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This paper is concerned with the robust stability for a class of switched discrete-time systems
with state parameter uncertainty. Firstly, a new matrix inequality considering uncertainties is
introduced and proved. By means of it, a novel sufficient condition for robust stability of a class of
uncertain switched discrete-time systems is presented. Furthermore, based on the result obtained,
the switching law is designed and has been performed well, and some sufficient conditions
of robust stability have been derived for the uncertain switched discrete-time systems using
the Lyapunov stability theorem, block matrix method and inequality technology. Finally, some
examples are exploited to illustrate the effectiveness of the proposed schemes.

1. Introduction

A switched system is a hybrid dynamical system consisting of a finite number of subsystems
and a logical rule that manages switching between these subsystems. Switched systems
have drawn a great deal of attention in recent years, see [1–24] and references therein.
The motivation for studying switched systems comes partly from the fact that switched
systems and switched multi-controller systems have numerous applications in control of
mechanical systems, process control, automotive industry, power systems, aircraft and traffic
control, and many other fields. An important qualitative property of switched system is
stability [1–3]. The challenge of analyzing the stability of switched system lies partly in the
fact that, even if the individual systems are stable, the switched system might be unstable.
Using a common quadratic Lyapunov function on all subsystems, the quadratic Lyapunov
stability facilitates the analysis and synthesis of switched systems. However, the obtained
results within this framework have been recognized to be conservative. In [10], various
algorithms both for stability and performance analysis of discretetime piece-wise affine
systems were presented. Different classes of Lyapunov functions were considered, and how
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to compute them through linear matrix inequalities was also shown. Moreover, the tradeoff
between the degree of conservativeness and computational requirements was discussed. The
problem of stability analysis and control synthesis of switched systems in the discrete-time
domain was addressed in [11]. The approach followed in [11] looked at the existence of a
switched quadratic Lyapunov function to check asymptotic stability of the switched system
under consideration. Two different linear matrix inequality-based conditions allow to check
the existence of such a Lyapunov function. These two conditions have been proved to be
equivalent for stability analysis.

There are many methodologies and approaches developed in the switched systems
theory: approaches of looking for an appropriate switching strategy to stabilize the system
[4], dwell-time and average dwell-time approaches for stability analysis and stabilization
problems [5], approaches of studying stability and control problems under a specific class of
switching laws [1] or under arbitrary switching sequences [6–9]. Reference [19] investigated
the quadratic stability and linear state feedback and output feedback stabilization of switched
delayed linear dynamic systems with, in general, a finite number of non-commensurate
constant internal point delays. The results were obtained based on Lyapunov’s stability
analysis via appropriate Krasovskii-Lyapunov’s functionals, and the related stability study
was performed to obtain both delay-independent and delay-dependent results. The problem
of fault estimation for a class of switched nonlinear systems of neutral type was considered
in [20]. Sufficient delay-dependent existence conditions of the H∞ fault estimator were
given in terms of certain matrix inequalities based on the average dwell-time approach. The
problem of robust reliable control for a class of uncertain switched neutral systems under
asynchronous switching was investigated in [21]. A state feedback controller was proposed
to guarantee exponential stability and reliability for switched neutral systems, and the dwell-
time approach was utilized for the stability analysis and controller design. The exponential
stability for a class of nonlinear hybrid time-delay systems was addressed in [24]. The delay-
dependent stability conditions were presented in terms of the solution of algebraic Riccati
equations, which allows computing simultaneously the two bounds that characterize the
stability rate of the solution.

On another research front line, it has been recognized that parameter uncertainties,
which often occur in many physical processes, are main sources of instability and poor
performance. Therefore, much attention has been devoted to the study of various systems
with uncertainties, and a great number of useful results have been reported in the literature
on the issues of robust stability, robust H∞ control, robust H∞ filtering, and so on, by
considering different classes of parameter uncertainties [12–14].

Recently, some stability condition and stabilization approaches have been proposed
for the switched discrete-time system [15–18]. In [15], the quadratic stabilization of discrete-
time switched linear systems was studied, and quadratic stabilization of switched systems
with norm bounded time varying uncertainties was investigated. In [16], the stability
property for the switched systems which were composed of a continuous-time LTI subsystem
and a discretetime LTI subsystem was studied. There existed a switched quadratic Lyapunov
function to check asymptotic stability of the switched discrete-time system in [17].

The objective of this paper is to present novel approaches for the asymptotical stability
of switched discrete-time system with parametric uncertainties. The parameter uncertainties
are time-varying but norm-bounded. Firstly, a new inequality is given. Using the new result,
a new sufficient condition for robust stability of a class of uncertain switched discrete-time
systems is proposed. Furthermore, using the block matrix method, inequality technology,
and the Lyapunov stability theorem, some sufficient conditions for robust stability have been
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presented for the uncertain switched discrete-time systems, and the switched law design has
been performed. Comparing with [22, 23], the uncertainty in system was not considered in
[22, 23], but we consider the uncertainty in systems and the design switching law is simple
and easy for application.

The rest of this paper is organized as follows. The problem is formulated in Section 2.
Section 3 deals with robust stability criteria for a class of discrete-time switched system with
uncertainty. Numerical examples are provided to illustrate the theoretical results in Section 4,
and the conclusions are drawn in Section 5.

