
Surface approximation using growing
self-organizing nets and gradient information

doi:10.1080/11762320701797745

Jorge Rivera-Rovelo and Eduardo Bayro-Corrochano
Department of Electrical Engineering and Computer Sciences, CINVESTAV del IPN, Unidad Guadalajara,
Av. Cientı́fica 1145, El Baj́ıo, Zapopan, Jalisco, 45010, México

Abstract: In this paper we show how to improve the performance of two self-organizing neural networks
used to approximate the shape of a 2D or 3D object by incorporating gradient information in the
adaptation stage. The methods are based on the growing versions of the Kohonen’s map and the neural
gas network. Also, we show that in the adaptation stage the network utilizes efficient transformations,
expressed as versors in the conformal geometric algebra framework, which build the shape of the object
independent of its position in space (coordinate free). Our algorithms were tested with several images,
including medical images (CT and MR images). We include also some examples for the case of 3D
surface estimation.

Key words: Segmentation, self-organizing neural networks, gradient vector flow, geometric algebra, 2D
and 3D reconstruction.

Introduction

Medical image processing is an area receiving a lot of
attention; particularly, there are several proposals for
medical image segmentation: Prastawa et al. (2003) present
a method for brain tumor segmentation based on abnor-
malities detection when comparing the patient’s image
against a digital brain atlas; Andrade (2004) preprocess the
image to eliminate the noise, then highlights the contours
and selects manually some initial points to finally use a
region growing technique for segmentation; Xu (1999)
presents a snake called GGVF-Snake which guides the
curve evolution to the object contour, and shows how
to use it to reconstruct the brain cortex; see Moon et al.
(2002a, 2002b) for further works.

The use of neural networks in medical image processing
is an area receiving a lot of attention with a variety of ap-
plications such as segmentation or classification of tissues.
The self-organizing neural networks such as Kohonen’s
map or self-organizing map (SOM), neural gas (NG) and
growing neural gas (GNG, Fritzke, 1995) have been used

Corresponding Author
Jorge Rivera-Rovelo
Department of Electrical Engineering and Computer Sciences
CINVESTAV del IPN, Unidad Guadalajara
Av. Cientı́fica 1145, El Bajı́o, Zapopan, Jalisco, 45010, México
Email:rivera@gdl.cinvestav.mx

broadly when we need to preserve the topology of the data
(Mehrotra et al., 1997, Angelopoulou et al., 2005).

In this work we present an approach which uses the gen-
eralized gradient vector flow (GGVF) (Xu, 1999) to guide
the automatic selection of the input patterns, as well as
the adaptation process of two self-organized neural net-
works: a growing version of the SOM and the GNG,
to obtain by their training a set of transformations ex-
pressed in the conformal geometric algebra framework.
These transformations help us define the shape of the ob-
ject we are interested in. We decided to use such framework
because it has the advantage that (rigid body) transforma-
tions of geometric entities (e.g., points, lines, planes, cir-
cles, spheres) are expressed in compact form as operators
called versors, which are applied in a multiplicative way
to any entity of the conformal geometric algebra. Thus,
training the network we do not obtain specific positions for
a particular entity (e.g., the positions of points when the
weights of the network are interpreted in such a way), but
we obtain the transformation that can be applied to enti-
ties resulting in the definition of the object contour or its
shape.

Note that the authors are proposing a very advanced
algorithm using early vision preprocessing and self-
organizing neural computing in terms of algebra tech-
niques. We believe that the early vision preprocessing toge-
ther with self-organizing neurocomputing resembles in
certain manner the geometric visual processing in biologi-
cal creatures. The experimental results show that approach
is very promising.

Copyright C© 2007 Taylor & Francis 125 ABBI 2007 Vol. 4 No. 3 pp. 125–136

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206155251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

J. Rivera-Rovelo and E. Bayro-Corrochano

Background

In order to make the article self-contained, let us briefly
explain the self-organizing maps and the neural gas algo-
rithms, as well as the geometric algebra.

Self-organizing maps

The self-organizing map is an artificial neural network
which is trained using unsupervised learning to produce
low-dimensional representation of the training samples
while preserving the topological properties of the input
space; sometimes it is called Kohonen’s map, thanks to its
inventor, Dr. Teuvo Kohonen. A self-organizing map con-
sists of a single-layer feedforward network where the out-
puts are arranged in low dimensional grid. Each input is
connected to all output neurons. Attached to every neu-
ron is a weight vector of the same dimension as the input
vectors.

The adaptation (training) algorithm utilizes competitive
learning. When an input (or training example) is fed to
the network, its Euclidean distance to all weight vectors is
computed. The neuron with weight vector, most similar
to the input results in the smallest Euclidean distance, is
called the winner neuron or the best-matching unit (BMU).
Then, the weights of winner and neighboring neurons
(neurons close to it in the SOM lattice) are adjusted
toward the input vector. This change decreases with
time and distance from the winner neuron. The updated
formula for a neuron with weight vector at time t is

wv(t + 1) = wv(t) + φ(v, t)α(t)(ζ − wv(t)), (1)

where α(t) is a monotonically decreasing adaptation
(learning) coefficient, and ζ is the input vector; φ(v, t)
depends on the lattice distance between the winner neuron
and its neighbor neuron v, and it shrinks with time. This
process is applied for each input vector ζ iteratively.

