. [8] solved this problem using the homotopy
analysis method. Here we use the compact finite difference
relaxation method to solve the governing equations. The
flow is governed by the following three partial differential
equations:

𝑓


+ (1 − 𝜉) (
𝜂

2
𝑓

− 𝜉

𝜕𝑓


𝜕𝜉
)

+ 𝜉 [(𝑓 + 𝑠) 𝑓

− (𝑓

)
2

− 𝑀𝑓

] = 0,

(38)

𝑠


+ (1 − 𝜉) (
𝜂

2
𝑔

− 𝜉

𝜕𝑠


𝜕𝜉
)

+ 𝜉 [(𝑓 + 𝑠) 𝑠

− (𝑠

)
2

− 𝑀𝑠

] = 0,

(39)

𝑔

+ Pr (1 − 𝜉) (

𝜂

2
𝑔

− 𝜉

𝜕𝑔

𝜕𝜉
) + Pr𝜉 (𝑓 + 𝑠) 𝑔


= 0, (40)
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with the following boundary conditions:

𝑓 (𝜉, 0) = 𝑠 (𝜉, 0) = 0, 𝑓

(𝜉, 0) = 𝑔 (𝜉, 0) = 1,

𝑠

(𝜉, 0) = 𝑐,

𝑓

(𝜉,∞) = 𝑠


(𝜉,∞) = 𝑔 (𝜉,∞) = 0.

(41)

In the above equations prime denotes the derivative with
respect to 𝜂 and 𝑐 the stretching parameter is a positive
constant.𝑀 is the local Hartman number and Pr the Prandtl
number.The initial unsteady solution can be found exactly by
setting 𝜉 = 0 in the above equations and solving the resulting
equations. The closed form analytical solutions are given by

𝑓 (0, 𝜂) = 𝜂 erfc(
𝜂

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

4
)] ,

𝑠 (0, 𝜂) = 𝑐(𝜂 erfc(
𝜂

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

4
)]) ,

𝑔 (0, 𝜂) = erfc(
√Pr𝜂

2
) .

(42)

Now we discuss the development of the spectral relax-
ation method to solve the system of partial differential equa-
tions (38)–(40). First, we set 𝑓 = 𝑢 and 𝑠


= V, so that (38)

and (39) become

𝑢

+ (1 − 𝜉) (

𝜂

2
𝑢

− 𝜉

𝜕𝑢

𝜕𝜉
) + 𝜉 [(𝑓 + 𝑔) 𝑢


− 𝑢
2
− 𝑀𝑢] = 0,

V + (1 − 𝜉) (
𝜂

2
V − 𝜉

𝜕V
𝜕𝜉

) + 𝜉 [(𝑓 + 𝑔) V − V2 − 𝑀V] = 0.

(43)

Applying the CFDRM on the resulting system of nonlinear
partial differential equations gives the following linear partial
differential equations:

𝑢


𝑟+1
+ 𝑎
1, 𝑟

𝑢


𝑟+1
+ 𝑎
2, 𝑟

𝑢
𝑟+1

+ 𝑎
3, 𝑟

= 𝜉 (1 − 𝜉)
𝜕𝑢
𝑟+1

𝜕𝜉
,

𝑓


𝑟+1
= 𝑢
𝑟+1

,

V
𝑟+1

+ 𝑏
1, 𝑟
V
𝑟+1

+ 𝑏
2, 𝑟
V
𝑟+1

+ 𝑏
3, 𝑟

= 𝜉 (1 − 𝜉)
𝜕V
𝑟+1

𝜕𝜉
,

𝑠


𝑟+1
= V
𝑟+1

,

𝑔


𝑟+1
+ 𝑐
1, 𝑟

𝑔


𝑟+1
= 𝜉 (1 − 𝜉)

𝜕𝜃
𝑟+1

𝜕𝜉
,

(44)

with the following boundary conditions:

𝑢
𝑟+1 (0, 𝜉) = 𝑔

𝑟+1 (0, 𝜉) = 1,

𝑓
𝑟+1 (0, 𝜉) = 𝑠

𝑟+1 (0, 𝜉) = 0,

V
𝑟+1 (0, 𝜉) = 𝑐,

𝑢
𝑟+1 (∞, 𝜉) = V

𝑟+1 (∞, 𝜉) = 𝑔
𝑟+1 (∞, 𝜉) = 0,

(45)

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

M = 0

M = 0.5

M = 1

𝜉

−
f
𝜂
𝜂
(𝜂
,𝜉
)

Figure 1: CFDRM solution of −𝑓(0, 𝜉) for different values of𝑀 for
Example 1.

where

𝑎
1, 𝑟

=
1

2
𝜂 (1 − 𝜉) + 𝜉 (𝑓

𝑟
+ 𝑠
𝑟
) ,

𝑎
2, 𝑟

= −𝑀𝜉, 𝑎
3, 𝑟

= −𝜉𝑢
2

𝑟
,

𝑏
1, 𝑟

= 𝑎
1, 𝑟

, 𝑏
2, 𝑟

= 𝑎
2, 𝑟

, 𝑏
3, 𝑟

= −𝜉V2
𝑟
,

𝑐
1, 𝑟

= Pr(1

2
𝜂 (1 − 𝜉) + 𝜉 (𝑓

𝑟
+ 𝑠
𝑟
)) .

(46)

Starting from given initial approximations, denoted by
𝑢
0
(𝜂, 𝜉), 𝑓

0
(𝜂, 𝜉), V

0
(𝜂, 𝜉), 𝑠

0
(𝜂, 𝜉), and 𝑔

0
(𝜂, 𝜉), (44) can be

solved iteratively for the unknown functions. To solve the
above decoupled system of differential equations we apply
CFD schemes on the space variable and finite differences
in the time variable as described previously and obtain the
following system of decoupled equations:

X
1
𝑈
𝑛+1

𝑟+1
= Y
1
𝑈
𝑛

𝑟+1
+ 𝐺
1
,

E
1
𝐹
𝑛+1

𝑟+1
+H
1
= 𝑈
𝑛+1

𝑟+1
,

X
2
𝑉
𝑛+1

𝑟+1
= Y
2
𝑉
𝑛

𝑟+1
+ 𝐺
2
,

E
1
𝑆
𝑛+1

𝑟+1
+H
1
= 𝑉
𝑛+1

𝑟+1
,

X
3
𝐺
𝑛+1

𝑟+1
= Y
3
𝐺
𝑛

𝑟+1
+ 𝐺
3
,

(47)

with the following boundary conditions:

𝑢
𝑟+1

(𝜂
0
, 𝜉
𝑛
) = 𝑔
𝑟+1

(𝜂
0
, 𝜉
𝑛
) = 1,

V
𝑟+1

(𝜂
0
, 𝜉
𝑛
) = 𝑐, 𝑓

𝑟+1
(𝜂
0
, 𝜉
𝑛
) = 𝑠
𝑟+1

(𝜂
0
, 𝜉
𝑛
) = 0,

𝑢
𝑟+1

(𝜂
∞
, 𝜉
𝑛
) = V
𝑟+1

(𝜂
∞
, 𝜉
𝑛
) = 𝑔
𝑟+1

(𝜂
∞
, 𝜉
𝑛
) = 0,

𝑛 = 0, 1, 2, . . . , 𝑁
𝑡
,

(48)
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Figure 2: CFDRM solution of −𝑓(0, 𝜉) and −𝑠

(0, 𝜉) for different values of𝑀 when 𝑐 = 0.5 and Pr = 0.7.

−
f
𝜂
𝜂
(𝜂
,𝜉
)

0.6

0.4

0.8

1
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0

0.8
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−
s 𝜂

𝜂
(𝜂
,𝜉
)
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𝜉
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Figure 3: CFDRM solution of −𝑓(0, 𝜉) and −𝑠

(0, 𝜉) for different values of 𝑐 when 𝑀 = 1 and Pr = 0.7.

and initial functions

𝑓
𝑟+1

(𝜂
𝑗
, 0) = 𝜂 erfc(

𝜂
𝑗

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

𝑗

4
)] ,

𝑠
𝑟+1

(𝜂
𝑗
, 0) = 𝑐(𝜂 erfc(

𝜂
𝑗

2
) +

2

√𝜋
[1 − exp(−

𝜂
2

𝑗

4
)]) ,

𝑔
𝑟+1

(𝜂
𝑗
, 0) = erfc(

√Pr𝜂
𝑗

2
) , 𝑗 = 0, 1, 2, . . . , 𝑁

𝑥
.

