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This paper deals with the fractional-order SIRC model associated with the evolution of influenza
A disease in human population. Qualitative dynamics of the model is determined by the basic
reproduction number, R0. We give a detailed analysis for the asymptotic stability of disease-free
and positive fixed points. Nonstandard finite difference methods have been used to solve and
simulate the system of differential equations.

1. Introduction

Influenza is transmitted by a virus that can be of three different types, namely A, B, and C
[1]. Among these, the virus A is epidemiologically the most important one for human beings,
because it can recombine its genes with those of strains circulating in animal populations
such as birds, swine, horses, and so forth [2, 3]. Over the last two decades, a number of
epidemic models for predicting the spread of influenza through human population have been
proposed based on either the classical susceptible-infected-removed (SIR) model developed
by Kermack and McKendrick [4].

Casagrandi et al. [5] have introduced SIRC model by adding a new compartment
C, which can be called cross-immune compartment, to the SIR model. This cross-immune
compartment (C) describes an intermediate state between the fully susceptible (S) and
the fully protected (R) one. They have studied the dynamical behaviors of this model
numerically [6]. Jódar et al. [7] developed two nonstandard finite difference schemes to
obtain numerical solutions of a influenza A disease model presented by Casagrandi et al. [5].
Very recently Samanta [6] considered a nonautonomous SIRC epidemic model for Influenza
A with varying total population size and distributed time delay.
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The notion of fractional calculus was anticipated by Leibniz, one of the founders of
standard calculus, in a letter written in 1695. In recent decades, the fractional calculus and
fractional differential equations have attracted much attention and increasing interest due to
their potential applications in science and engineering (see [8, 9]).

In this paper, we consider the fractional order SIRC model associated with the
evolution of influenza A disease in human population. Qualitative dynamics of the model
is determined by the basic reproduction number, R0. We give a detailed analysis for the
asymptotic stability of disease-free and positive fixed points. Numerical simulations are
presented to verify the obtained results.

2. Model Derivation

There are many definitions of fractional derivatives [8, 9]. Perhaps the best known is the
Riemann-Liouvile definition. The Riemann-Liouville derivative of order α is defined as

RLD
α
0+f(t) =

1
Γ(n − α)

(
d

dt

)n ∫ t

0

f(s)

(t − s)α−n+1
ds, n = [α] + 1, (2.1)

where Γ is the gamma function and n is an integer. An alternative definition was introduced
by Caputo as follows, which is a sort of regularization of the Riemann-Liouville derivative:

Dα
t f(t) =

1
Γ(n − α)

∫ t

0

f (n)(s)

(t − s)α−n+1
ds. (2.2)

The most common definition is the Caputo definition, since it is widely used in real
applications. The initial conditions for the fractional order differential equations with the
Caputo’s derivative are in the same form as for the integer-order differential equations. The
Grunwald-Letnikov (GL) definition is given as

GLD
α
t f(t) = Lim

h→ 0
h−α

[(t−a)/h]∑
j=0

(−1)j
(
α

j

)
f
(
t − jh

)
. (2.3)

This formula can be reduced to

0D
α
t y(tm) = h−α

m∑
j=0

ω
(α)
j ym−j , (2.4)

where h is the time step and ωα
j are the Grunwald-Letnikov coefficients defined as ωα

j =
(1 − (1 + α)/j)ωα

j−1, j = 0, 1, 2, . . . , and ωα
0 = h−α. The model presented in [5] for the spread

influenza disease in the human population classifies the population in four groups or classes:
S(t) is the proportion of susceptibles at time t (individuals that do not have the virus), I(t) is
the proportion of infected at time t (individuals that have the virus and can infect), R(t) is the
proportion of recovered at time t (individuals recovered from the virus and have a temporary
immunity), and C(t) is the proportion of cross-immune individuals at time t. One of the main
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assumptions of this model is that the per capita birth rate is a constant μ > 0 and the birth
rate is the same as death rate. Using the above assumptions Casagrandi et al. [5] introduced
the following system:

dS

dt
= μ(1 − S) − βSI + γC,

dI

dt
= βSI + σβCI − (μ + θ

)
I,

dR

dt
= (1 − σ)βCI + θ I − (μ + δ

)
R,

dC

dt
= δR − βCI − (μ + γ

)
C,

(2.5)

where the parameter β is the contact rate for the influenza disease also called the rate of
transmission for susceptible to infected, γ−1 is the cross-immune period, θ−1 is the infectious
period, δ−1 is the total immune period and σ is the fraction of the exposed cross-immune
individuals who are recruited in a unit time into the infective subpopulation [5, 7].

