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This work presents a vision based system for navigation on a vertical takeoff and landing unmanned aerial vehicle (UAV). This is
a monocular vision based, simultaneous localization and mapping (SLAM) system, which measures the position and orientation
of the camera and builds a map of the environment using a video stream from a single camera. This is different from past SLAM
solutions on UAV which use sensors that measure depth, like LIDAR, stereoscopic cameras or depth cameras. Solution presented
in this paper extends and significantly modifies a recent open-source algorithm that solves SLAM problem using approach fun-
damentally different from a traditional approach. Proposed modifications provide the position measurements necessary for the
navigation solution on a UAV. The main contributions of this work include: (1) extension of the map building algorithm to
enable it to be used realistically while controlling a UAV and simultaneously building the map; (2) improved performance of the
SLAM algorithm for lower camera frame rates; and (3) the first known demonstration of a monocular SLAM algorithm suc-
cessfully controlling a UAV while simultaneously building the map. This work demonstrates that a fully autonomous UAV that
uses monocular vision for navigation is feasible.

1. Introduction

Improved accuracy, robustness, and capability of real-time
processing in video-based simultaneous localization and
mapping (SLAM) have recently made it a viable tool in a
navigation solution for unmanned aerial vehicles (UAVs).
However, obtaining an accurate and robust SLAM solution
using only video has only recently been solved, and not in
a manner suitable for use on UAVs. These recent solutions
require significant modification to be used robustly in the
navigation of such a demanding application. However, the
reward for successful use of video-based SLAM in these
applications is high because vision-based navigation can
provide a very affordable technology and because vision
sensors have advantages over other sensors currently used in
successful SLAM solutions for these applications.

Work presented by Klein and Murray gives a novel ap-
proach to vision-based SLAM, which they call parallel track-
ing and mapping (PTAM). In PTAM, bundle adjustment
(BA) is used instead of the typical filtering approach [1,
2]. The algorithm’s accuracy and the robustness of their

design are superb compared to any known real-time SLAM
algorithm based on filtering. A key paper by Montiel et al.
compares performance of SLAM algorithms based on filter-
ing and SLAM algorithms based on bundle adjustment [3].
Our work presents a modified version Castle’s implementa-
tion of PTAM [4], parallel tracking and multiple mapping
(PTAMM), for use in navigation on a vertical takeoff and
landing (VTOL) UAV. PTAMM is available as an open-
source library. This library works well for certain situations,
nevertheless, without significant modification, it is very lim-
ited in its application for UAV navigation.

Very recent successes in using SLAM in real time for
navigation on small VTOL airframes have demonstrated its
potential. However, nearly all of these successes have used
SLAM solutions based on sensors other than pure vision.
For example, several researchers have used LIDAR in their
solutions including Bachrach and He [5]. Also, even more
recently researchers have been successful in using depth
cameras which return a dense array of pixels corresponding
to the distance to the object seen by the pixel. However, both
the depth cameras and the LIDAR which are small enough
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to be carried on a small UAV are very limited on range (on
the order of 10 m at best). Furthermore, current versions of
the depth cameras cannot be used outdoors, and both are
significantly more expensive than simple cameras.

There are several examples of researchers working on
video-based SLAM for control of UAV. The authors are only
aware of one other successful use of monocular video-based
SLAM in guidance of a UAV, other than that presented here.
This other successful work is presented by Blösch et al. [6],
and it shows that a PTAMM solution can be used to guide a
UAV. However, in that work, the UAV moves a very limited
distance, with almost no rotation, in a scene where the map
is generated prior to flight. It does not address the issues of
building the map during flight. Also, Nützi et al. [7] present
an approach to estimate a scale in PTAM by using data from
an inertial measurement unit (IMU). However, this work
presents only simulations and does not document any actual
flights. Other similar examples include researchers that
collect data during flight and postprocess it offline [8–10].

In our work, the PTAMM algorithm is successfully mod-
ified to provide the position measurements necessary for the
navigation solution on a VTOL UAV while simultaneously
building the map. Furthermore, it is used in flights where
large maps are constructed in real time as the UAV flies under
position control with the only position measurements for the
navigation solution coming from PTAMM.

2. Original PTAMM

This section gives an overview of the PTAMM algorithm. It
gives a general overview of the entire algorithm; however,
it only gives details in the parts that were modified to
improve the algorithm’s robustness in use for navigation with
VTOL aircraft. For a more detailed description of the entire
algorithm, please refer to [1, 2, 11].