Neural gas and growing neural gas

The neural gas algorithm is a generalization of the k-
means algorithm. The idea of the k-means algorithm is
that given a several example vectors, they are clustered
into a few classes iteratively, accordingly to a distortion
measure (which should be minimized). Every class has its
mean vector, and at each iteration every example vector is
assigned to the class with the closest mean vector. After
that every mean vector is replaced by the average of all
vectors in its class.

Then, the difference of the neural gas algorithm is that
every example vector is not assigned to a single class but
to more than one class. Assignment to the closest class is
given with a high weight and to other classes with smaller
weights. The mean is updated at each iteration, in the same
way as in k-means algorithm.

The update process of weights of neurons in the neural
gas algorithm uses two adaptation parameters: α1 and α2.
The updated formula for a neuron with weight vector at

time t is

wwin(t+1) = wwin(t) + α1(t)(ζ − wwin(t)), (2)

wn (t + 1) = wn (t) + α2(t)(ζ − wn (t)). (3)

Growing neural gas is a self-organization neural network
first proposed by Bernd Fritzke. Unlike the earlier neural
gas, growing neural gas can add and delete nodes during
algorithm execution. The main idea is to successively add
new neurons (units) to an initially small network. The
complete algorithm is as follows:

� Start with two units a and b at random positions wa and
wb in Rn .

� Generate an input signal ζ.
� Find the nearest neuron s1 and the second nearest unit s2.
� Increment the age of all edges emanating from s1.
� Add the squared distance between the input and the nearest

neuron in input space to a local counter variable

er r = er r + |ws1 − ζ |2.
� Move s1 and its direct topological neighbors toward ζ by

fractions α1 and α2 respectively of the total distance

�ws1 = α1(ζ − ws1), (4)

�wn = α2(ζ − wn). (5)

� If s1 and s2 are connected by an edge, set the age of this
edge to zero. If such an edge does not exist, create it.

� Remove edges with an age larger than cmax. If this results
in points having no emanating edges, remove them as well.

� Insert a new unit as follows:
-- Determine the neuron q with the maximum accumu-

lated error.
-- Insert a new unit r halfway between q and its neighbor

f with the largest error variable.
-- Insert edges connecting the new unit r with units q and

f and remove the original edge between q and f
-- Decrease the error variables of q and f by multiplying

them with a constant. Initialize the error variable of r
with the new value of the error variable of q .

� Decrease all error variables by multiplying them with a
constant d .

� If a stopping criterion is not yet fulfilled repeat all the
previous steps.

Geometric algebra

The geometric or Clifford algebra was introduced by
William K. Clifford (1845–1879) and there has been in-
teresting proposals using it in areas as robotics, computer
vision, etc. Roughly speaking, geometric algebra (GA) is a
mathematical framework which allows us to treat geomet-
ric objects as algebraic entities that can be easily treated
with algebraic tools. Some authors refer it as geometric
algebra because they are more interested in geometric in-
terpretation of algebraic entities; while others refer it as
Clifford algebra because they are more interested in the al-
gebraic aspects. Here we will adopt the term “geometric
algebra”, and give a brief introduction; interested reader

126ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

Self-organizing netural networks

can see Bayro-Corrochano (2005), Perwass and Hilden-
brand (2003), Rosenhahn and Sommer (2002) for more
detailed explanations of different geometric algebras.

The geometric algebra G p,q ,r is constructed over the
vector space V p,q ,r , where p, q , r denote the signature of
the algebra; if p �= 0 and q = r = 0, the metric is Eu-
clidean; if only r = 0, the metric is pseudoeuclidean; if
p �= 0, q �= 0, r �= 0, the metric is degenerate. In this al-
gebra, we have the geometric product which is defined as in
Equation (6) for two vectors a, b , and have two parts: the
inner product a · b is the symmetric part, while the wedge
product a ∧ b is the antisymmetric part:

ab = a · b + a ∧ b . (6)

The dimension of Gn=p,q ,r is 2n , and Gn is constructed by
the application of the geometric product over the vector
basis ei ,

ei e j =

1 for i = j ∈ 1, . . . , p,

−1 for i = j ∈ p + 1, . . . , p + q ,

0 for i = j ∈ p + q + 1, . . . , p + q + r,
ei ∧ e j for i �= j.

This leads to a basis for the entire algebra: {1}, {ei }, {ei ∧
e j }, {ei ∧ e j ∧ ek}, . . . , {e1 ∧ e2 ∧ . . . ∧ en}. Any multi-
vector can be expressed in terms of this basis. In the 2n − D
space there are multivectors of grade 0 (scalars), grade 1
(vectors), grade 2 (bivectors), grade 3 (trivectors). . . up to
grade n.