(49)

The matrices above are defined as

X
1
=

1

2
(E
2
+ a𝑛+(1/2)
1, 𝑟

E
1
+ a
2, 𝑟

) −
𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

X
2
=

1

2
(E
2
+ b𝑛+(1/2)
1, 𝑟

E
1
+ b
2, 𝑟

) −
𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

X
3
=

1

2
(E
2
+ c𝑛+(1/2)
1, 𝑟

E
1
) −

Pr𝜉𝑛+(1/2) (1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

Y
1
= −

1

2
(E
2
+ a𝑛+(1/2)
1, 𝑟

E
1
+ a
2,𝑟

) −
𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,
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Figure 4: CFDRM solution of −𝑔(0, 𝜉) for different values of𝑀 and 𝑐, respectively, when Pr = 0.7.

Y
2
= −

1

2
(E
2
+ b𝑛+(1/2)
1, 𝑟

E
1
+ b
2,𝑟

) −
𝜉
𝑛+(1/2)

(1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

Y
3
= −

1

2
(E
2
+ c𝑛+(1/2)
1, 𝑟

E
1
) −

Pr𝜉𝑛+(1/2) (1 − 𝜉
𝑛+(1/2)

)

Δ𝜉
I,

G
1
= a𝑛+(1/2)
3, 𝑟

−H
2
− a𝑛+(1/2)
1, 𝑟

H
1
,

G
2
= b𝑛+(1/2)
3, 𝑟

−H
2
− b𝑛+(1/2)
1, 𝑟

H
1
,

G
3
= −H
2
− c𝑛+(1/2)
1, 𝑟

H
1
.

(50)

The vectors 𝑈, 𝐹, 𝑉, 𝑆, and 𝐺 are the vectors of the
functions 𝑢, 𝑓, V, 𝑠, and 𝑔, respectively, when evaluated at the
grid points 𝜂

𝑗
(𝑗 = 0, 1, . . . , 𝑁

𝑥
).

5. Results and Discussion

In this section we give the CFDRM and Keller-box method
results for the two examples described above. The Keller-
box method is an implicit finite difference scheme which is
made up of four major steps. First, the governing differential
equation is reduced to a system of first-order equations. The
resulting first-order equations are discretized using central
finite differences. The resulting algebraic equations are lin-
earised by Newton’s method and written in matrix vector
form. The linear system obtained is then solved by block
tridiagonal elimination technique.

Example 1 was solved for 𝑀 = 1. The value of 𝜂
∞
, which

correspond to 𝜂 = ∞, was approximated to be equal to 10.
This value was found to be large enough to give consistent
results. For the CFDRM, uniform stepsizes Δ𝜂 = 0.1 in the
𝜂-direction and Δ𝜉 = 0.0025 in the 𝜉-direction were used
to get results accurate to six decimal places. For the Keller-
box, stepsizes Δ𝜂 = 0.005 and Δ𝜉 = 0.004 were used. Table 1

Table 1: CFDRMandKeller-box results for the skin friction𝑓

(0, 𝜉)

in Example 1 when 𝑀 = 1.

𝜉
CFDRM Keller-box

𝑓

(0, 𝜉) Time (sec) 𝑓


(0, 𝜉) Time (sec)

0.1 −0.665032 0.234 −0.665031 3.427
0.3 −0.854591 0.687 −0.854591 10.029
0.5 −1.029610 1.156 −1.029610 16.657
0.7 −1.191787 1.606 −1.191787 23.267
0.9 −1.342594 2.110 −1.342594 31.140

shows the skin friction 𝑓

(0, 𝜉) for Example 1 obtained using

both CFDRM and Keller-box method. The times taken to
compute the solution at different values of 𝜉 are also given
in Table 1. It can be seen that the CFDRM takes a very short
period of time to compute the solution compared to the
Keller-box method. The Keller-box required quite a small Δ𝜂

to get a solution accurate to six decimal places. This means
that more points are needed in the Keller-box compared
to the CFDRM. Figure 1 shows the effects of varying the
magnetic field parameter (𝑀) on the skin friction 𝑓


(0, 𝜉).