PTAMM builds a map of the environment by triangulat-
ing objects that are observed as matched features in images
taken from significantly different vantage points. These
images are called keyframes. At the same time it uses this map
of 3D features to estimate the current camera pose by finding
the locations of these 3D features in the current image. This
is the normal PTAMM operation when it is in the tracking
state. However, PTAMM has three states (cf. Figure 1):

(1) uninitialized
(2) tracking
(3) recovery.
In the uninitialized state, before the algorithm starts

tracking, an initial map of 3D features is created using two
frames. The user marks these two video frames, which should
be separated by a known distance and should observe the
same part of the scene. This known distance sets the scale
of the entire map. These frames are stored in the algorithm
as the first two keyframes and used throughout the tracking
state. After marking a frame as the first keyframe, FAST
algorithm [12] is used to detect features in it. Those features
are searched for in all the incoming frames. The search uses
correlation between patches of images centered around a
feature. These patches are used to match it throughout the
incoming frames. If the correlation between image patches
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Figure 1: Major parts of PTAMM.

is above a threshold, the feature is declared found in the
new frame. Otherwise, it is excluded from further processing.
After marking another frame as the second keyframe, all
the features that were successfully tracked from the first to
the second keyframe are used to determine a homography
between the two. The homography is decomposed to find
the keyframes’ poses by using the Faugeras and Lustman
algorithm [13]. The distance between the camera positions
is set to the user predefined value. BA is then used to refine
the two camera poses and 3D feature locations. An epipolar
search is then run to increase the size of map by finding more
matches in the FAST features from the two keyframes. The
algorithm then moves to the tracking state.

Tracking is performed in parallel in two threads. The
first thread, the Tracker, uses information stored in the map
to find the camera pose for the current frame. The second
thread, the MapMaker, maintains, extends, and improves the
accuracy of the information stored in the map. An overview
of tasks performed by both threads is shown in Figure 2.

The Tracker uses two stages; a first rough estimate of the
camera orientation and a second refined estimate of both
orientation and position. In the first stage, the camera ori-
entation is estimated by either a camera motion model or
coarse image-based minimization, called small blurry image
(SBI). In the default mode, SBI is used and not the motion
model. SBI utilizes the Benhimane and Malis algorithm [14,
15] to roughly estimate camera orientation relative to the
previous frame. This rough estimate is used as an initial guess
in the main tracking algorithm. The main tracking algo-
rithm is based on finding image patches associated with 3D
features in the current video frame. For each feature, in the
possibly visible set (PVS), a search is done locally around the
location predicted by the projection of the 3D feature into
the camera frame. This projection uses the initial guess of
the current camera orientation computed at the first stage
of the Tracker. To reduce the time for the feature search,
only locations marked in the current frame as FAST features
are considered. To help provide rotational invariance, feature
patches are warped accordingly to the camera pose estimate.
Once the image templates are matched, a minimization pro-
cess improves the estimate of the camera pose associated with
the current frame. This minimization tries to reduce the dif-
ference between actual feature locations and their predicted
locations based on the current camera pose estimate.
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Figure 2: PTAMM tracking overview.

The MapMaker only runs BA when new keyframes are
added. Keyframes are added using a normalized measure of
distance to nearest keyframe. One key parameter calculated
during tracking is the scene depth, which is the average of
the distance to the features seen in the current frame. The
normalized distance to the nearest keyframe is the distance to
this keyframe divided by the scene depth. When the camera is
moved to a new location that is further than a predetermined
normalized distance from any of the existing keyframes, the
new frame is added as a keyframe.

The MapMaker maintains and extends the set of 3D
features and the set of keyframes. When a new keyframe is
added, the Mapmaker uses an epipolar search between the
new keyframe and nearest existing keyframe to find new
feature matches, which are triangulated to extend the map.
BA is then performed with this new keyframe and and its
four nearest neighbors to further refine poses and 3D feature
locations. Then, additional measurements of the new 3D fea-
tures in other keyframes are added by searching for matches
in their FAST features. Finally, BA is run with the entire
set of keyframes and 3D features. Because this BA is much
more computationally intensive than the Tracker algorithms,
it is not capable of being run at the typically required frame
rates. Therefore, the MapMaker is implemented in a separate
thread that runs at much lower frequency than the Tracker.