This results in a basis for Gn containing elements of dif-
ferent grade called blades (e.g., scalars, vectors, bivectors,
trivectors, etc): 1, e1 . . . e12 . . . e123 . . . I, which is called
basis blade; where the element of maximum grade is the
pseudoscalar I = e1 ∧ e2 . . . ∧ en . A linear combination
of basis blades, all of the same grade k, is called k-vector.
The linear combination of such k-vectors is called multivec-
tor, and multivectors with certain characteristics represent
different geometric objects (as points, lines, planes, circles,
spheres, etc), depending on the GA where we are working
in. For example, a point is represented in G3,0,0 (the GA of
the 3D Euclidean space, E3) as x = ae1 + be2 + c e3, while
in G3,1,0 (the GA of the projective space), it is represented
as x = ae1 + be2 + c e3 + e4; however, a circle cannot be
defined in G3,0,0 as a single multivector (although it is pos-
sible to define it parametrically), but it is possible to define
it in G4,1 as a 2-vector Z = S1 ∧ S2 (the intersection of
two spheres in the same space).

Given a multivector M, it is called homogeneous if it
contains just elements of the same grade. Given a multi-
vector M, if we are interested in extracting only the blades
of a given grade, we write 〈M〉r where r is the grade of
the blades we want to extract (obtaining an homogeneous
multivector M′ or a r -vector). The dual of M is computed
by multiplying the multivector M by the pseudo-scalar of
the respective GA: M∗ = IM.

Rigid-body motions are defined in geometric algebra us-
ing entities named versors; special versors are the so-called

rotors, translators and motors, which rotate, translate and ap-
ply both transformations, respectively. These versors are
applied multiplicatively to the entities to be transformed.
However, its important to note that, although rotations
are applied in a multiplicative way in G3,0,0, translations
are applied by direct sum, and to apply it multiplicatively
we need to move to other algebra. Such transformations
are ideally managed by the conformal geometric algebra
G4,1,0, which is explained below. Interested reader can see
Bayro-Corrochano (2005), Rosenhahn and Sommer (2002)
for more details and explanations of different geometric al-
gebras.

Conformal geometric algebra

Conformal geometric algebra (CGA) G4,1,0 is applied to
embed the Euclidean space in a higher dimensional space
with two extra basis vectors which have particular meaning;
in this way, we represent particular objects of the Euclidean
space with subspaces of the conformal space. The vectors
we add are e+ and e−, which square to 1, −1, respectively.
With these two vectors, we define the null vectors

e0 = 1
2

(e− − e+); e∞ = (e− + e+), (7)

interpreted as the origin and the point at infinity, respec-
tively. From now and in rest of the paper, points in the
3D Euclidean space are represented in lowercase letters,
while conformal points in uppercase letters; also the con-
formal entities will be expressed in the inner product null
space (IPNS), and not in the outer product null space un-
less it is specified explicitly. To map a point x ∈ V3 to the
conformal space in G4,1, we use

X = x + 1
2

x2e∞ + e0. (8)

As mentioned before, we can use CGA to represent
particular objects of the 3D Euclidean space; the spheres
are specially interesting because they are the basic entities
in CGA from which other entities are derived. Spheres
with center in c and radius ρ are represented as

S = c + 1
2

(c 2 − ρ2)e∞ + e0. (9)

In fact, we can think in conformal points X as degenerated
spheres of radius ρ = 0.

Let X1, X2 be two conformal points. If we subtract X2
from X1, we obtain

X1 − X2 = (x1 − x2) + 1
2

(x2
1 − x2

2)e∞ + e0 (10)

and if we square this result, we obtain

(X1 − X2)2 = (x1 − x2)2. (11)

127Copyright C© 2007 Taylor & Francis ABBI 2007 Vol. 4 No. 3

J. Rivera-Rovelo and E. Bayro-Corrochano

So, if we want a measure of the euclidean distance be-
tween the two points, we can apply (11). Reader is en-
couraged to see the CGA representation of other entities
from Rosenhahn and Sommer (2002). All of such entities
and its transformations can be managed easily using the
rigid-body motion operators described further.

Rotation, translation and dilation

In GA there exist specific operators named versors to model
rotations, translations and dilations, they are called rotors,
translators and dilators respectively. In general, a versor G
is a multivector which can be expressed as the geometric
product of nonsingular vectors

G = ±a1a2...ak. (12)

In CGA such operators are defined by (13), (14) and (15),
being R the rotor, T the translator, and Dλ the dilator,

R = e
1
2 bθ , (13)

T = e− te∞
2 , (14)

Dλ = e
− log(λ)∧E

2 , (15)

where b is the bivector dual to the rotation axis, θ is the
rotation angle, t ∈ E3 is the translation vector, λ is the
factor of dilation and E = e∞ ∧ e0.