The parameters 𝑀 = 1, 𝑐 = 0.5, and Pr = 0.7 were used
to solve the governing equations in Example 2. The value of
𝜂
∞

was approximated to be equal to 10. For the CFDRM,
uniform stepsizes Δ𝜂 = 0.1 and Δ𝜉 = 0.0025 to get results
accurate to six decimal places. For the Keller-box, stepsizes
Δ𝜂 = 0.005 and Δ𝜉 = 0.002 were used. The quantities of
physical interest (𝑓(0, 𝜉), 𝑠(0, 𝜉), and 𝑔


(0, 𝜉)) are tabulated

for both CFDRM and Keller-box and are shown in Table 2.
The results are in good agreement with six decimal places as
depicted in the table. Table 3 shows the times taken by each
method at various values of 𝜉. It is evident from both Tables
2 and 3 that the CFDRM computes the solution in a very
short period of time compared to the Keller-box. The main
reason is that a very small Δ𝜂 and hence a large number of
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Table 2: CFDRM and Keller-box results for 𝑓(0, 𝜉), 𝑠(0, 𝜉), and 𝑔

(0, 𝜉) in Example 2 when 𝑀 = 1, 𝑐 = 0.5, and Pr = 0.7.

𝜉
𝑓

(0, 𝜉) 𝑠


(0, 𝜉) 𝑔


(0, 𝜉)

CFDRM Keller-box CFDRM Keller-box CFDRM Keller-box
0.1 −0.674444 −0.674444 −0.327586 −0.327586 −0.483085 −0.483085
0.3 −0.880408 −0.880408 −0.414565 −0.414565 −0.503506 −0.503506
0.5 −1.068930 −1.068930 −0.496369 −0.496369 −0.521021 −0.521021
0.7 −1.242068 −1.242068 −0.573224 −0.573224 −0.534064 −0.534064
0.9 −1.401598 −1.401598 −0.645382 −0.645382 −0.537130 −0.537130
Time (sec) 6.074 238.769

Table 3: Computational times for Example 2 at various values of 𝜉.

𝜉 CFDRM Keller-box
0.1 0.635 22.644
0.3 1.802 65.809
0.5 3.032 109.886
0.7 4.256 157.737
0.9 5.559 215.769

points are required in the Keller-box method for the required
accuracy.Graphical solutions of𝑓(0, 𝜉), 𝑠(0, 𝜉), and𝑔


(0, 𝜉)

in the entire range 0 ≤ 𝜉 ≤ 1 for Example 2 are shown in
Figures 2, 3, and 4.The solution is plotted for different values
of 𝑀 and 𝑐. Comparing the plots with those of [8], it can
be seen that the results of the CFDRM are comparable with
their homotopy analysis method results. Xu et al. [8] used
the homotopy analysis method to get series solutions which
are accurate and uniformly valid for all dimensionless time
0 ≤ 𝜉 ≤ 1. From these figures it is clear that the CFDRM is
able to give results which are accurate and uniformly valid for
all dimensionless time 0 ≤ 𝜉 ≤ 1.

6. Conclusion

In this paper, two unsteady boundary layer flow problems
have been investigated. The nonlinear partial differential
equations governing the unsteady boundary layer flow of
the two examples considered are solved using the compact
finite difference relaxation method (CFDRM). The CFDRM
had previously been applied only to ordinary differential
equationsmodelling boundary layer problems [17].Thiswork
has successfully extended its application to partial differential
equations. The results obtained are in good agreement with
results obtained using the Keller-box.TheCFDRM is compu-
tationally faster than the Keller-box method. This is because
the CFDRM gives highly accurate solutions on coarser grids.
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