PTAMM also implements a recovery algorithm. Recovery
is triggered when failure of the Tracker is detected. For each
frame, the Tracker computes the number of 3D features
successfully identified in it. During normal operation, most
of the features in the PVS are found. However, significant
changes between consecutive frames decrease number of
features found because predicted feature locations in the
image are inaccurate due to the initial pose estimate being

poor. Similarly, image blur decreases number of features
found as a result of the features being smeared. Both of these
can be caused by fast camera motion, and the significant
interframe change can also be caused by limited frame rate.
Without a sufficient number of features or with enough false
matches, the Tracker minimization fails and the camera pose
estimate drifts away from the true value. Since tracking of the
current frame uses the pose estimate of the previous frame,
significant loss in tracking accuracy starts a chain effect that
usually leads to the failure of tracking. Once critical tracking
conditions are detected, that is, when the ratio of features
found to the number of features in PVS drops below a thresh-
old for a couple of consecutive frames, the algorithm stops
relying on the pose information computed at the previous
frames and PTAMM enters recovery. The current frame is
compared to the stored keyframes, and the best matching
keyframe is selected. Comparison uses zero-mean sum of
squared differences and works on subscaled versions of the
frames. 2D transformation of the selected keyframe into
the current frame is computed using Benhimane and Malis
algorithm [14, 15]. This computed transformation is used
to estimate a 3D camera rotation that would result in the
computed image transformation. The Tracker is run with
the initial position being equal to selected keyframe position
and initial rotation being equal to computed 3D rotation.
PTAMM recovers faster when the camera pose is close to one
of the stored keyframes poses.

3. Modifications to PTAMM for Map
Building in Navigation

In this section, we describe modifications to PTAMM that are
made in an attempt to make it more robust in the application
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of navigation for VTOL airframes. First, a modification to
the initialization part of the algorithm is described. Next,
changes to the keyframe addition and matching procedures
are outlined.

3.1. SURF for Initialization. During the initialization,
PTAMM uses a correlation-based technique to track the
features between frames as the camera moves from the first
keyframe to the second. This approach is extremely error
prone as any nonsmooth camera movement results in a rapid
decrease in the number of features being tracked and forces
a restart of the procedure. This prevents initialization in
cases where the camera needs to travel significant distances
in order to obtain reasonable stereo separation or when
being transported by an aerial vehicle. Klein and Murray
[16] identified this problem and proposed a two stage ini-
tialization. In the first stage, tracking uses a single keyframe
and operates using a homography. Features do not have 3D
information attached, and camera pose is not accurate. Once
the camera is moved away from the first keyframe location,
and there is enough stereo separation between the views, the
algorithm switches into the normal mode. This approach
allows initialization even when the camera movement is not
smooth; however, it assumes that initial scene is planar which
is in general not true. Also, setting up the scene scale is less
robust as the algorithm decides internally when to insert the
second keyframe. If external devices like GPS or a barometric
altimeter are used to set the scale, their measurement may not
be accurate or ready at this time.

We have chosen to implement an initialization procedure
that uses the SURF [17] feature detector. After capturing
the first keyframe, SURF features are localized and the
algorithm waits for the user to move the camera and mark
another keyframe. No tracking is performed between the
two keyframes, which allows the camera to be moved freely.
When the user adds another keyframe, SURF features are
again found and matching is performed. The SURF imple-
mentation in the OpenCV library [18] is used to perform
both feature extraction and efficient tree-based matching
that does not rely on an initial estimate of pose. The rest of
the initialization proceeds as in the original algorithm.

3.2. Fast Map Expansion. The algorithm for expanding the
map in PTAMM works well for moving around an object
while viewing it from different locations or for moving in the
direction the camera is looking. However, it does not work
well when new areas are viewed by rotating. The map can not
be expanded by simply pointing the camera into unknown
part of the scene because a stereo view of any feature is
needed to locate it. This poses challenges for exploration as
two stereo-separated frames picturing unmapped part of the
scene are needed to expand the map with 3D features from
this unknown part of the scene. PTAMM tries to expand the
map only when a new keyframe is being added. Before add-
ing a frame as a new keyframe, the algorithm is required to
determine

(i) whether the current video frame contains new infor-
mation useful for the algorithm (part of the Tracker),

(ii) and if yes, which old keyframe should be used for
matching features with the new keyframe (part of the
MapMaker).

