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Abstract We propose a Finsler spacetime scenario of
the anisotropic universe. The Finslerian universe requires
both the fine-structure constant and the accelerating cos-
mic expansion to have a dipole structure and the direc-
tions of these two dipoles to be the same. Our numerical
results show that the dipole direction of the SnIa Hubble dia-
gram locates at (l, b) = (314.6◦ ± 20.3◦,−11.5◦ ± 12.1◦)
with magnitude B = (−3.60 ± 1.66) × 10−2. The dipole
direction of the fine-structure constant locates at (l, b) =
(333.2◦± 8.8◦,−12.7◦± 6.3◦) with magnitude B = (0.97±
0.21)×10−5. The angular separation between the two dipole
directions is about 18.2◦.

1 Introduction

During the last decades, the standard cosmological model,
i.e., the cold dark matter with a cosmological constant
(ΛCDM) model [1,2] has been well established. It is
consistent with several precise astronomical observations
that involve the Wilkinson Microwave Anisotropy Probe
(WMAP) [3], the Planck satellite [4], the Supernovae Cos-
mology Project [5], and so on. One of the most important
and basic assumptions of the ΛCDM model is the cosmo-
logical principle, which states that the universe is homoge-
neous and isotropic on large scales. However, such a prin-
ciple faces several challenges [6]. The Union2 SnIa data
hint that the universe has a preferred direction pointing to
(l, b) = (309◦, 18◦) in the galactic coordinate system [7].
Toward this direction, the universe has the maximum acceler-
ation of expansion. Astronomical observations [8] found that
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the dipole moment of the peculiar velocity field in the direc-
tion (l, b) = (287◦ ±9◦, 8◦ ±6◦) in the scale of 50 h−1 Mpc
has a magnitude 407 ± 81 km s−1. This peculiar velocity
is much larger than the value 110 km s−1 constrained by
WMAP5 [9]. The recently released data of the Planck Col-
laboration show deviations from isotropy with a level of sig-
nificance (∼3σ ) [10]. The Planck Collaboration confirms an
asymmetry of the power spectra between two preferred oppo-
site hemispheres. These facts hint that the universe may have
certain preferred directions.

Both the ΛCDM model and the standard model of parti-
cle physics require no variation of fundamental physical con-
stants in principle, such as the electromagnetic fine-structure
constant αe = e2/h̄c. Recently, the observations on quasar
absorption spectra show that the fine-structure constant varies
at cosmological scale [11,12]. Furthermore, in high redshift
region (z > 1.6), they have shown that the variation of αe

is well represented by an angular dipole model pointing in
the direction (l, b) = (330◦,−15◦) with level of significance
(∼4.2σ ). Mariano and Perivolaropoulos [13] have shown that
the dipole of αe is anomalously aligned with corresponding
dark energy dipole obtained through the Union2 sample. One
possible reason of the variation of αe is the variation of the
speed of light, which means that Lorentz symmetry is vio-
lated on a cosmological scale. The fact that the universe may
have a preferred direction also means that the isotropic sym-
metry of cosmology is violated. Also, the dipole direction of
the fine-structure constant is aligned with the cosmological
preferred direction. Such facts hint that the two astronomical
observations, the cosmological preferred direction and the
variation of αe, may correspond to the same physical mech-
anism.

Finsler geometry is a possible candidate for investigat-
ing both the cosmological preferred direction and the dipole
structure of the fine-structure constant. Finsler geometry [14]
is a new geometry which involves Riemann geometry as
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its special case. Chern pointed out that Finsler geometry is
just Riemann geometry without quadratic restriction, in his
Notices of AMS. The symmetry of spacetime is described
by the isometric group. The generators of isometric group
are directly connected with the Killing vectors. It is well
known that the isometric group is a Lie group in a Rieman-
nian manifold. This fact also holds in a Finslerian manifold
[15]. Generally, Finsler spacetime admits less Killing vec-
tors than Riemann spacetime does [16]. The causal structure
of Finsler spacetime is determined by the vanishing of the
Finslerian length [17]. The speed of light is modified. It has
been shown that the translation symmetry is preserved in flat
Finsler spacetime [16]. Thus, the energy and momentum are
well defined in Finsler spacetime.

The property of Lorentz symmetry breaking in flat Finsler
spacetime makes Finsler geometry a possible mechanism
of Lorentz violation [18,19]. Historically, Bogoslovsky
[20–24] first suggested a Finslerian metric, i.e., ds =
(ημνdxμdxν)(1−b)/2(nρdxρ)b, to investigate Lorentz viola-
tion. Here, ημν is Minkowski metric and nρ is a constant
null vector. Such a metric involves a Lorentz symmetry vio-
lation without violation of the relativistic symmetry [25,26].
The relativistic symmetry is realized by means of the 3-
parameter group of generalized Lorentz boosts. Later on the
results obtained in Bogoslovsky’s work were mostly repro-
duced by Gibbons et al. [27], with the help of the techniques
of continuous deformations of the Lie algebras and nonlin-
ear realizations. Gibbons et al. have pointed out that the
Bogoslovsky spacetime corresponds to General Very Spe-
cial Relativity, which generalizes Glashow’s very special
relativity [28–30]. In the same work [27] the 8-parametric
isometry group [20,31] of the Bogoslovsky spacetime was
called DISIMb(2). Although the group DISIMb(2) is an 8-
dimensional subgroup of the 11-dimensional Weyl group,
pure dilations are not elements of DISIMb(2). The gravi-
tational field equation in Finsler spacetime has been stud-
ied extensively [32–41]. Models [42–47] based on a Finsler
spacetime have been developed to study the cosmological
preferred directions.