Notation 1. The notation used in this paper is fairly standard. The superscript “T” stands
for matrix transposition; Rn denotes the n-dimensional Euclidean space. diag{· · · } stands
for a block-diagonal matrix. Matrices, if their dimensions are not explicitly stated, are
assumed to be compatible for algebraic operations. A symmetric matrix P > 0 (≥0) means
P is positive (semipositive) definite. ‖ · ‖ stands for the Euclidean vector norm of the
vector. λ(A) stands for the eigenvalues of matrix A. ‖A‖ denotes the norm of matrix A,
that is, ‖A‖ = Max[λ(ATA)]1/2. I and 0 represent, respectively, identity matrix and zero
matrix.

2. Systems Description and Problem Statement

Consider a class of uncertain switched discrete-time systems given by

x(k + 1) =
(
Aσ(x(k)) + ΔAσ(x(k))

)
x(k), x(0) = x0, (2.1)

where x(k) ∈ Rn is the state, Aσ(x(k)) ∈ Rn, x0 is the initial state, σ(x(k)) : Rn →
{1, 2, . . . ,N},N ≥ 2, is a piecewise constant scalar function, called a switch signal, and N is
the number of the individual systems, that is, the matrix Aσ(x(k)) switched between matrices
A1, A2, . . . , AN belonging to the set A = {A1, A2, . . . , AN}. ΔAσ(x(k)) denotes the parameter
uncertainty and is assumed to be in the following form:

ΔAσ(x(k)) = Fσ(x(k))(k)Eσ(x(k)), (2.2)

where Eσ(x(k)) is real constant matrices of appropriate dimensions and Fσ(x(k)) is unknown
matrix, satisfying FT

σ(x(k))Fσ(x(k)) ≤ I. The switched discrete-time system (2.1) can be described
as follows:

x(k + 1) = (Ai + ΔAi)x(k), i = 1, 2, . . . ,N, (2.3)

where ΔAi = Fi(k)Ei with FT
i Fi ≤ I.
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For the stability of switched discrete-time system (2.3), some helpful lemmas are given
in the following.

Lemma 2.1. For any matrices A1, A2, . . . , AN with the same dimensions and ΔAi, i = 1, 2, . . . ,N,
which are given by (2.3), the following inequality holds for any positive constant c:

(
N∑

i=1

(Ai + ΔAi)

)T( N∑

i=1

(Ai + ΔAi)

)

≤ (1 + c)

{
N−1∑

i=1

(
1 + c−1

)i−1
A

T

i Ai

}

+
(
1 + c−1

)N−1
ANA

T

N

≤ (1 + c)2
{

N−1∑

i=1

(
1 + c−1

)i−1
AT

i Ai

}

+
(
1 + c−1

)N−1
(1 + c)AT

NAN

+ (1 + c)

{
N−1∑

i=1

(
1 + c−1

)i
ET
i Ei

}

+
(
1 + c−1

)N
ET
NEN,

(2.4)

where Ai = Ai + ΔAi, i ∈ {1, 2, . . . ,N}.

Proof. For a positive constant c, A and Bwith the same dimensions, it is an obvious fact that

(A + B)T (A + B) = ATA + BTB +ATB + BTA

≤ ATA + BTB + cATA + c−1BTB

= (1 + c)ATA +
(
1 + c−1

)
BTB.

(2.5)

So, we have

(Ai + ΔAi)T (Ai + ΔAi) ≤ (1 + c)AT
i Ai +

(
1 + c−1

)
ΔAT

i ΔAi

= (1 + c)AT
i Ai +

(
1 + c−1

)
(Fi(k)Ei)

T (Fi(k)Ei)

= (1 + c)AT
i Ai +

(
1 + c−1

)
ET
i Fi(k)

T (Fi(k)Ei)

≤ (1 + c)AT
i Ai +

(
1 + c−1

)
ET
i Ei.

(2.6)
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Using (2.5) and (2.6), we have

(
N∑

i=1

(Ai + ΔAi)

)T( N∑

i=1

(Ai + ΔAi)

)

=

(
N∑

i=1

Ai

)T( N∑

i=1

Ai

)

=

(

A1 +
N∑

i=2

Ai

)T(

A1 +
N∑

i=2

Ai

)

≤ (1 + c)A1A
T

1 +
(
1 + c−1

)( N∑

i=2

Ai

)T( N∑

i=2

Ai

)

≤ (1 + c)A1A
T

1 +
(
1 + c−1

)
⎧
⎨

⎩
(1 + c)A2A

T

2 +
(
1 + c−1

)( N∑

i=3

Ai

)T( N∑

i=3

Ai

)⎫⎬

⎭

≤ (1 + c)A1A
T

1 +
(
1 + c−1

)
(1 + c)A2A

T

2 +
(
1 + c−1

)2

×
⎧
⎨

⎩
(1 + c)A3A

T

3 +
(
1 + c−1

)( N∑

i=4

Ai

)T( N∑

i=4

Ai

)⎫⎬

⎭

≤ (1 + c)A1A
T

1 +
(
1 + c−1

)
(1 + c)A2A

T

2 +
(
1 + c−1

)2
(1 + c)A3A

T

3

+ · · · +
(
1 + c−1

)N−2
(1 + c)AN−1A

T

N−1 +
(
1 + c−1

)N−1
ANA

T

N

= (1 + c)