Such operators are applied to any entity of any dimen-
sion by multiplying the entity by the operator from the
left, and by the reverse of the operator from the right. Let
Xi be any entity in CGA; then to rotate it we apply (16),
while to translate it we apply (17), and to dilate we use (18).
However, dilations are applied only on the origin, so we
must translate the entity Xi to origin, then to dilate it, and
finally translate it back to its original position, as expressed
by (19),

X′
1 = RX1 R̃, (16)

X′
2 = T X2T̃, (17)

X′
3 = Dλ X3 D̃λ, (18)

X′
4 = T̃o DλTo X4T̃o D̃λTo . (19)

Determining the shape of an object

To determine the shape of an object, we can use a to-
pographic mapping which uses selected points of interest
along the contour of the object to fit a low-dimensional map
to the high-dimensional manifold of such contour. This
mapping is commonly achieved by using self-organized
neural networks as Kohonen’s maps or neural gas (Mehro-
tra et al., 1997); however, if we desire a better topology
preservation, we should not specify the number of neurons
of the network a priori (as specified for neurons in SOM or
NG, together with its neighborhood relations), but allow
the network to grow using an incremental training algo-
rithm, as in the case of the growing neural gas (Fritzke,

Figure 1 A block diagram of our approach.

1995). In this work we follow the idea of growing the neu-
ral network and present two approaches (one based on the
SOM algorithm, and other bases on the GNG algorithm)
to determine the shape of objects by means of applying
versors of the CGA, resulting in a model easy to handle in
postprocessing stages, for example modeling the dynamic
behavior of the object. A scheme of our approach is shown
in Figure 1. This representation uses only one base point
and a set of versors in the conformal geometric algebra
framework (translators T in 2D, motors M in 3D), which
moves such point along the contour of the object we are
interested in, to determine its shape. It means that the neu-
ral network has versors associated to its neurons, and its
adaptation algorithm determines the parameters that best
fit the input patterns, allowing us to get every point on the
contour by interpolation of such versors. This method is a
coordinate- free approach.

In addition, we modify the acquisition of input patterns
by adding a preprocessing stage which determines the in-
puts to the net; this is done by computing the GGVF
and analyzing the streamlines followed by particles (points)
placed on the vertices of small squares by dividing the 2D
or 3D space in such squares (or cubes in 3D case). The
streamline or the path followed by a particle that is placed
on x = (x, y, z) coordinates will be denoted as S(x). The
information obtained with GGVF is also used in the adap-
tation stage as explained below.

Automatic samples selection using GGVF

Since our goal is to have an approach which needs less
intervention of users, the selection of input patterns must
be automatic and robust; it means that we want to give to
the computer only the medical image or the volumetric data
in order to find the shape of the object we are interested in.
Therefore, we need a method that can provide information

128ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

Self-organizing netural networks

Figure 2 Example of the dense vector field called GGVF (it
is shown not all the vector field, but only representative
samples of a grid). (a) Samples of the vector field for a 2D
image; (b) samples of the vector field for volumetric data.

to guide the algorithm in this selection. The GGVF (Xu,
1999) is a dense vector field derived from the volumetric data
by minimizing a certain energy functional in a variational
framework. The minimization is achieved by solving linear
partial differential equations which diffuses the gradient
vectors computed from the volumetric data. To define the
GGVF, the edge map is defined at first. Let f (x) : � → R
be an edge map defined in � ⊂ Rn; then the GVF in � is
defined as the vector field v(x) : � → R which minimizes
the energy functional,

E =
∫

�

g (|∇ f |)∇2v − h(|∇ f |)(v − ∇ f), (20)

where the gradient operator∇ is applied to each component
of v separately. For the 2D case, it is defined as f (x, y) =
−|∇G(x, y) ∗ I(x, y)|2, where I(x, y) is the gray level of
the image on pixel (x, y), G(x, y) is a 2D Gaussian function
(for robustness in presence of noise), and ∇ is the gradient
operator,

g (|∇ f |) = e− |∇ f |
µ and h(|∇ f |) = 1 − g (|∇ f |) (21)

and µ is a regularization parameter governing the trade-off
between the first term and the second term in the integrand.
This parameter should be set according to the amount of
noise present in the image (more noise, increase µ). An
example of such dense vector field obtained in a 2D image
is shown in Figure 2(a), while an example of the vector field
for a volumetric data is shown in Figure 2(b). Observe the
large range of capture of the forces in the image. Due to
this large capture range, if we put particles (points) on any
place over the image, they can be guided to the contour of
the object.

The automatic selection of input patterns is done by ana-
lyzing the streamlines of points of a 3D grid topology defined
over the volumetric data. It means that the algorithm follow
the streamlines of each point of the grid, which will guide
the point to the more evident contour of the object; then
the algorithm selects the point where the streamline finds a
peak in the edge map and gets its conformal representation
X (as in Equation (8)) to make the inputs pattern set. Ad-
ditionally, to the X (conformal position of the point), the

Figure 3 (a) Example of streamlines for particles arranged in
a 32×32 grid according to the vector field shown in Figure
2(a); (b) selected points as input patterns according to
Equation (22).

inputs have the vector vζ = [u, v, w] which is the value
of the GGVF in such pixel and it will be used in the train-
ing stage as a parameter determining the amount of energy
that the input has to attract neurons. This information will
be used in the adaptation stage together with the position
x to approximate the topology of the data. Summarizing,
the input set I will be

I = {ζk = (Xζk , vζk)|xζ ∈ S(x′) and f (xζ) = 1}, (22)

where Xζ is the conformal representation of xζ ; xζ ∈ S(x′)
means that xζ is on the path followed by a particle placed in
(x′), and f (xζ) is the value of the edge map in position xζ

(assuming it is binarized). As some streamlines can carry to
the same point or very close points, we can add constraints
to avoid very close samples; one very simple restriction is
that the candidate to be included in the input set must be
at least at a fixed distance dthresh of any other input.