Recently great considerations have been made to the models of FDEs in different area
of researches. The most essential property of these models is their nonlocal property which
does not exist in the integer order differential operators. We mean by this property that the
next state of a model depends not only upon its current state but also upon all of its historical
states. Now we introduce fractional order into the ODE model by Casagrandi et al. [5]. The
new system is described by the following set of fractional order differential equations:

Dα
t S = μ(1 − S) − βSI + γC,

Dα
t I = βSI + σ βCI − (μ + θ

)
I,

Dα
t R = (1 − σ) βCI + θI − (μ + δ

)
R,

Dα
t C = δ R − βCI − (μ + γ

)
C,

(2.6)

where Dα
t is the Caputo fractional derivative. Because model (2.6) monitors the dynamics of

human populations, all the parameters are assumed to be nonnegative. Furthermore, it can be
shown that all state variables of the model are nonnegative for all time t ≥ 0 (see, for instance,
[7, 10]).

Lemma 2.1. The closed set Ω = {(S, I, R, C) ∈ R4
+ : S + I + R + C = 1} is positively invariant with

respect to model (2.6).

Proof. The fractional derivative of the total population, obtained by adding all the equations
of model (2.6), is given by

Dα
t N(t) = μ − μN(t). (2.7)
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The solution to (2.7) is given by N(t) = N(0)Eα,1(−μtα) + μtαEα,α+1(−μtα), where Eα,β is
the Mittag-Leffler function. Considering the fact that the Mittag-Leffler function has an
asymptotic behavior [9, 11],

E∝,β(z) ∼ −
p∑

k=1

z−k

Γ
(
β − αk

) +O
(
|z|−1−p

)
,
(
|z| −→ ∞,

απ

2
<
∣∣arg(z)∣∣ ≤ π

)
. (2.8)

One can observe that N(t)converges to 1 when t → ∞. Therefore, all solutions of the model
with initial conditions in Ω remain in Ω for all t > 0. Thus, region Ω is positively invariant
with respect to model (2.6).

In the following, we will study the dynamics of system (2.6).

3. Equilibrium Points and Stability

To evaluate the equilibrium points let

Dα
t S = 0, Dα

t I = 0, Dα
t R = 0, Dα

t C = 0. (3.1)

Then E0 = (1, 0, 0, 0). By (2.6), a positive equilibrium E1 = (S1, I1, R1, C1) satisfies

S1 =
μ + θ

β
− σ

(
δθI1(

μ + σδ
)
βI1 +

(
μ + γ

)(
μ + δ

)
)
,

R1 =
θI1
(
βI1 + μ + γ

)
(
μ + σδ

)
βI1 +

(
μ + γ

)(
μ + δ

) ,

C1 =
δθI1(

μ + σδ
)
βI1 +

(
μ + γ

)(
μ + δ

) ,

(3.2)

and I1 is the positive root of g(I) = A1I
2 +A2I +A3(1 − R0), where R0 = β/(μ + θ) and

A1 = βμ
(
θ + μ + δσ

)
,

A2 = βμ
(−βμ + γ

(
δ + θ + μ

)
+
(
θ + μ

)(
δ + 2μ

)
+ δ
(−β + μ

)
σ
)
,

A3 = μ
(
μ + γ

)(
μ + δ

)(
μ + θ

)
.

(3.3)

The Jacobian matrix J(E0) for the system given in (2.6) evaluated at the disease-free
equilibrium is as follows:

J(E0) =

⎛
⎜⎜⎜⎜⎜⎝

−μ −β 0 γ

0 β − μ − θ 0 0

0 θ −μ − δ 0

0 0 δ −μ − γ

⎞
⎟⎟⎟⎟⎟⎠

. (3.4)
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Theorem 3.1. The disease-free equilibrium E0 is locally asymptotically stable if R0 < 1 and is
unstable if R0 > 1.

Proof. The disease-free equilibrium is locally asymptotically stable if all the eigenvalues,
λi, i = 1, 2, 3, 4 of the Jacobian matrix J(E0) satisfy the following condition [12, 13]:

∣∣arg(λi)∣∣ > απ

2
. (3.5)

The eigenvalues of the Jacobian matrix J(E0) are λ1 = −μ, λ2 = −(μ + δ), λ3 = −(μ + γ) and
λ4 = (μ+θ)(R0−1). Hence E0 is locally asymptotically stable ifR0 < 1 and is unstable ifR0 > 1.
We now discuss the asymptotic stability of the endemic (positive) equilibrium of the system
given by (2.6). The Jacobian matrix J(E1) evaluated at the endemic equilibrium is given as:

J(E1) =

⎛
⎜⎜⎜⎜⎜⎝

−μ − βI1 −βS1 0 γ

βI1 βS1 + σβC1 −
(
μ + θ

)
0 σβI1

0 (1 − σ)βC1 + θ −(μ + δ
)

(1 − σ)βI1

0 −βC1 δ −βI1 −
(
μ + γ

)

⎞
⎟⎟⎟⎟⎟⎠

. (3.6)