To answer the first question, PTAMM uses normalized
distance described in the previous section, and, to answer the
second, it uses the keyframe with the smallest linear distance
from it. In neither case are viewing angles considered. This
approach limits the algorithm’s ability to explore the envi-
ronment. Adding new features becomes difficult once an ini-
tial set of keyframes is captured because the camera location
is likely to be close to at least one of the keyframes already
in the set, although the current view may see a significantly
different area due to rotation. This prevents fast and reliable
exploration because areas without initialized 3D features stay
unmapped. Finally, using the closest keyframe for matching
limits, the possible stereo separation and the closest keyframe
do not necessarily have the largest overlap of viewing area.
We propose modifications changing keyframe handling that
focus the algorithm on expanding the map. As a result, ex-
ploration is made easier.

A modified condition for adding a new keyframe is de-
scribed here. The algorithm always adds a keyframe if the
original, distance-based criterion is fulfilled. If it is not, a
new keyframe can be added based on the camera viewing
direction. The viewing direction is compared with that of all
keyframes within the threshold for normalized distance used
to add keyframes. If the angle between current frame’s view-
ing direction and a viewing direction of all keyframes in
the described set is above a threshold, we add the current
frame as a new keyframe. The difference between view-
ing directions is just an angle between the two vectors repre-
senting them. This modification alone breaks the next part
of keyframe addition—matching. The closest keyframe may
not have significant stereo seperation and may not have
significant overlap. Modification of the keyframe selection
for matching is described next.

To ensure valid triangulation, only keyframes having
enough separation from the current frame should be con-
sidered for matching. To maximize the number of new 3D
features added in the unmapped regions, the keyframe se-
lected by the algorithm should have a large overlap with the
candidate frame in the region that is missing features.

Two approaches to accomplishing this were implemented
and evaluated. In the first one, the closest point of intersec-
tion of the camera viewing vectors is found to obtain a 3D
point whose distance to the camera locations is compared
to scene, depths for the keyframes. The difference between
expected point depth and the actual depth is used as a
quality measure. A small difference suggests that the camera
is looking at a similar area of the scene, and therefore a
keyframe with the lowest difference is used for matching.
In the second approach, matching is run on scaled versions
of the frames. This utilizes FAST features that were already
found for tracking of the frame. A keyframe that has the
highest number of matches with the candidate frame is se-
lected for a full matching on the full-resolution frames.

Practical evaluation of the two approaches reveals that
while the first method gives instantaneous results, the second
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method finds the best keyframe to match far more often. The
second method was chosen as the default implementation.
Note that time requirements of the second method are sig-
nificantly higher than the first one. However, additional com-
putations do not disturb tracking as keyframe addition is
a part of the MapMaker thread and it does not delay the
Tracker. Figure 3 shows a new keyframe and the keyframe
chosen for matching using the original and new algorithms.

4. Modifications for Handling Low Frame
Rate Video

Because our intended application of PTAMM might require
use of significantly reduced computational power with an
onboard processor, the frame rate becomes an important
consideration. In this section, we describe adaptations of the
algorithm, aimed at allowing successful tracking even when
changes in successive frames are significant. Although our
initial implementation for navigation uses the results from
offboard processing of the video with PTAMM, we intend
to move this to an onboard processor. Reduced processing
power results in the decrease of the number of frames that
can be processed per second. This in turn leads to more sig-
nificant differences between consecutive frames used by the
Tracker. This phenomenon is further intensified when sud-
den accelerations are present (e.g., during wind gusts). Large
image differences between consecutive frames are the usual
cause for the Tracker to fail.

To estimate the camera orientation that is used to seed
the Tracker, PTAM uses what it refers to as small blurry
images (SBI). The SBI algorithm uses the Benhimane and
Malis algorithm [14, 15] which runs on 16 times subscaled
and blurred versions of two frames. The Benhimane and
Malis algorithm finds a 2D transformation (rotation and
translation) converting the previous frame to the current
frame. The returned 2D transformation is used in a mini-
mization that finds a 3D rotation. The computed 3D rotation
is applied to the pose of the previous frame to compute
current frame pose.

PTAMM also includes a motion model for the initial
pose estimate to replace the SBI algorithm. In our evaluation,
the SBI algorithm was found to behave much more reliably,
especially when tracking at higher speeds or when direction
of movement was changed rapidly. Also, it is the default
mode set by the PTAMM creators. However, when video
frame rate is lowered and the camera motion is significant,
neither approach seeds the Tracker with a good orientation
estimate and the Tracker fails. We describe two approaches
that attempt to address this problem.