{
N−1∑

i=1

(
1 + c−1

)i−1
A

T

i Ai

}

+
(
1 + c−1

)N−1
ANA

T

N

≤ (1 + c)

{
N−1∑

i=1

(
1 + c−1

)i−1(
(1 + c)AT

i Ai +
(
1 + c−1

)
ET
i Ei

)}

+
(
1 + c−1

)N−1(
(1 + c)AT

NAN +
(
1 + c−1

)
ET
NEN

)

= (1 + c)2
{

N−1∑

i=1

(
1 + c−1

)i−1
AT

i Ai

}

+
(
1 + c−1

)N−1
(1 + c)AT

NAN

+ (1 + c)

{
N−1∑

i=1

(
1 + c−1

)i
ET
i Ei

}

+
(
1 + c−1

)N
ET
NEN.

(2.7)

This completes the proof of Lemma 2.1.

Set

βi =
1

(1 + c)
(
1 + c−1

)i−1 , i = 1, 2, . . . ,N − 1, βN =
1

(
1 + c−1

)N−1 . (2.8)
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We have

N∑

i=1

βi =
N−1∑

i=1

1

(1 + c)
(
1 + c−1

)i−1 +
1

(
1 + c−1

)N−1

1/(1 + c) − 1/
(
(1 + c)

(
1 + c−1

)N−1)

1 − 1/
(
1 + c−1

) +
1

(
1 + c−1

)N−1 = 1.

(2.9)

Considering the following system (2.10):

x(k + 1) =
N∑

i=1

βi(Ai + ΔAi)x(k), (2.10)

where βi, i = 1, 2, . . . ,N, is given by (2.8), we have the following result.

Lemma 2.2. If there exist c > 0 and a symmetric matrix P > 0 such that the following inequality
holds:

n∑

i=1

βi
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖ET

i Ei − P
]
< 0, (2.11)

then system (2.10) is asymptotically stable, and there exists a switching law for the uncertain switched
discrete-time system (2.3) such that the system (2.3) is asymptotically stable.

Proof. We choose the Lyapunov function candidate as

V (k) = xT (k)Px(k). (2.12)

Since P is a symmetric positive-definite matrix, there exists a matrix Q such that P = QTQ.
We have

ΔV (k)|(2.10) = V (k + 1) − V (k)

= xT (k + 1)Px(k + 1) − xT (k)Px(k)

=

(
N∑

i=1

βi(Ai + ΔAi)x(k)

)T

P

(
N∑

i=1

βi(Ai + ΔAi)x(k)

)

− xT (k)Px(k)

= xT (k)

(
N∑

i=1

βi(Ai + ΔAi)

)T

P

(
N∑

i=1

βi(Ai + ΔAi)

)

x(k) − xT (k)Px(k)
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= xT (k)

(
N∑

i=1

βiQ(Ai + ΔAi)

)T( N∑

i=1

βiQ(Ai + ΔAi)

)

x(k) − xT (k)Px(k)

≤xT (k)

{

(1+ c)
N−1∑

i=1

(
1 + c−1

)i−1(
βiQ(Ai + ΔAi)

)T(
βiQ(Ai + ΔAi)

)
+
(
1 + c−1

)N−1

×(βNQ(AN + ΔAN)
)T(

βNQ(AN + ΔAN)
)
}

x(k) − xT (k)Px(k)

≤xT(k)

{

(1+c)
N−1∑

i=1

(
1 +c−1

)i−1[
(1 +c)βi

2AT
i PAi+

(
1 +c−1

)
βi

2ΔAT
i PΔAi

]
+
(
1+ c−1

)N−1

×
[
(1 + c)β2NAT

NPAN +
(
1 + c−1

)
β2NΔAT

NPΔAN

]}

x(k) − xT (k)Px(k)

≤ xT (k)

{

(1 + c)
N−1∑

i=1

βiA
T
i PAi +

N−1∑

i=1

(
1 + c−1

)
βiΔAT

i PΔAi + (1 + c)βNAT
NPANi

+
(
1 + c−1

)
βNΔAT

NPΔA

}

x(k) − xT (k)Px(k)

≤ xT (k)

{

(1 + c)
N−1∑

i=1

βiAi
TPAi +

N−1∑

i=1

(
1 + c−1

)
βi‖P‖ET

i Ei + (1 + c)βNAT
NPAN

+
(
1 + c−1

)
βN‖P‖ET

NEN

}

x(k) − xT (k)Px(k)

= xT (k)

{

(1 + c)
N∑

i=1

βiA
T
i PAi +

N∑

i=1

(
1 + c−1

)
βi‖P‖ET

i Ei − P

}

x(k)

= xT (k)

{
N∑

i=1

βi
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖ET

i Ei − P
]}

x(k) < 0, x(k)/= 0.

(2.13)

Equation (2.11) implies that ΔV (k)|(2.10) < 0, x(k)/= 0. Hence the system (2.10) is asymptoti-
cally stable.

For system (2.3), we have

ΔV (k)|(2.3) = xT (k + 1)Px(k + 1) − xT (k)Px(k)

= xT (k)(Ai + ΔAi)
TP(Ai + ΔAi)xT (k) − xT (k)Px(k)

= xT (k)
{
[Q(Ai + ΔAi)]T [Q(Ai + ΔAi)] − P

}
xT (k)
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≤ xT (k)
[
(1 + c)AT

i PAi +
(
1 + c−1

)
ΔAT

i PΔAi − P
]
xT (k)

≤ xT (k)
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖ET

i Ei − P
]
xT (k).

