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Using one-dimensional Beji & Nadaoka extended Boussinesq equation, a numerical study of solitary waves over submerged
breakwaters has been conducted. Two different obstacles of rectangular as well as circular geometries over the seabed inside a
channel have been considered in view of solitary waves passing by. Since these bars possess sharp vertical edges, they cannot
directly be modeled by Boussinesq equations. Thus, sharply sloped lines over a short span have replaced the vertical sides, and
the interactions of waves including reflection, transmission, and dispersion over the seabed with circular and rectangular shapes
during the propagation have been investigated. In this numerical simulation, finite element scheme has been used for spatial
discretization. Linear elements along with linear interpolation functions have been utilized for velocity components and the water
surface elevation. For time integration, a fourth-order Adams-Bashforth-Moulton predictor-corrector method has been applied.
Results indicate that neglecting the vertical edges and ignoring the vortex shedding would have minimal effect on the propagating
waves and reflected waves with weak nonlinearity.

1. Introduction

Boussinesq type equations are among the most practical
mathematical models used in offshore engineering. These
equations include nonlinear terms aswell as dispersion terms.
Thus, they are one of the most robust tools for hydrodynamic
study of nearshore waves. During the years from 1871 to 1872,
Boussinesq introduced these equations by adding dispersion
effects to the shallow water equations originally known as
Saint Venant. These equations have a hyperbolic structure
with derivatives of high order in order to numerically model
the dispersion-based physics. Peregrine [1] introduced what
is known as the basic type of Boussinesq equations. Using
Boussinesq equations for inviscid fluids, continuity equation
with integral representation and applying respective bound-
ary conditions, the basic Peregrine-Boussinesq equations for

long waves over variable seabeds can be derived.Many efforts
have been made for the development of Boussinesq equa-
tions.These efforts have beenmadewith the aimof enhancing
dispersion (ratio of water depth to wave length) character-
istics of the equations in order to preserve their validity for
deep waters applications. As one of the first attempts, Witting
[2] used the momentum equations on the integrated depth in
one dimension so he could present practical equations based
on the velocity terms that were defined on the free surface. In
the governing equations, Taylor series were used to represent
velocity components. Coefficients of the expansion were
derived in a way to achieve the best agreement with the linear
dispersive properties. Later on, Madsen et al. [3] developed
the dispersive properties of these equations to include deep
water conditions by obtaining resulting terms based on the
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assumption of long waves in shallow waters and adding them
to the classic equations of Abbott et al. [4]. Other forms of
the extended Boussinesq equations were derived by Nwogu
[5] where the velocity components in an arbitrary distance
from the calm free surface were used. These equations were
derived directly from 2-dimensional continuity and Euler
equations on a seabed with variable depth. Another type
of extended Boussinesq equations was obtained by Beji and
Nadaoka [6] using an algebraic manipulation of the classical
Peregrine equations. Extended Boussinesq equations carry
similar nonlinear and dispersive properties. This means that,
while their algebraic representation differs from each other,
the dispersive properties of these equations could be indi-
cated to be equivalent after performing a respective change
of variable.

Various physical phenomena have been simulated so far
using the extended Boussinesq equations for many practical
applications. Simulation of undular bore that was carried out
by Peregrine [7] can be noted as the first physical modeling
using Boussinesq equations in which a second-order accurate
finite difference method with one corrector step for the free
surface was employed. Almost twenty years later, Abbott et al.
[4] introduced the first physical model for the regular wave
shoaling on a sloping beach using the Boussinesq equations.
They used a finite difference scheme for spatial terms of the
equation in order to cancel out the nonphysical dispersion
sources. Later, Schäffer et al. [8] and Nwogu [5] modeled
the regular and irregular waves propagation on the sloping
bottom using the extended Boussinesq equations. In the first
attempt, Schäffer et al. [8] applied the breaking effects to the
equations when the wave nonlinearity was being increased
and the wave was getting closer to breaking up conditions.
Moreover, experiments of Beji and Battjes [9] that were car-
ried out for the regular wave propagation over a submerged
trapezoidal bar are among the most applicable practical
experiments in this field.They used the Boussinesq equations
of Abbott et al. [4] while introducing a predictor-corrector
scheme in order to numerically model their experiments.