The first approach uses external measurements from
sensors onboard the aircraft which measure angular rate.
Most unmanned airframes are equipped with an inertial
measurement unit (IMU), including accelerometers and
gyroscopes, that are used for flight stabilization. Gyroscopes
provide angular rate measurements for rotation along the
X , Y , and Z axes of a body-fixed coordinate frame. The
output of the gyroscopes are numerically integrated between
camera frames using what is commonly known as the the
“strapdown equation” in the navigation community. This

provides an incremental update to orientation between
frames and is used to replace the SBI algorithm.

The second approach extends the SBI algorithm by
seeding it with multiple starting points for the minimization.
In the original implementation of the SBI algorithm, the
Benhimane and Malis algorithm is run once with an initial
seed of zero rotation and zero translation. However, due to
the low computational cost of this algorithm, it is feasible to
run the algorithm multiple times when processing a frame
without incurring significant time delay. Therefore, PTAMM
was modified to detect failure of the Benhimane and Malis
algorithm and turn on an “early recovery mode” where it is
seeded with several initial values.

Failure is detected based on the final value of a cost func-
tion. The cost function is formulated as a difference between
image intensities for the current frame and the previous
frame transformed by the 2D transformation under estima-
tion. Final cost is scaled by the inverse of the total number
of pixels in the overlap area between the transformed and the
candidate frame. If it exceeds a threshold a failure is assumed.
The “early recovery mode” runs Benhimane and Malis algo-
rithm starting with 27 different seeds of the 2D transforma-
tion. This transformation includes three variables: one rota-
tion and two translations. The 27 different values are derived
from all possible combinations of three values for each of the
variables. The rotation can take values of (−45◦, 0◦, +45◦),
and the translations can take values of−1/3 frames, 0 frames,
+1/3 frames. The solution with the lowest cost is chosen as
base for a seed for the main minimization in the Tracker.

We also performed tests when the default single-seed
minimization is allowed 10 times more iterations than in
the original PTAMM implementation. However, test results
(not shown in this paper) indicate that increasing number
of iterations does not improve the results of the Tracker
suggesting that the minimization must be converging to a
non global minimum.

5. Evaluation of Tracking Performance

To evaluate changes to PTAMM, two tracking experiments
were performed. The first used a motion that had a single
degree of freedom where a rotational motion stage was used
to generate a known motion. However, the parameters of the
motion like the speed and direction of movement were easily
changed without changing other parameters. The second
experiment used a freehand motion with 6 degrees of free-
dom. In both experiments, all the data used by PTAMM
were created prior to running the algorithm.

5.1. Stage Results. The camera was attached to a rotation
stage. The stage offers a communication protocol that was
used to query its orientation. Video data and stage position
measurements were acquired and stored during a stage rota-
tion encompassing 160 deg (cf. Figure 4). In the resulting
dataset, each video frame has a corresponding measurement
of the stage rotation assigned to it. This allows simulation
of arbitrary motion in the single degree of freedom of the
rotation stage. Rotations following a sine wave were used for
the evaluation. The PTAMM video input was modified to
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(a) (b) (c)

Figure 3: Example of matching a newly added keyframe. From left to right: newly added keyframe, PTAMM match for a new keyframe,
proposed FAST-based match. For the new method, note the overlap of the left parts of the keyframes which allows for addition of new 3D
features to the scene. Using original PTAMM match would not initialize new features.

Figure 4: Image created by stitching together with some of the images used in the motion simulation. Stitched image covers 160 deg of
rotation.

use stored images. A frame rate limiting mechanism was also
added. Additionally, PTAMM was run to create and save a
map with features covering the entire area seen by the camera
during the stage swath so that the same map was used for all
experiments.

Evaluation of the method using gyroscope measurements
requires simulation of these measurements. Stage rotation
measurements are used for that purpose. Due to camera
mounting, stage rotation corresponds to rotation around the
Y axis in the camera frame. To simulate the measurements
from the IMU, an angular rate was approximated for the Y
axis using the difference in angular position measurements
from the stage and the time from the simulation. Guassian
white noise was added to this approximation, where the
variance of the noise was obtained from data collected from
the IMU on the airframe used in experiments discussed later.