(2.14)

From (2.11), we know that, for any k, at least there exists an i ∈ {1, 2, . . . ,N}such that

ΔV (k)|(2.3) ≤ xT (k)
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖ET

i Ei − P
]
xT (k) < 0, x(k)/= 0. (2.15)

The switching signal is given as follows.

(1) If the following inequality holds:

xT (k)
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖Ei

TEi − P
]
xT (k) < 0, (2.16)

then

σ(x(k)) = i. (2.17)

(2) If x(k) = 0, then

σ(x(k)) = γ, γ ∈ {1, 2, . . . ,N}. (2.18)

Thus, the switched discrete-time system (2.3) is asymptotically stable. This completes
the proof of Lemma 2.2.

3. Stability Analysis of Uncertain Switched Discrete-Time System

Consider the asymptotical stability of the following system:

x(k + 1) = (Ai + ΔAi)x(k), i = 1, 2, (3.1)

where

Ai =

[
Ai11 Ai12

Ai21 Ai22

]

∈ Rn×n, Ai11 ∈ Rn1×n1 , Ai12 ∈ Rn2×n2 . (3.2)

Remark 3.1. The motivation of considering (3.1) is that when the diagonal blocks satisfy
Lyapunov matrix inequalities (3.9), system (3.1) has some good property.
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According to Lemma 2.2, the study of asymptotical stability for (3.1) can be trans-
formed into the study for (3.3):

x(k + 1) =
[
β(A1 + ΔA1) +

(
1 − β

)
(A2 + ΔA2)

]
x(k), (3.3)

where β = 1/(1 + c).
We choose the Lyapunov function candidate as

V (k) = xT (k)Px(k), (3.4)

where x = [xT
1 , x

T
2 ]

T
, x1 ∈ Rn1 , x2 ∈ Rn2 , and P = diag{P1, P2}, P1 ∈ Rn1×n1 , P2 ∈ Rn2×n2 , are

real symmetric positive-definite matrices.
Computing the product, we have

AT
i PAi =

[
AT

i11 AT
i21

AT
i12 AT

i22

][
P1 0

0 P2

][
Ai11 Ai12

Ai21 Ai22

]

=

[
AT

i11P1Ai11 +AT
i21P2Ai21 AT

i11P1Ai12 +AT
i21P2Ai22

AT
i12P1Ai11 +AT

i22P2Ai21 AT
i12P1Ai12 +AT

i22P2Ai22

]

.

(3.5)

So,

xTAT
i PAix =

[
xT
1 xT

2

][AT
i11P1Ai11 +AT

i21P2Ai21 AT
i11P1Ai12 +AT

i21P2Ai22

AT
i12P1Ai11 +AT

i22P2Ai21 AT
i12P1Ai12 +AT

i22P2Ai22

][
x1

x2

]

=
[
xT
1

(
AT

i11P1Ai11 +AT
i21P2Ai21

)
+ xT

2

(
AT

i12P1Ai11 +AT
i22P2Ai21

)]
x1

+
[
xT
1

(
AT

i11P1Ai12 +AT
i21P2Ai22

)
+ xT

2

(
AT

i12P1Ai12 +AT
i22P2Ai22

)]
x2

= xT
1

(
AT

i11P1Ai11 +AT
i21P2Ai21

)
x1 + xT

2

(
AT

i12P1Ai11 +AT
i22P2Ai21

)
x1

+ xT
1

(
AT

i11P1Ai12 +AT
i21P2Ai22

)
x2 + xT

2

(
AT

i12P1Ai12 +AT
i22P2Ai22

)
x2.

(3.6)

Using the properties of matrix norm, we have

xTAT
i PAix

≤ xT
1A

T
i11P1Ai11x1 + ‖x1‖2‖Ai21‖2‖P2‖ + 2‖x1‖‖x2‖(‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖)

+ ‖x2‖2‖P1‖‖Ai12‖2 + xT
2A

T
i22P2Ai22x2
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≤ xT
1A

T
i11P1Ai11x1 + xT

2A
T
i22P2Ai22x2 +

(
‖x1‖2 + ‖x2‖2

)

× (‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖) + ‖x1‖2‖Ai21‖2‖P2‖ + ‖x2‖2‖P1‖‖Ai12‖2

= xT
1A

T
i11P1Ai11x1 + ‖x1‖2

(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖

)

+ xT
2A

T
i22P2Ai22x2 + ‖x2‖2

(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖P1‖‖Ai12‖2

)
.

(3.7)

It will be convenient throughout this section to use the following notations:

e1 = ‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖A121‖2‖P2‖,

e2 = ‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖A221‖2‖P2‖,

d1 = ‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖P1‖‖A112‖2,

d2 = ‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖P1‖‖A212‖2.

(3.8)

Theorem 3.2. There exists a switched law such that the discrete-time system (3.1) is asymptotically
stable, if there exist symmetric positive-definite matrices P1, P2 > 0 and positive constants c, λij , i, j =
1, 2, such that the following inequalities hold:

AT
ijjPjAijj − Pj ≤ −λijI, i, j = 1, 2, (3.9)

e1 + ce2 − λ11 − cλ21 + cλmax(P1) + c−1‖P‖
∥∥∥ET

1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥ < 0,

d1 + cd2 − λ12 − cλ22 + cλmax(P2) + c−1‖P‖
∥
∥∥ET

1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥ < 0.