Using a finite difference method, Dingemans [10] com-
pared the classical and extended Boussinesq equations with
each other in the case of regular wave propagation over a
submerged breakwater. In the meantime, with the introduc-
tion of a fourth-order predictor-corrector method for time
integration and spatial discretization of extended Boussinesq
equations of Nwogu [5], Wei and Kirby [11] made efforts
to decrease the truncation errors to achieve a fourth-order
accurate scheme.They applied amultitude of physicalmodels
such as random wave shoaling on a slope, 2-dimensional
sloshingwave evolution in a basin, and regular wave propaga-
tion over shoal in order to verify the accuracy of their numer-
ical method. Ohyama et al. [12] introduced a finite difference
method for Nwogu’s Boussinesq equation [5] and modeled
the regular wave propagation over a bar. In another attempt,
Wei et al. [13] appliedNwogu’s Boussinesq equation [5] for the
simulation of solitary wave propagation on a sloping beach.
Ambrosi and Quartapelle [14] applied the modified Taylor-
Galerkin finite element method to the classical Peregrine
equations in order to model the solitary wave propagation
and also its interaction with a cylinder. Using Galerkin finite

element method with a complex temporal scheme (known
as Sprint), Walkley and Berzins [15] used the Nwogu’s
extended Boussinesq equations for the numerical simulation
of regular wave propagation over a submerged breakwater
and the 1-dimensional solitary wave propagation over a beach
attached to the coastal wall. Wave propagation in portal
regions over regular geometries was also modeled by Li et al.
[16] using Beji and Nadaoka extended Boussinesq equations
while applyingGalerkin Finite ElementMethod.Walkley and
Berzins [17] extended their numerical method to consider
2-dimensional case of wave propagation in portal regions
over irregular geometries. In the past decade, Sørensen et al.
[18] simulated the 2-dimensional physical phenomenon of
surf zone using unstructured meshes. Nonlinear oscillations
and harbor resonance problemwere investigated byWoo and
Liu [19] using a finite element method on Nwogu’s extended
Boussinesq equations. In another attempt, the problem of
sloshing in a closed tank was modeled by Lin and Man
[20] using Nwogu’s extended Boussinesq equations with the
application of a finite difference method. In the recent years,
Ghadimi et al. [21] simulated solitary wave shoaling over
coastal beds using Beji and Nadaoka’s extended Boussinesq
equations andwith the application of a finite elementmethod.
They [21] presented a reasonable estimation of wave breaking
using their numerical technique. More recently, Liu et al.
[22] modeled solitary wave run-up in a cylinder group using
a finite element method approach on Beji and Nadaoka’s
extended Boussinesq equations.

Although there seemed to be a wide range of applications
for the extended Boussinesq equations with the above men-
tioned studies being only a brief overview on their implemen-
tations, the use of these equations for modeling submerged
bars and breakwaters is rarely reported as in Ting et al. [23]
and Yao et al. [24].

In the present study using the FEM approach of Ghadimi
et al. [21] for the numerical solution of Beji and Nadaoka’s
extended Boussinesq equations, interaction of solitary wave
with submerged bars for nondiffracting waves condition
is investigated. Since the geometry of the submerged bars
includes sharp vertical edges, it has been shown that these
geometries cannot be directly implemented using the current
numerical method.Therefore, a set of geometrical techniques
are studied and then applied for the problem at hand.