Selection of input patterns by this way avoids the
necessity of preprocessing the image (thresholding and
highlighting contours) and manual selection, as in An-
gelopoulou et al. (2005); this is because the GGVF is very
robust even in the presence of noise, and is guaranteed that
streamlines will guide us to the contours of the image. Fig-
ure 3 shows the streamlines according to the vector field
shown in Figure 2(a) and the input patterns selected as
described before.

Shape approximation using versors

Using each one of the neural nets mentioned earlier, we will
define the versors that applied to a point which will describe
the shape of the object. First, we present the algorithm for
the growing SOM (GSOM) in some detail, then we only
specify the changes to adapt it to the GNG approach. It
is important to note that, although we are explaining the
algorithm using points, the versors can be applied to any
entity in GA that we had selected to model the object.
The network starts with a minimum number of versors
(neural units) and new units are inserted successively. The
network is specified by the following:

129Copyright C© 2007 Taylor & Francis ABBI 2007 Vol. 4 No. 3

J. Rivera-Rovelo and E. Bayro-Corrochano

Figure 4 Average errors for different examples using the GSOM algorithm with and without GGVF information.

Figure 5 Average errors for different examples using the GNG algorithm with and without GGVF information.

Figure 6 Percentage of images in four sets for which the topographic error te is zero after reaching the stop criterion.

130ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

Self-organizing netural networks

� A set of units (neurons) named N, where each nl ∈ N has
its associated versor Mnl ; each versor is the transformation
that must be applied to a point to place it in the contour
of the object. The set of transformations will ultimately
describe the shape of the object.

� A set of connections between neurons defining the topo-
logical structure.

In this approach, we will use the information available
on GGVF to guide the adaptation. With this elements, we
define the adaptation algorithm of the growing SOM to
find the versors that will define the contour as follows:

1. Let P0 be a fixed initial point over which the transfor-
mations will be applied. Such transformations will be
expressed as M = e− t

2 e∞ in the conformal geometric al-
gebra. This point corresponds to the conformal represen-
tation of p0, which can be a random point or the centroid
defined by the inputs. The vector t will be determined
according the distance between Xζ and P0 as explained
below, but initially it is a random displacement.

2. Start with the minimal number of neurons, which have
associated random translators as well as a vector vl =
[ul , vl , wl] whose magnitude is interpreted as the “avail-
ability for adaptation" of such neuron (initially set to 1).

3. Select one input ζ from the inputs set I and find the
winner neuron; that means to find the neuron nl having
the versor Ml which moves the point P0 closer to such
input:

Mwin = min
∀M

√
(Xζ − MP0 M̃)2. (23)

4. Modify Mwin and all others versors of neighboring neu-
rons Ml in such a way that the modified T will represent
a transformation moving the point P0 nearer the input:

Mlnew = e− tl
2 e∞e− �tl

2 e∞, (24)

where

�tl = α φ η(vζ , vl) (xζ − p0), (25)

α is an adaptation parameter, φ is a function defining
the amount of a neuron that can learn according to its
distance to the winner neuron (usually defined as in (26)),
and η(vζ , vl) is defined as in (27),

φ = e− (Mwin P0 M̃win−Ml P0 M̃l)2

2σ (26)

η(vζ , vl) = ‖vζ − vl‖2. (27)

which acts as a parameter indicating the quantity of adap-
tation depending on the teaching strength of the input
ζ and the learning capacity of the neuron, given in vζ

and vl, respectively. In other words, with η(vζ , vl) we
are taking into account the information of GGVF which
guide to the contours. Finally, also update the value vl:

vlnew = (1 + α φ) vl (28)

5. Insert new neurons as follows:
For the 2D case:
– Determine neighboring neurons ni and nj connected

by an edge larger than cmax.
– Create a new neuron nmax between ni and nj whose

associated M and vl will be

Mnnew = Mi + Mj

2
, (29)

vlnew = vi + vj

2
(30)

– Delete old edge connecting ni and nj and create two
new edges connecting nnew with ni and nj.

Note: For the 3D case, we do not present the insertion
method because we will not use this method in 3D. This
is because, as will be seen in the experiments section, the
GNG method (explained in the next section), performs
better than this approach in 2D (which is generalizable
for 3D).

6. Decrease the adaptation parameter α by a factor r

ατ = ατ−1 ∗ r (31)

and repeat steps 3 to 5 until reach some predefined value
for α, or when reach the maximum number of neurons.