(3.10)

Proof. By Lemma 2.1, the difference of the Lyapunov function (3.4) is as following

ΔV (k) ≤ xT (k)
{
β
[
(1 + c)AT

1PA1 +
(
1 + c−1

)
‖P‖ET

1E1

]

+
(
1 − β

)[
(1 + c)AT

2PA2 +
(
1 + c−1

)
‖P‖ET

2E2

]
− P

}
x(k)

= xT (k)
{[

β(1 + c)A1
TPA1 + β

(
1 + c−1

)
‖P‖ET

1E1

]

+
[(
1 − β

)
(1 + c)AT

2PA2 +
(
1 − β

)(
1 + c−1

)
‖P‖ET

2E2

]
− P

}
x(k)

= xT (k)
{[

AT
1PA1 + c−1‖P‖ET

1E1

]
+
[
cAT

2PA2 + ‖P‖ET
2E2

]
− P

}
x(k).

(3.11)
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Using (3.7), it follows

ΔV (k) ≤ xT
1A

T
111P1A111x1 + xT

2A
T
122P2A122x2

+ ‖x1‖2
(
‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖A121‖2‖P2‖

)

+ ‖x2‖2
(
‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖P1‖‖A112‖2

)

+ c
{
xT
1A

T
211P1A211x1 + xT

2A
T
222P2A222x2

+ ‖x1‖2
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖A221‖2‖P2‖

)

+‖x2‖2
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖P1‖‖A212‖2

)}

+ ‖x‖2
(
c−1‖P‖

∥∥∥ET
1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
)
−
(
xT
1P1x1 + xT

2P2x2

)

≤ −λ11‖x1‖2 − λ12‖x2‖2 + cxT
1 (−λ21I + P1)x1 + cxT

2 (−λ22I + P2)x2

+ ‖x1‖2
[(

‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖A121‖2‖P2‖
)

+c
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖A221‖2‖P2‖

)]

+ ‖x2‖2
[(

‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖P1‖‖A112‖2
)

+c
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖P1‖‖A212‖2

)]

+ ‖x‖2
(
c−1‖P‖

∥∥∥ET
1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
)

≤ ‖x1‖2
[(

‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖A121‖2‖P2‖
)

+ c
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖A221‖2‖P2‖

)

−λ11 − cλ21 + cλmax(P1) + c−1‖P‖
∥∥∥ET

1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
]

+ ‖x2‖2
[(

‖A111‖‖P1‖‖A112‖ + ‖A121‖‖P2‖‖A122‖ + ‖P1‖‖A112‖2
)

+ c
(
‖A211‖‖P1‖‖A212‖ + ‖A221‖‖P2‖‖A222‖ + ‖P1‖‖A212‖2

)

−λ12 − cλ22 + cλmax(P2) + c−1‖P‖
∥∥∥ET

1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
]

≤ ‖x1‖2
[
e1 + ce2 − λ11 − cλ21 + cλmax(P1) + c−1‖P‖

∥∥∥ET
1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
]

+ ‖x2‖2
[
d1 + cd2 − λ12 − cλ22 + cλmax(P2) + c−1‖P‖

∥∥∥ET
1E1

∥∥∥ + ‖P‖
∥∥∥ET

2E2

∥∥∥
]
.

(3.12)
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From (3.10), we get that

ΔV (k) < 0, x(k)/= 0. (3.13)

According to Lemma 2.2, the discrete-time system (3.1) is asymptotically stable. Proof of
Theorem 3.2 is completed.

Consider the system (2.3) with

Ai =

[
Ai11 Ai12

Ai21 Ai22

]

∈ Rn×n, Ai11 ∈ Rn1×n1 , Ai12 ∈ Rn2×n2 . (3.14)

According to Lemma 2.2, we have the following theorem for the asymptotically stability of
(2.3).

Theorem 3.3. There exists a switched law such that the discrete-time system (2.3) is asymptotically
stable, if there exist symmetric positive-definite matrices P1, P2 > 0, P1 ∈ Rn1×n1 , P2 ∈ Rn2×n2 , and
positive constants c, λij , i, j = 1, 2, satisfying the follow inequalities:

AT
ijjPjAijj − 1

1 + c
Pj ≤ −λijI, i = 1, 2, . . .N, j = 1, 2, (3.15)

N∑

i=1

βi
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖ − λi1 + c−1‖P‖

∥∥∥ET
i Ei

∥∥∥
)
< 0,

N∑

i=1

βi
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖P1‖‖Ai12‖2 − λi2 + c−1‖P‖

∥∥∥ET
i Ei

∥∥∥
)
< 0,

(3.16)

where P = diag{P1, P2}, and

βi =
1

(1 + c)
(
1 + c−1

)i−1 , i = 1, 2, . . . ,N − 1, βN =
1

(
1 + c−1

)N−1 . (3.17)

Proof. We choose the Lyapunov function candidate as

V (k) = xT (k)Px(k), (3.18)

where x = [xT
1 , x

T
2 ]