2. Governing Equations

In the present work, Beji and Nadaoka’s extended Boussinesq
equations are employed. These equations include various
terms of free surface, 𝜂(𝑥, 𝑦, 𝑡), integrated velocity vector in
depth, u = (𝑢, V), depth of the seabed profile which is mea-
sured from the calm free-surface level, 𝐻(𝑥, 𝑦), and gravity
acceleration, 𝑔, which are presented as follows:
𝜂
𝑡
+ ∇ ⋅ [(𝐻 + 𝜂) u] =0,
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where 𝛽 is a free variable for which the value of 1/5 is pro-
posed by Beji and Nadaoka [6]. Nonlinearity and dispersive
properties are introduced by parameters 𝜀 and 𝜇, respectively.
As thewave approaches the beach, the ratio ofwave amplitude
to water depth (𝑎/𝐻), which is the source of nonlinear-
ity, would increase and the ratio of water depth to wave
length (𝐻/𝜆) will decrease. For Beji and Nadaoka’s extended
Boussinesq equations with the consideration of the above
mentioned value for 𝛽, the error of the dispersion relation
with 𝜇 ≈ 0.5 would be less than 0.5 percent. It is worth
mentioning that the accumulative error of the equations for
𝜇 ≈ 0.17 would be less than 2 percent.

3. Numerical Method

The FEM technique of Ghadimi et al. [25] is employed
for the numerical solution of the governing equations in 1-
dimensional form. The Galerkin FEM using linearly inter-
polated elements and functions is used for the discretization
of the spatial terms. In order to couple the discretized form
of the temporal and spatial terms, a fourth-order Adams-
Bashforth-Moulton predictor-corrector method has been
applied. Since the present method is 2nd-order accurate in
terms of spatial discretization, Von-Neumann stability analy-
sis has been employed.Therefore, the aforementioned scheme
would be stable for 𝐶

𝑟
= √𝑔𝐻(Δ𝑡/Δ𝑥) < 0.5, where 𝐶

𝑟
is the

courant number.

3.1. Initial and Boundary Conditions. In the present study,
the computational domain is a rectangular channel with the
length and depth of 𝑙 and 𝐻, respectively. A solitary wave of
amplitude of 𝑎 is propagated from the left side of this channel
at the time 𝑡 = 0. This solitary wave is defined with profile
velocity given as follows:

𝜂 (𝑥, 𝑡) = 𝑎 sech2 [√ 3𝑎

4𝐻3
(𝑥 − 𝑐𝑡)] ,

𝑢 (𝑥, 𝑡) = √𝑔𝐻
𝐴

𝐻

1

cosh (√3𝑎/4𝐻3 (𝑥 − 𝑐𝑡))
2
,

𝑐 = √𝑔 (𝐻 + 𝑎),

(2)

in which 𝑐 is the propagation velocity of the solitary wave.
A fully reflecting boundary condition is imposed on the exit
boundary, and the normal velocity on the boundary is as-
sumed to be zero:

𝑢 ⋅ n = 0 or 𝑢 = 0. (3)

Here, n is the unit normal vector on the reflecting boundary.

4. Solitary Wave Propagation over
the Submerged Bars

In the present study, the propagation of solitary wave over
two types of submerged bars is simulated.The first simulation
considers a, submerged bar. This geometry has vertical edges
and is impossible to be implemented in the model directly

using the present method. Therefore, a set of polygonal
approximations with inclined sides have been employed
instead of the vertical edges, and the results are presented.The
second submerged bar is an attached step to the wall which
also has vertical edges and, therefore, requires further modi-
fications.

4.1. Solitary Wave Propagation over a Semicircular Bar. For
the case of solitary wave propagation over a semicircular
submerged bar, the experimental investigations of Cooker
et al. [26] are employed.They performed a set of experiments
to investigate the interaction of solitary waves with amplitude
𝑎 over a semicircular submerged bar of radius 𝑅 and intro-
duced a relation between the reflected and transmitted wave
for breaking and nonbreaking conditions. Since a breaking
model is not employed in the present method, the submerged
bar of radius 𝑅 = 0.6m and a solitary wave of amplitude
𝑎 = 0.311m are used for modeling the interaction of solitary
wave with the seabed depicted in Figure 1 (in the deep side of
a tank𝐻 = 1m).