A series of runs were performed using the described
simulation setup to evaluate PTAMM behavior under dif-
ferent video frame rates. For each frame rate, a sinusoidal
rotation was simulated and appropriate video frames were
fed into PTAMM. In all cases, the amplitude of the motion
was set to 80 deg; however, the frequency of the sine wave was
varied from 0.05 Hz to 1 Hz. This corresponds to an average
angular velocity being varied from around 2.5 deg/second
to over 50 deg/second. Right before the start of the test,
the saved map was loaded into PTAMM and locked to
prevent any modifications. The motion sequence was started,
and PTAMM was allowed tracking for 30 seconds. Tracking
results for each frame were recorded, and the ratio of the

number of features found in the frame to the number of
features in the PVS was used as a performance metric.

Four algorithms were compared; two standard PTAMM
approaches: motion model and the SBI algorithm and two
proposed algorithms: the extended SBI algorithm and use of
gyroscope measurements. The results of experiments are pre-
sented in Figure 5. In all cases, the modified methods im-
prove the ability of the Tracker to estimate camera pose at
higher motion speeds. Improvement is more clear at lower
frame rates. The method using gyroscopes gains advantage
over extended SBI at low frame rates and at high motion fre-
quencies due to decreased overlap between frames caused by
the motion.

5.2. IMU Results. Another experiment used data captured
during an aggressive freehand camera motion. Video input
and gyroscopes measurements provided by the IMU attached
to the camera were timestamped and saved at the PC. A
PTAMM map of the scene was created before running the
tests and stored as before. The captured video sequence was
input to PTAMM at various frame rates.

Results are presented in Figure 6. Extended SBI performs
better than the default version at the lower frame rates;
however, the difference is not as significant as in the previous
results. Gyroscope-based tracking performs very poorly
though and is not shown in the figure because it failed in
all cases. This might be the result of a couple of factors.
Different time delays encountered on communication links
from camera and from IMU can create a time offset between
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Figure 5: (a) Setup used to capture data for motion simulation. Comparison of the tracking quality for different methods of estimating
camera pose seeded to the Tracker and at different video frame rates (b) 20 fps, (c) 10 fps, and (d) 5 fps.

the data from each. The estimate of the orientation of the
IMU relative to camera may have been inaccurate as well.

6. PTAMM Airframe Integration

Integration of PTAMM with the airframe used for testing
involved both hardware and software modifications to a mul-
tirotor UAV. An annotated picture of the airframe is shown
in Figure 7. In the current implementation, the PTAMM
solution runs on a laptop computer in the Linux operating
system, rather than on board the aircraft. Therefore, the
images are transferred to the ground either directly through
an Ethernet cable or through an 802.11n wireless transceiver.
The camera is an AXIS M1054, an IP security camera, with

the resolution set at 800 × 500 pixels with 84 deg in the
horizontal field of view. The wireless transceiver is capable
of transmitting well over 30 frames per second with this
resolution, which is not a limitation because the PTAMM
algorithm on the laptop processes approximately 15 to 20
frames per second in normal operation.

The original PTAMM software uses a fisheye camera
lens distortion model. However, this is not suitable for
our camera, and therefore a more common second-order
radial distortion polynomial model was added. This included
adding a closed form solution for the forward distortion
model and an iterative solution for the inverse of this model.

The PTAMM algorithm communicates with the Open-
Pilot autopilot through a 2.4 GHz serial communications
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Figure 6: Comparison of the tracking quality for a real image se-
quence played at different frame rates.
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Figure 7: Multirotor airframe modified for PTAMM.

transceiver connected to the INS board of the autopilot. The
OpenPilot system is an open source autopilot with hardware
consisting mainly of an INS board, a main control board, a
GPS receiver, and a 2.4 GHz serial communications link with
the ground station. The INS board contains the IMU sensors
and a microcontroller, which implements the navigation
solution. The authors have contributed to several parts of
the development of OpenPilot and most significantly to the
development of the navigation solution.