Training the network we find the set of M defining po-
sitions on a trajectory; such positions minimizes the quan-
tization error measured as the average distance between Xζ

and the result of Mζ P0 M̃ζ :

χ =
∑

∀ζ (
√

(Mζ P0 M̃ζ − Xζ)2

N
, (32)

where Mζ moves P0 closer to input Xζ , and N is the
number of inputs.

One important thing to note is that, although the quan-
tization error measures the average distance between each
input and its best-matching unit, it does not state any-
thing about the topology preservation. The topographic er-
ror measures the proportion of all inputs, for which the
first and second best matching units are not adjacent. The
topographic error is defined as

te = 1
N

∑
u
(
ζi

N
i=1

)
. (33)

GNG using GGVF

For the case of the growing neural gas, the adaptation algo-
rithm is very similar to the one explained for the GSOM.
Actually, we only have to take into account that
� There are two adaptation parameters: ew and en , for the

winner neuron and for the direct neighbors of it. These
parameters do not decrease with time as the parameter α

in the GSOM case, but remain constant during all the

131Copyright C© 2007 Taylor & Francis ABBI 2007 Vol. 4 No. 3

J. Rivera-Rovelo and E. Bayro-Corrochano

Figure 7 (a) Inputs to the net and the initial shape (a line)
defined according the two initial random translators Ta , Tb ;
(b) shape after only one iteration; c) Final shape defined with
the 50 estimated translators.

process. This implies that to update the transformation M
we use

�twin = ew η(vζ , vwina) (xζ − p0) (34)

for the winner neuron, and

�tn = en η(vζ , vn) (xζ − p0) (35)

for its direct neighbors. Also update

vnew
win = (1 + α φ) vnew

win (36)

vnew
n = (1 + α φ) vnew

n. (37)

� Each neuron nl will be composed of its versor Mnl and
two new attributes: the signal counter s cl and the relative
signal frequency r s fl . The signal counter s cl is incremented
for the neuron nl every time it is the winner neuron. The
relative signal frequency r s fl is defined as

r s fl = s cl∑
∀nj

s c j
. (38)

This parameter will act as an indicator to insert new neural
units.

� The process to insert new neural units changes. Here we
take into account the parameter r s fl in the following way:
every certain number λ of iterations determine the neuron
with the r s fl with highest value. Then, if any of the direct
neighbors of that neuron is at a distance larger than cmax,
insert a new neuron in the same way as in step 5 of the
GSOM algorithm, using Equation (30).

� When inserting new neurons, the new units will have the
values s cnew = 0 and r s fnew = 0.

Figure 8 (a) Original image and region of interest (ROI); (b)
zoom of the dense vector field of the ROI; (c) zoom of the
streamlines in ROI; (d) inputs and initial shape; (e) final
shape defined according the 54 estimated translators; (f)
image segmented according the results.

� The stop criterion is when a maximum number of neurons
is reached or when the parameter called “availability for
adaptation” of neurons approaches to zero (i.e., it is less
that a threshold cmin ∈ R), the first that happens will stop
the adaptation process.

The errors with this approach are measured using (32)
and (33).

Experiments

Both algorithms were applied to a set of 2D medical im-
ages (some obtained with computer tomography (CT) and
some with magnetic resonance (MR)). Figure 4 shows the
average errors using the GSOM algorithm with differ-
ent examples: segmenting a ventricle, a blurred object, a
free-form curve, and a column disk. For each example
(image), the error obtained with GSOM using the GGVF
information and without it is showed as a bar. Note that
using the GGVF information the error is reduced. This

132ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

Self-organizing netural networks

Figure 9 (a) Original image containing a circular “object”,
with very blurred contours; (b) ground-truth of the object
we are interested in (marked by hand).

Figure 10 (a) Original brain image and the region of interest
(ROI); (b) zoom of the dense vector field of the ROI; (c)
zoom of the streamlines in ROI; (d) inputs and initial shape
according the two initial random transformations Ta and Tb ;
(e) final shape defined according the 25 estimated translators;
(f) original image with the segmented object.

means that using the GGVF information, as we propose, a
better approximation of the object shape can be obtained.
Figure 5 shows the average errors obtained for the same ex-
amples, but using the GNG with and without the GGVF
information. Note that the GGVF contributes to obtain
a better approximation to the object surface. Also note
that the average errors obtained with the GNG algorithm

Figure 11 Result obtained when using the active contour
approach to segment the object in the same brain image as in
Figure 10. Note that, although such approach uses GGVF
information, it fails to segment the object no matter if the
initialization of the snake is given inside, outside or over
object’s contour. (a) Initialization of snake inside the object;
(b) final result obtained with initialization showed in (a); (c)
initialization of snake outside the object; (d) final result
obtained with initialization showed in (c); (e) initialization of
snake over the contour; (f) final result obtained with
initialization showed in (e).

are smaller than the errors obtained with the GSOM. In
conclusion, both GSOM and GNG, are improved with
GGVF information, but GNG with GGVF gives the best
results; for this reason, all the images of the experiments
showed in this section correspond to the applications of
this approach. If we measure the topographic error (33), we
see that the GNG with GGVF information preserves the
topology better than the same approach without such infor-
mation. Several experiments were carried out using GNG
with and without the GGVF; Figure 6 shows the percent-
age of images in four sets for which the topographic error
te is zero after reaching the stop criterion.