The scale of the wave nonlinearity just before reaching the
submerged bar in the fixed-depth channel is 𝜀 = 𝑎/𝐻 = 0.311

which is far from the breaking conditions. When the wave
reaches the semicircular submerged bar due to the decrease in
depth, it is expected for the wave amplitude to elevate. In the
region close to the semicircular bar, the nonlinearity based
on the experimental results would be equal to 𝜀 = 0.4. Once
again, this case is safely away from the breaking conditions,
andduring its propagation, the solitarywavewill theoretically
exhibit a nonbreaking procedure. Due to the decrease in
water depth which occurs when the wave passes over the
submerged bar crest, wave would be dispersed, and the wave
crest, which was sharpened due to shoaling, requires strict
considerations. As stated before, the semicircular submerged
bar shown in Figure 1 cannot be numerically modeled using
the present FEM approach. Since the computational domain
is discretized using finite elements, the neighboring nodes of
an element laying on the convex semicircular surface would
have discrete depths and as the wave gets sharpened and
the free surface gets accelerated, a discrete profile would be
obtained over time from the numerical results (Figure 2). As
a remedy to this numerical phenomenon, it is required to
approximate the convex surface with a regular or irregular
polygon (triangle or quadrilateral) in order to havemore than
two adjusting nodes on each side of the slope. In fact, there
should exist a minimum of one intermediate node on each
slope so that elements on that side would be discretized more
than once (Figure 3).

In the present study, three gauges have been employed
in order to record the time series of the propagating solitary
wave with two of them being placed before the submerged
bar with distances of 0.9m and 2.5m from the bar, while
another one is placed 0.4m behind the bar. Four numerical
experiments have been arranged with four different polyg-
onal approximations of the semicircular bar (Figure 4), and
the resulting time series of the shoaling numerical solution
are comparedwith the gauge results. In the present numerical
method, the computational domain inside the channel has a
length of 𝑙 = 40m and is discretized using 1000 linear finite
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Figure 1: Physical modeling of the interaction of a solitary wave and
a semicircular submerged bar.
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Figure 2: A semicircular bar where the convex surface is discretized
using a general approach.

elements.The time step for the numerical solution is set equal
to Δ𝑡 = 0.01.

Figure 4 represents four different models employed for
the approximation of semicircular submerged bar that are
used in the present numerical simulation. The approximated
geometries are set in a way that they are all inscribed in
a semicircle with a radius of 0.6m. Model 1 represents an
inscribed triangle, and model 2 is a regular semioctagon in
which the intersection of the middle sides forms a 45 degrees
angle with respect to the center of the geometry. Other
models include geometries with a 30- and 60-degree angle
between the intersections of the middle sides. Therefore, the
distributions of the resulting finite element nodes on each
side are shown in Figure 4. The calculated time series for the
models introduced earlier are shown in Figures 5–8.

As depicted in these figures, numerical and experimental
results have a slight difference between them in terms of
phase angle which could be attributed to the irrotational flow
assumption for the Boussinesq governing equations and also
the proposed approximation of the semicircular submerged
bar. Numerical results recorded by the first gauge (from left)
give two peaks in the time series for all four models. The first
peak is due to the approaching wave crest while the second
one denotes the reflecting wave crest. Based on the results of
the experiments, a distinct crest for the reflectingwave cannot
be distinguished, while both experimental and numerical
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Figure 3: Approximation of nodes height on a semicircular bar so
that a minimum of two elements are defined on each slope.
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Figure 4: Four different approximations of the semicircular bar.

results demonstrate a similar time range for the reflecting
wave. The second gauge shows the moment at which the
wave passes the first slope (left side) of the submerged bar
and therefore wave shoaling occurs. An overestimation is
observed in the results of the second gauge which shows its
relevance to the results of the first gauge.

The celerity of the reflecting wave using the Boussinesq
model is lower than that of the empirical theories and this
causes an overestimation in the free surface elevation that was
recorded by the second gauge. In themeantime, a third gauge
records wave dispersion and shows two peaks. After crossing
the submerged bar, the wave starts to disperse and therefore
the second reflection occurs; the idea that is, supported by the
second peak recorded in the time series. Contrary to the first
gauge, the second peak recorded by the third gauge cannot
be observed. In fact, the second reflection occurs sooner in
the Boussinesq model. After crossing the submerged bar, the
wave amplitude using fourth approximationmodel (Model 4)
is modeled more precisely. It is shown that only a triangular
approximation of the semicircular submerged bar would give
favorable results for the free surface elevation over the bar
when the Beji and Nadaoka extended Boussinesq equations
are applied. This is due to the fact that the wave-front would
be accelerated while crossing over the bar which would cause
instabilities for the case of the models 2, 3, and 4.