The characteristic equation of J(E1) is

(
λ + μ

)(
λ3 + a1λ

2 + a2λ + a3

)
= 0, (3.7)

where

a1 = γ + δ + 2μ + 2βI1,

a2 =
(
γ + μ

)(
δ + μ

)
+ βI1

(
γ + δ + θ + 3μ + δσ + βI1

)
,

a3 =
βI1
(
Ψ
((
δ + μ

)(
θ + μ

)
+ γ
(
δ + θ + μ

) − δθσ
)
+ β
(
θ + μ + δσ

)
I1
(
2Ψ + β

(
μ + δσ

)
I1
))

Ψ + β
(
μ + δσ

)
I1

,

(3.8)

where Ψ = (μ + γ)(μ + γ). Let D(Φ) denote the discriminant of a polynomial f . If Φ(x) =
x3 + a1x

2 + a2x + a3 then. Denote

D(Φ) = −

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 0

0 1 a1 a2 a3

3 2a1 a2 0 0

0 3 a1 a2 0

0 0 3 2a1 a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 18a1a2a3 + (a1a2)2 − 4a3a
3
1 − 4a3

2 − 27a2
3. (3.9)

Following [12, 14–16], we have the proposition.
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Figure 1: S(t), I(t), R(t), C(t) for μ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05, θ = 73, α = 0.9.
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Figure 2: S(t) for μ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05, θ = 73.

Proposition 3.2. One assume that E1 exists in R3
+.

(i) If the discriminant of Φ(x), D(Φ) is positive and Routh-Hurwitz are satisfied, that is,
D(Φ) > 0,a1 > 0, a3 > 0, a1 a2 > a3, then E1 is locally asymptotically stable.

(ii) IfD(Φ) < 0, a1 > 0, a2 > 0, a1 a2 = a3, α ∈ [0, 1) then E1 is locally asymptotically stable.

(iii) If D(Φ) <0, a1 < 0, a2 < 0,α > 2/3, then E1 is unstable.

4. Numerical Methods and Simulations

Since most of the fractional-order differential equations do not have exact analytic solutions,
so approximation and numerical techniques must be used. Several analytical and numerical
methods have been proposed to solve the fractional-order differential equations. For
numerical solutions of the system (2.6) one can use the nonstandard finite difference method
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Figure 3: I(t) for μ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05,θ = 73.

(NFDM). The nonstandard finite difference schemes were introduced byMickens in the 1980s
as a powerful numerical method that preserves significant properties of exact solutions of the
involved differential equation [17]. The concept of the nonstandard finite difference method
is discussed in [18]. Applying this method, the system (2.6) can be discretized as follows [7]:

k+1∑
j=0

ωα
j Sk+1−j = μ(1 − Sk+1) − βSk+1Ik + γCk,

k+1∑
j=0

ωα
j Ik+1−j = βSk+1 Ik + σβCk+1Ik −

(
μ + θ

)
Ik+1,

k+1∑
j=0

ωα
j Rk+1−j = (1 − σ)βCk+1Ik + θIk+1 − μRk+1 − δRk,

k+1∑
j=0

ωα
j Ck+1−j = δRk − βCk+1Ik − μCk+1 − γCk.

(4.1)

Doing some algebraic manipulation to (4.1) yields the following relations:

Sk+1 =
μ + γCk −

∑k+1
j=1 ω

α
j Sk+1−j

ωα
0 + μ + βIk

,

Ik+1 =
βSk+1Ik + σβCk+1Ik −

∑k+1
j=1 ω

α
j Ik+1−j

ωα
0 + μ + θ

,

Rk+1 =
(1 − σ) βCk+1Ik + θIk+1 − δRk −

∑k+1
j=1 ω

α
j Rk+1−j

ωα
0 + μ

,

Ck+1 =
δRk − γCk −

∑k+1
j=1 ω

α
j Ck+1−j

ωα
0 + μ + βIk

.

(4.2)
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Figure 4: R(t) for μ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05, θ = 73.
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Figure 5: C(t) for μ = 0.02, β = 100, δ = 1, γ = 0.5, σ = 0.05, θ = 73.

The approximate solutions S(t), I(t), R(t), and C(t) are displayed in Figures 1, 2, 3, 4, and
5, respectively. In each figure three different values of α are considered. When α = 1, system
(2.6) is the classical integer-order system (2.5). Figure 1 indicates behavior of the approximate
solutions for system (2.6) obtained for the values of α = 0.9. In Figure 2, the variation of S(t)
versus time t is shown for different values of α = 1, 0.9, 0.8 by fixing other parameters. It
is revealed that increase in α increases with the proportion of susceptible while behavior is
reverse after certain value of time. Figure 3 depicts I(t) versus time t, for Figures 3, 4, and 5
showing the similar variations of I(t), R(t), and C(t) with various values of α.
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