To illustrate the algorithm explained in “CNG using
GGVF” section, we first present the process for the image
of the curve shown in Figure 2(a). The inputs to the net

133Copyright C© 2007 Taylor & Francis ABBI 2007 Vol. 4 No. 3

J. Rivera-Rovelo and E. Bayro-Corrochano

Figure 12 Left column: original image and the region of
interest. Right column: Result of segmentation.

Figure 13 Left column: zoom of the original region of
interest. Right column: zoom of the result.

were selected according the process described in “auto-
matic samples selection using GGVF”; that is, computing
the vector field GGVF (Fig. 2b) and the streamlines (Fig.
3a), resulting in the input set shown in Figure 3(b). Fig-
ure 7’ shows different stages in the development of the
algorithm described before; Figure x7(a) shows the two
initial positions resulting from the application of Ta and
Tb (the translators associated with the first two neurons) to
P0; Figure 7(b) shows the result after only one iteration of
the algorithm; Figure 7(c) shows the final shape the when
net stops.

Figure 8 shows the result when algorithm is applied to a
magnetic resonance image (MRI); the goal is to obtain the
shape of the ventricle. Figure 8(a) shows the original brain
image and the region of interest (ROI); Figure 8(b) shows
the computed vector field for the ROI; Figure 8(c) shows

Figure 14 The algorithm for determining the shape of 3D
object. (a) 3D model of the patient’s head containing a tumor
in the marked region; (b) vectors of the dense GGVF on a
3D grid arrangement of 32 × 32 × 16; (c) inputs determined
by GGVF and edge map; (d) inputs and the initialization of
the net GNG; (e) final shape after training has finished with
a total of 300 versors M (associated with 300 neural units).

the streamlines in the ROI defined for particles placed
on the vertices of a 32 × 32 grid; Figure 8(d) shows the
initial shape as defined for the two initial random trans-
lators Ta , Tb ; Figure 8(e) shows the final shape obtained;
and finally Figure 8(f) shows the original image with the
segmented object.

Figure 9 shows a computer tomography image which
has a very blurred object: Figure 9(a) is the original image
and 9(b) is the ground-truth of the contour. We select such
image to show that even in very blurred or noisy images,
the algorithm gives good enough results. In fact, if the
GGVF-Snake (Xu, 1999) (for which the GGVF theory
was developed) is used, it fails to find the shape of the
object no matter if the initialization of the snake is given
inside, outside or over the (blurred) contour of the object
(as shown in Fig. 11); while using the translators T learned
with the proposed GNG algorithm, the resulting shape is
closer to the expected shape. Figure 10 shows the process
for the CT image; note that we only work in a region of
interest. Figure 10(a) shows the original image and the

134ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

Self-organizing netural networks

Figure 15 Examples of 3D object shape definition. (a) Inputs
to the net selected using GGVF and streamlines; (b) inputs
and the initialization of the net with nine neural units; (c)
result after the net has been reached the maximum number
of neurons (300 neurons); (d) error measurement using
Equation (32).

region of interest (ROI); Figure 10(b) shows the computed
vector field of the ROI; Figure 10(c) shows the streamlines
defined for particles placed on the vertices of a 32 × 32
grid; Figure 10(d) shows the inputs selected according
the streamlines and the initial shape as defined for the
two initial random translators Ta , Tb ; Figure 10(e) shows
the final shape obtained; and finally Figure 10(f) shows the
result overlapped with the original image, showing that the
algorithm gives good results if it is used for segmentation.

It is important to note that, although the approaches
of Figures 10 and 11 use GGVF information to find the
shape of an object, the estimated final shape is better using
the neural approach than the one using active contours;
the second approach (see Fig. 11) fails to segment the
object no matter if the initialization of the snake is given
inside, outside or over the contour we are interested in.
Additionally, the fact of expressing such shape as a set of
translators allows us to have a model best suited to be used
in further applications which can require the deformation
of the model, specially if such model is not based on points
but on other GA entities, because we do not need to change
the translators (remember that they are applied in the same
way to any other entity).

The proposed algorithm was applied to different sets
of medical images. Figure 12 shows some CT images of a
patient with a tumor. The left column shows the original
image and the region of interest, while the right column
shows the result of the proposed approach. Figure 13 shows
a zoom of the region of interest for better visualization.

Figure 16 3D object shape definition for the case of a pear.
(a) Inputs to the net selected using GGVF and streamlines;
(b) inputs and the initialization of the net with nine neural
units; (c) result after the net has been reached the maximum
number of neurons (300 neurons); (d) error measurement
using Equation (32).