T
, x1 ∈ Rn1 , x2 ∈ Rn2 and P = diag{P1, P2} are real symmetric positive-

definite matrices.
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Using Lemma 2.1 and (3.15), we get

ΔV (k)|(2.10) ≤ xT (k)

{
N∑

i=1

βi
[
(1 + c)AT

i PAi +
(
1 + c−1

)
‖P‖ET

i Ei − P
]}

x(k)

≤
N∑

i=1

βi(1 + c)
[
xT
1A

T
i11P1Ai11x1 + xT

2A
T
i22P2Ai22x2

+ ‖x1‖2
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖

)

+‖x2‖2
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖P1‖‖Ai12‖2

)]

+
N∑

i=1

βi
[
‖x‖2

(
1 + c−1

)
‖P‖

∥
∥
∥Ei

TEi

∥
∥
∥ − xT (k)Px(k)

]

≤
N∑

i=1

βi(1 + c)
[
xT
1

(
AT

i11P1Ai11 − 1
(1 + c)

P1

)
x1 + xT

2

(
AT

i22P2Ai22 − 1
(1 + c)

P2

)
x2

+ ‖x1‖2
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖

)

+ ‖x2‖2
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖P1‖‖Ai12‖2

)

+‖x‖2 1 + c−1

1 + c
‖P‖

∥∥∥ET
i Ei

∥∥∥

]

≤
N∑

i=1

βi(1 + c)

[

‖x1‖2
(

‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖ − λi1

+
1 + c−1

1 + c
‖P‖

∥∥∥ET
i Ei

∥∥∥

)

+ ‖x2‖2
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖

+‖P1‖‖Ai12‖2 − λi2 + c−1‖P‖
∥∥∥Ei

TEi

∥
∥∥
)]

= ‖x1‖2
N∑

i=1

βi(1 + c)
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖Ai21‖2‖P2‖

−λi1 + c−1‖P‖
∥∥∥ET

i Ei

∥∥∥
)

+ ‖x2‖2
N∑

i=1

βi(1 + c)
(
‖Ai11‖‖P1‖‖Ai12‖ + ‖Ai21‖‖P2‖‖Ai22‖ + ‖P1‖‖Ai12‖2

−λi2 + c−1‖P‖
∥∥∥ET

i Ei

∥∥∥
)
.

(3.19)

From (3.16), we have ΔV (k) < 0, x(k)/= 0.
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Switching Law. The switching law is given by (2.17) and (2.18). In the light of
Lemma 2.2, the discrete-time system (2.3) is asymptotically stable. Proof of Theorem 3.3 is
completed.

Remark 3.4. Conditions (3.15) and (3.16) in Theorem 3.3 are nonlinear with respect to
unknown c > 0. If c is a given positive constant, then (3.15) is a linear matrix inequality.
In order to find the solution for (3.15) and (3.16), c > 0 is given in advance, then we solve
(3.15) and (3.16).

Consider the system (2.3) with

Ai =

⎡

⎢
⎢
⎣

Ai11 Ai12 Ai13

Ai21 Ai22 Ai23

Ai31 Ai32 Ai33

⎤

⎥
⎥
⎦ ∈ Rn×n, Ai11 ∈ Rn1×n1 , Ai22 ∈ Rn2×n2 , Ai33 ∈ Rn3×n3 . (3.20)

According to Lemma 2.2, we have the following theorem for the asymptotical stability
of (2.3).

Theorem 3.5. There exists a switched law such that the discrete-time system (2.3) is asymptotically
stable, if there exist positive constants c, ηij , i, j = 1, 2, and symmetric positive-definite matri-
ces P1,P2,P3 > 0,P1 ∈ Rn1×n1 ,P2 ∈ Rn2×n2 ,P3 ∈ Rn3×n3 satisfying the following inequalities:

AT
ijjPjAijj − 1

1 + c
Pj ≤ −ηijI, i = 1, 2, . . .N, j = 1, 2, 3, (3.21)

3∑

j=2

∥∥Aij1
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥ + c−1‖P‖
∥∥∥ET

i Ei

∥∥∥ − ηi1 < 0,

3∑

j=1
j /= 2

∥∥Aij2
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ + c−1‖P‖
∥∥∥ET

i Ei

∥∥∥ − ηi2 < 0,

2∑

j=1

∥∥Aij3
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ + c−1‖P‖
∥∥∥ET

i Ei

∥∥∥ − ηi3 < 0,

(3.22)

where P = diag{P1,P2,P3}, and

βi =
1

(1 + c)
(
1 + c−1

)i−1 , i = 1, 2, . . . ,N − 1, βN =
1

(
1 + c−1

)N−1 . (3.23)

Proof. We choose the Lyapunov function candidate as

V (k) = xT (k)Px(k), (3.24)

where x = [xT
1 , x

T
2 , x

T
3 ]

T and P = diag{P1, P2, P3} are real symmetric positive-definite matrices.
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Computing the product, we have

AT
i PAi =

⎡

⎢
⎢
⎣

AT
i11 AT

i21 AT
i31

AT
i12 AT

i22 AT
i32

AT
i13 AT

i23 AT
i33

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

P1 0 0

0 P2 0

0 0 P3

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

Ai11 Ai12 Ai13

Ai21 Ai22 Ai23

Ai31 Ai32 Ai33

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3∑

j=1

AT
ij1PjAij1

3∑

j=1

AT
ij1PjAij2

3∑

j=1

AT
ij1PjAij3

3∑

j=1

AT
ij2PjAij1

3∑

j=1

AT
ij2PjAij2

3∑

j=1

AT
ij2PjAij3

3∑

j=1

AT
ij3PjAij1

3∑

j=1

AT
ij3PjAij2

3∑

j=1

AT
ij3PjAij3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(3.25)