The navigation solution in OpenPilot is an EKF imple-
mentation of an INS. It takes 3-axis accelerometer measure-
ments and 3-axis rate gyro measurements as the inputs to
the dynamic system modeled in the EFK. In addition, it
uses a 3-axis magnetometer, GPS position, and GPS velocity
as the measurements of the outputs of the system. The
dynamic model used is a 6DOF kinematic model of a rigid
body. When using PTAMM with the navigation solution, the
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(3) Map extended

(5) Map extended

(7) Map extended

Figure 8: Map building with the new keyframe addition. Camera
successive positions where new keyframe is added are numbered
from 1 to 7. (1) PTAMM after stereo initialization, (2) camera
rotated to point into part of the scene without initialized features,
(3) camera moved forward to obtain stereo separation, keyframe
added, and new features initialized, (4) camera rotated again to look
at another uninitialized part of the scene, (5) camera moved back
for stereo, new features added, and so forth.

GPS is not used. Rather, the position measurements from
PTAMM replace the GPS position measurements, and no
velocity measurements are used. Also, when using PTAMM,
the magnetometers are not used, so the yaw angle of the
airframe is not observable without another measurement.
Since the both PTAMM and the INS represent orientation
with a quaternion, the simplest solution to this is to add
an additional output/measurement to the INS which cor-
responds to the forth element of the quaternion. This ele-
ment of the quaternion is highly correlated with yaw.

7. Test Flights

The exploration and navigation capabilities of the modified
PTAMM algorithm were verified in test flights. As shown
in Figure 7, the camera looks horizontally as it is mounted
on the UAV. Therefore, rotating the UAV around the Z axis
(yaw) points it towards new parts of the scene. To add to
the map features in a new area, PTAMM needs two images
(frames) of that area separated in space to allow for a stereo
view. It is possible to generate large maps during flights under
stable control using the navigation solution being generated
with position and yaw measurements from PTAMM. This
is done fairly easily with the modifications, however, would
be very difficult with original algorithm. A possible routine
for moving and rotating the camera to extend the map is
presented in Figure 8. The map is created by moving in and
out in a “circle,” with multiple keyframes being added at
the center and two keyframes being added at the rim of the
“circle.”
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Figure 9: Panoramic view of a field house. One end of the field house is approximately 25 meters from the camera, other is around 125
meters from the camera.

Figure 9 shows a panoramic view of a 360 deg scene in
a field house. It was possible to generate a map of nearly
the entire 360 deg field of view while controlling the UAV
with the PTAMM navigation solution and simultaneously
building the map. This was done by rotating and moving
back and forth a distance of about four meters. The two
extreme ends of the field house, which are broken out in this
figure, were approximately 25 meters and 125 meters away
from the flight location. Despite the small stereo separation,
the only portion of the map where the UAV developed poor
stability was when it was facing the end of the field house that
was furthest away.

Holding the UAV in hand, an entire 360 deg map was
generated in the same way. In this case, however, the map
was closed through the full rotation. The UAV was then sub-
sequently flown using this map in the navigation solution.
It was possible to make a full 360 deg rotation with stable
control and a deviation in position of about one meter. While
holding the quad in one position and manually rotating
360 deg, the PTAMM position solution showed a deviation
of about half a meter. This indicates that part of the 1
meter motion while being controlled was due to the dynamic
response to the disturbances of the half meter position errors
in PTAMM solution.

8. Conclusions and Recommendations

The map building capabilities of PTAMM are significantly
improved for the application of UAV navigation, and the
robustness under low frame rate video is improved by the
modifications described in this paper. The SLAM solution is
successfully modified to provide the position measurements
necessary for the navigation solution on a VTOL UAV while
simultaneously building the map. It was used in flights
where large maps were constructed in real time as the UAV
flew under position control with the only position measure-
ments for the navigation solution coming from SLAM.
The main contributions include (1) extension of the map

building algorithm to enable it to be used realistically while
controlling a VTOL UAV and simultaneously building the
map; (2) improved performance for low frame rates; (3) the
first known demonstration of a monocular SLAM algorithm
successfully controlling a UAV while simultaneously building
the map. The work described in this paper demonstrates
that a fully autonomous UAV that uses monocular vision for
navigation is feasible, although several aspects of the solution
still need improvement for practical application with robust
performance.

Future work on the monocular SLAM algorithm for
control of VTOL UAV is needed to make it more robust. This
work would likely include two major things: (1) moving it
to an on board processor that is more tightly linked with
the inertial measurement sensors; (2) tighter integration
with the control system. For example, in some cases, after
adding a new keyframe, the map changes significantly, which
causes large disturbances for the control system if the UAV
is being controlled with this map. Tighter integration with
the control system and consideration of effects such as these
would significantly improve robustness.
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