This phenomenon can be observed as nonphysical dis-
persions that are shown on Figures 6, 7, and 8. That is why
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Figure 5: Time series of the gauges compared to the experimental
results for Model 1.
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Figure 6: Time series of the gauges compared to the experimental
results for Model 2.

some deviations are observed between the present results and
the ones obtained from the experiments.Mentioned cases are
the main reason of difference in numerical and experimental
results. It is worth mentioning that the main goal of the
present study was to have a suitable numerical modeling of
the physical problem at hand using the Boussinesq equations
due to the fact that their computational speed exceeds their
rival alternatives in fluid motion equations. Time history of
the propagating wave over Model 1 (Triangular Approxima-
tion) is shown in Figure 9 for the time intervals of 0.6 seconds.

4.2. Solitary Wave Propagation over a Step Attached to the
Coastal Wall. Solitary waves are stable during their propa-
gation over a fixed depth, and this characteristic makes them
more destructive.Therefore, a set of vertical concrete caissons
is generally used in front of the coastal walls in order to act as
a breakwater at times of low tide. These costal steps would
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Figure 7: Time series of the gauges compared to the experimental
results for Model 3.
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Figure 8: Time series of the gauges compared to the experimental
results for Model 4.

become unstable when collide with these kinds of solitary
waves and would be destructive over time. On the other
hand, their presence in the coastal line for the prevention of
the wave impacts on the coastal wall is of high importance.
Therefore in this part of the present study, propagating
solitary wave over a step, that is, attached to the coastal wall,
is modeled using the Beji and Nadaoka extended Boussinesq
equations. Experimental results of Grilli et al. [27] are used
for the validation purposes. In their experimental model
[27], they introduced a solitary wave with nondimensional
amplitude of 𝜀 = 𝑎/𝐻 = 0.33 in the deep side of a tank
(𝐻 = 1m)while the wave would approach a step with a depth
of ℎ
1
= 0.67m.Thewave profile is recorded over propagation

using different gauges. Using the present numerical model,
the introduced problem is simulated, and the free surface
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Figure 10: Free surface elevation over a step.

elevations are compared with the experimental results in
Figure 10.

Due to the fact that the vertical face of the step in
this model causes a discontinuity between the two different
depths, a gradual slope is used in a way that enables the
required continuity of the finite elements in this region. The
obtained numerical solution is in a good agreement with the
experimental results for the respective gauges.

5. Conclusion

In the present paper, Beji and Nadaoka extended Boussinesq
equations have been applied for numerical modeling of
solitary waves over submerged bars with sharp vertical edges
using finite element method. A semicircular submerged bar
along with a stepped seabed was implemented. Since these
bars have vertical edges, a discontinuity occurs in depth
which makes it impossible to have a direct implementation
of the present numerical method. Thus, a gradual slope was
employed instead of the vertical edges. In the first type
of submerged bar, inscribed polygons in the semicircle
were used instead of the semicircular submerged obstacle.
Irregular geometries were chosen in such a way that the
intersection of the middle sides makes a 30-, 45- and 60-
degree angle for various models, respectively. Numerical

results for all four models demonstrate that in these exper-
imental cases, the Boussinesq model simulates the collision
causing the first reflection of solitary wave to occur a bit
sooner and the second reflecting wave appears a bit later.
However, due to being more efficient compared to other
equations used in simulating fluid motions, the present
Boussinesq model shows to be a suitable criterion for the
present experimented phenomenon. Due to the fact that the
wave front gets sharpened after crossing over the submerged
bar, implementation of sequential polygonal slopes would
cause instabilities for the dispersed wave. As a result, only the
triangular approximation of the semicircular bar is proved
to be acceptable in the present numerical model. Moreover,
the solitary wave propagation over a step attached to the
coastal wall was investigated, and favorable agreement of the
numerical results with the experimental data was achieved. It
is worth mentioning that, due to the discontinuity problem
that was discussed earlier, the step was replaced by a gradual
slope in the second test case.
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