So, we get

xTAT
i PAix =

[
xT
1 xT

2 xT
3

]

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

3∑

j=1

AT
ij1PjAij1

3∑

j=1

AT
ij1PjAij2

3∑

j=1

AT
ij1PjAij3

3∑

j=1

AT
ij2PjAij1

3∑

j=1

AT
ij2PjAij2

3∑

j=1

AT
ij2PjAij3

3∑

j=1

AT
ij3PjAij1

3∑

j=1

AT
ij3PjAij2

3∑

j=1

AT
ij3PjAij3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

⎡

⎢⎢
⎣

x1

x2

x3

⎤

⎥⎥
⎦

=

⎛

⎝xT
1

3∑

j=1

AT
ij1PjAij1 + xT

2

3∑

j=1

AT
ij2PjAij1 + xT

3

3∑

j=1

AT
ij3PjAij1

⎞

⎠x1

+

⎛

⎝xT
1

3∑

j=1

AT
ij1PjAij2 + xT

2

3∑

j=1

AT
ij2PjAij2 + xT

3

3∑

j=1

AT
ij3PjAij2

⎞

⎠x2

+

⎛

⎝xT
1

3∑

j=1

AT
ij1PjAij3 + xT

2

3∑

j=1

AT
ij2PjAij3 + xT

3

3∑

j=1

AT
ij3PjAij3

⎞

⎠x3

≤ x1
TAT

i11P1Ai11x1 + ‖x1‖2
3∑

j=2

∥∥Aij1
∥∥2∥∥Pj

∥∥ + 2‖x1‖‖x2‖
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥

+ 2‖x1‖‖x3‖
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥ + xT
2A

T
i22P2Ai22x2 + ‖x2‖2

3∑

j=1
j /= 2

∥∥Aij2
∥∥2∥∥Pj

∥∥

+ 2‖x3‖‖x2‖
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ + ‖x3‖2
3∑

j=1
j /= 3

∥∥Aij3
∥∥2∥∥Pj

∥∥ + xT
3A

T
i33P3Ai33x3

≤ xT
1A

T
i11P1Ai11x1



16 Journal of Applied Mathematics

+ ‖x1‖2
⎡

⎣
3∑

j=2

∥
∥Aij1

∥
∥2
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij2

∥
∥
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij3

∥
∥
∥
∥Pj

∥
∥

⎤

⎦

+ xT
2A

T
i22P2Ai22x2

+ ‖x2‖2
⎡

⎢
⎢
⎣

3∑

j=1
j /= 2

∥
∥Aij2

∥
∥2
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij2

∥
∥
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij3

∥
∥
∥
∥Aij2

∥
∥
∥
∥Pj

∥
∥

⎤

⎥
⎥
⎦

+ xT
3A

T
i33P3Ai33x3

+ ‖x3‖2
⎡

⎣
2∑

j=1

∥∥Aij3
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥

⎤

⎦.

(3.26)

Using the properties of matrix norm, (3.24), and Lemma 2.2, we have

ΔV (k)|(2.10) ≤ xT (k)

{
N∑

i=1

βi
[
(1 + c)Ai

TPAi +
(
1 + c−1

)
‖P‖Ei

TEi − P
]}

x(k)

≤
N∑

i=1

βi(1 + c)

{

x1
TAT

i11P1Ai11x1 + ‖x1‖2

×
⎡

⎣
3∑

j=2

∥∥Aij1
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥

+
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥

⎤

⎦

+ x2
TAT

i22P2Ai22x2 + ‖x2‖2

×

⎡

⎢⎢
⎣

3∑

j=1
j /= 2

∥∥Aij2
∥∥2∥∥Pj

∥∥+
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥+
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥

⎤

⎥⎥
⎦

+ x3
TAT

i33P3Ai33x3 + ‖x3‖2
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×
⎡

⎣
3∑

j=1

∥
∥Aij3

∥
∥2
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij3

∥
∥
∥
∥Pj

∥
∥

+
3∑

j=1

∥
∥Aij3

∥
∥
∥
∥Aij2

∥
∥
∥
∥Pj

∥
∥

⎤

⎦

⎫
⎬

⎭

+ xT (k)
N∑

i=1

βi
[(

1 + c−1
)
‖P‖Ei

TEi − P
]
x(k)

≤
N∑

i=1

βi(1 + c)

⎧
⎨

⎩
‖x1‖2

⎡

⎣
3∑

j=2

∥
∥Aij1

∥
∥2
∥
∥Pj

∥
∥ +

3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij2

∥
∥
∥
∥Pj

∥
∥

+
3∑

j=1

∥
∥Aij1

∥
∥
∥
∥Aij3

∥
∥
∥
∥Pj

∥
∥ + c−1‖P‖

∥
∥
∥Ei

TEi

∥
∥
∥ − ηi1

⎤

⎦

+ ‖x2‖2
⎡

⎢⎢
⎣

3∑

j=1
j /= 2

∥∥Aij2
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥

+
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ + c−1‖P‖
∥∥∥Ei

TEi

∥∥∥ − ηi2

⎤

⎥⎥
⎦

+ ‖x3‖2
⎡

⎣
2∑

j=1

∥∥Aij3
∥∥2∥∥Pj

∥∥ +
3∑

j=1

∥∥Aij1
∥∥∥∥Aij3

∥∥∥∥Pj

∥∥

+
3∑

j=1

∥∥Aij3
∥∥∥∥Aij2

∥∥∥∥Pj

∥∥ + c−1‖P‖
∥∥∥Ei

TEi

∥∥∥ − ηi3

⎤

⎦

⎫
⎬

⎭
.