For the 3D case, Figure 14(a) shows the patient head
with the tumor which surface we need to approximate;
Figure 14(b) shows the vectors of the dense GGVF on a 3D
grid arrangement of size 32 × 32 × 16; Figure 14(c) shows
the inputs determined by GGVF and edge map; Figure
14(d) shows the initialization of the net GNG; Figure 14(e)
shows final shape after training has finished with a total of
300 versors M (associated with 300 neural units).

Figures 15 and 16 and 16 show the results obtained
with other examples using volumetric data, note that the
last one corresponds to a pear, and the surface is well ap-
proximated. Each figure shows the inputs to the net in (a)
selected according the procedure from the section “auto-
matic sample selection using GGVF”; the inputs and the
initialization of the net with nine neural units are showed in
(b) (the topology of the net is defined as a sort of pyramid
around the centroid of input points); while in (c) each
figure shows the result after the net has been reached
the maximum number of neurons; finally, in (d) each
figure shows the minimization of the error according to
Equation (32).

It is necessary to mention that the whole process is quick
enough; in fact, the computational time required for all the
examples showed in this work took only few seconds. The
computation of the GGVF is the most time-consuming

135Copyright C© 2007 Taylor & Francis ABBI 2007 Vol. 4 No. 3

J. Rivera-Rovelo and E. Bayro-Corrochano

task in the algorithm, but it only takes about 3 seconds for 64
× 64 images, 20 seconds for 256 × 256 images, and 110 sec-
onds for 512 × 512 images. This is the reason we decide not
to compute it for the whole image, but for selected region
of interest. The same criterion was applied to 3D examples.

Conclusions

In this work it was shown the use of the dense vector
field named “generalized gradient vector flow" not only
to select the inputs to a neural network, but also as a
parameter to guide during the adaptation process of the
net. The neural networks presented here were the grow-
ing Kohonen’s map (or growing self-organizing map) and
the growing neural gas, which were used to find a set of
transformations expressed in the conformal geometric al-
gebra framework, which move a point in a coordinate-free
manner by means of a versor along the contour of an ob-
ject, defining the shape of the object by this way. This is
useful because, although we have shown examples using
points, the versors of the conformal geometric algebra can
be used to transform any entity exactly in the same way:
multiplying the entity from the left by M and from the
right by M̃. There were presented some experiments and
results showing that by incorporating the GGVF infor-
mation, we can get automatically the set of inputs to the
net, and also we improve its performance. It was shown
that, although both neural nets are improved, the GNG
with GGVF gives superior results when compared with
GSOM.

Acknowledgment

The authors would like to thank (Proyecto No. 49) Fondo
Sectorial de Salud, SEP-CONACYT and CINVESTAV
for supporting this work.

References

Andrade MC. 2004. An interactive algorithm for image
smoothing and segmentation. Electron Lett Comput Vis
Image Anal, 4(1), 32–48.

Angelopoulou A, Psarrou A, Garcı́a Rodrı́guez J., Revett
K, 2005. ‘Automatic landmarking of 2D medical shapes
using the growing neural gas network. In Proceedings
of the International Conference on Computer Vision,
ICCV 2005, October 13–21, Beijing, China, pp. 210–
219.

Bayro-Corrochano E. 2005. Robot perception and action
using conformal geometry. In Handbook of Geometric
Computing. Applications in Pattern Recognition, Com-
puter Vision, Neurocomputing and Robotics. E. Bayro-
Corrochano (Ed.), Springer, Heidelberg, chap. 13, pp.
405–458.

Fritzke B. 1995. A growing neural gas network learns
topologies. Advances in Neural Information Processing
Systems 7, MIT Press, Cambridge, MA.

Mehrotra K, Mohan C, Ranka S. 1997. Unsupervised
learning. Elements of Artificial Neural Networks, chap.
5, pp. 157–213.

Moon N, Bullit E, van Leemput K, Gerig G. 2002a.Model
based brain and tumor segmentation. In Proceedings of
the 16th International Conference on Pattern Recogni-
tion, Quebec, Canada, pp. 528–531.

Moon N, Bullit E, van Leemput K, Gerig G. 2002b. Au-
tomatic brain and tumor segmentation. In Proceedings
of the Fifth International Conference on Medical Im-
age Computing and Computer Assisted Intervention,
Tokyo, Japan, pp. 372–379.

Prastawa M, Bullit E, Gerig G. 2003.Robust estimation for
brain tumor segmentation. In Conference on Medical
Image Computing and Computer Assisted Intervention,
vol. 2, pp. 530–537.

Perwass C, Hildenbrand D. 2003. Aspects of geometric
algebra in Euclidean, projective and conformal space.
Christian-Albrechts-University of Kiel, Technical Re-
port No. 0310.

Rosenhahn B, Sommer G. 2002. Pose estimation in confor-
mal geometric algebra. Christian-Albrechts-University
of Kiel, Technical Report No. 0206, pp. 13–36.

Xu Ch. 1999. Deformable models with applications to hu-
man cerebral cortex reconstruction from magnetic reso-
nance images. Ph.D. Thesis, Johns Hopkins University,
pp. 14–63.

136ABBI 2007 Vol. 4 No. 3 Copyright C© 2007 Taylor & Francis

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