(3.27)

From (3.22), we have ΔV (k) < 0, x(k)/= 0.
Switching Law. The switching law is given by (2.17) and (2.18). In the light of

Lemma 2.2, the discrete-time system (2.3) is asymptotically stable. Proof of Theorem 3.5 is
completed.

Remark 3.6. According to the systemmatrix that is divided into block matrices of the different
dimension, Theorems 3.3 and 3.5 are obtained, respectively. When the system matrix is
divided into 2 × 2 block matrix, Theorem 3.3 can be used. When the system matrix is divided
into 3 × 3 block matrix, Theorem 3.5 can be used.

4. Numerical Examples

Example 4.1. Consider the switched discrete-time system composed of two individual
systems given as follows.
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Mode 1: x(k + 1) = (A1 + ΔA1)x(k), A1 =

[
0.4 0.1

0 1

]

, ΔA1 = F1(k)E1, E1 = [0, 0.1],

Mode 2: x(k + 1) = (A2 + ΔA2)x(k), A2 =

[−0.2 0.1

1 0.3

]

, ΔA2 = F2(k)E2, E2 = [0, 0.2].

(4.1)
Set P1 = P2 = 0.5, c = 1. It is easily obtained that

e1 = 0.02, e2 = 0.66, d1 = 0.025, d2 = 0.165,

λ11 = 0.84, λ12 = 0.75, λ21 = 0.96, λ22 = 0.91.
(4.2)

It is validated that

AT
ijjPjAijj − Pj ≤ −λijI, i, j = 1, 2,

e1 + ce2 − λ11 − cλ21 + cλmax(P1) + c−1‖P‖
∥∥∥E1

TE1

∥∥∥ + ‖P‖
∥∥∥E2

TE2

∥∥∥ < 0,

d1 + cd2 − λ12 − cλ22 + cλmax(P2) + c−1‖P‖
∥∥∥E1

TE1

∥∥∥ + ‖P‖
∥∥∥E2

TE2

∥∥∥ < 0.

(4.3)

According to Theorem 3.2, the switched discrete-time system (4.1) is asymptotically stable by
the following switching law.

Switching Law. σ(x(k)) = i, if the following inequality holds:

xT (k)
[
2AT

i PAi + 2‖P‖ET
i Ei − P

]
xT (k) < 0. (4.4)

If x(k) = 0, then

σ(x(k)) = γ, γ ∈ {1, 2}. (4.5)

Example 4.2. Consider the switched discrete-time system composed of three individual
systems given as follows.

Mode 1 : x(k + 1) = (A1 + ΔA1)x(k), ΔA1 = F1(k)E1, E1 = [0, 0, 0.1].

Mode 2: x(k + 1) = (A2 + ΔA2)x(k), ΔA2 = F2(k)E2, E2 = [0, 0, 0.2].

Mode 3: x(k + 1) = (A3 + ΔA3)x(k), ΔA3 = F3(k)E3, E3 = [0, 0.1, 0],

(4.6)

where

A1 =

⎡

⎢⎢
⎣

0.2 0 0.1

0.1 0.3 0.4

0 0 0.7

⎤

⎥⎥
⎦, A2 =

⎡

⎢⎢
⎣

−0.2 0.1 0

0 0.3 0.1

0.1 0 0.1

⎤

⎥⎥
⎦, A3 =

⎡

⎢⎢
⎣

−0.1 0.1 0

0 0.4 0.3

0 0.1 0.2

⎤

⎥⎥
⎦. (4.7)
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Taking c = 1, P1 = 0.35, P2 = 0.45, P3 = 0.7, it is easily obtained that

η11 = 0.8691, η12 = 0.8190, η13 = 0.4191, η21 = 0.8691, η22 = 0.8191,

η23 = 0.8991, η31 = 0.8991, η32 = 0.7491, η33 = 0.8691.
(4.8)

It is validated that (3.21) and (3.22) hold. According to Theorem 3.5, the switched discrete-
time system (4.6) is asymptotically stable by the following switching law.

Switching Law. σ(x(k)) = i, if the following inequality holds:

xT (k)
[
2AT

i PAi + 2‖P‖ET
i Ei − P

]
xT (k) < 0. (4.9)

If x(k) = 0, then

σ(x(k)) = γ, γ ∈ {1, 2, 3}. (4.10)

5. Conclusion

The robust stability is investigated for a class of switched discrete-time system with state
parameter uncertainty. The switched law design method is proposed. By a simple switching
law, some sufficient conditions for robust stability have been derived for the uncertain
switched discrete-time systems and are presented in terms of inequalities. The present results
are straightforward. Two examples are given to show the effectiveness of our approach.
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