We suggested that the vacuum field equation in Finsler
spacetime is equivalent to the vanishing of the Ricci scalar
[48]. The vanishing of the Ricci scalar implies that the
geodesic rays are parallel to each other. The geometric invari-
ant of Ricci scalar implies that the vacuum field equation is
insensitive to the connection, which is an essential physi-
cal requirement. The Schwarzschild metric can be deduced
from a solution of our field equation if the spacetime pre-
serves spherical symmetry. Supposing spacetime to preserve
the symmetry of the “Finslerian sphere”, we found a non-
Riemannian exact solution of the Finslerian vacuum field
equation [49]. In this paper, following a similar approach to
our previous work [49], we present a modified Friedmann–
Robertson–Walker (FRW) metric in Finsler spacetime, and

then we use it to study the cosmological preferred direction
and the dipole structure of the fine-structure constant.

The rest of the paper is arranged as follows. In Sect. 2, we
briefly introduce the anisotropic universe in Finsler geometry.
It can be seen easily that the speed of light in vacuum (so the
fine-structure constant) is direction-dependent. In Sect. 3, we
derive the gravitational field equation in a Finslerian universe,
and obtain the distance–redshift relation. In Sect. 4, we use
the Union2.1 compilation to derive the preferred direction
of the universe. We find that it is obviously aligned with
the dipole direction of the fine-structure constant. Finally,
conclusions and remarks are given in Sect. 5.

2 Anisotropic universe

Finsler geometry is based on the so-called Finsler structure
F defined on the tangent bundle of a manifold M , with the
property F(x, λy) = λF(x, y) for all λ > 0, where x ∈ M
represents position and y ≡ dx/dτ represents velocity. The
Finslerian metric is given as [14]

gμν ≡ ∂

∂yμ

∂

∂yν

(
1

2
F2

)
. (1)

In physics, the Finsler structure F is not positive-definite at
every point of Finsler manifold. We focus on investigating
Finsler spacetime with a Lorentz signature. A positive, zero,
and negative F correspond to time-like, null, and space-like
curves, respectively. For massless particles, the stipulation is
F = 0. The Finslerian metric reduces to Riemannian metric,
if F2 is quadratic in y. One non-Riemannian Finsler space-
time is the Randers spacetime [50]. It is given as

FRa(x, y) ≡ α(x, y) + β(x, y), (2)

where

α(x, y) ≡
√
ãμν(x)yμyν, (3)

β(x, y) ≡ b̃μ(x)yμ, (4)

and ãi j is a Riemannian metric. Throughout this paper, the
indices are lowered and raised by gμν and its inverse matrix
gμν . The objects that are decorated with a tilde are lowered
and raised by ãμν and its inverse matrix ãμν .

In this paper, we propose the ansatz that the Finsler struc-
ture of the universe is of the form

F2 = yt yt − a2(t)F2
Ra, (5)

where we require that the vector b̃i in FRa is of the form
b̃i = {0, 0, B} and B is a constant. Here, the Riemannian
metric ãi j of the Randers space FRa is set to be Euclidean,
that is, ãi j = δi j . Thus the Finslerian universe (5) returns
to FRW spacetime while B = 0. The above requirement for
b̃i and ãi j implies that the spatial part of the universe FRa is
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a flat Finsler space, since all types of Finslerian curvatures
vanish for FRa. The Killing equations of Randers space FRa

are given as [16,49]

LVα = ãμν,γ Ṽ
γ + ãγ ν Ṽ

γ
,μ + ãγμṼ

γ
,ν = 0, (6)

LVβ = Ṽμ ∂ b̃ν

∂xμ
+ b̃μ

∂ Ṽμ

∂xν
= 0, (7)

where LV is the Lie derivative along the Killing vector V and
the comma denotes the derivative with respect to xμ. Notic-
ing that the vector b̃i is parallel to the z-axis, we find from
the Killing equations (6), (7) that there are four independent
Killing vectors in Randers space FRa. Three of them represent
the translation symmetry, and the remaining one represents
the rotational symmetry in the x–y plane. It means that the
rotational symmetries in the x–z and y–z planes are broken.
This fact means that the Finslerian universe (5) is anisotropic.

To derive the relation between luminosity distance and
redshift, first we need investigate the redshift of a photon
in Finslerian universe (5). The redshift of a photon can be
derived from the geodesic equation. The geodesic equation
for Finsler manifold is given as [14]

d2xμ

dτ 2 + 2Gμ = 0, (8)

where

Gμ = 1

4
gμν

(
∂2F2

∂xλ∂yν
yλ − ∂F2

∂xν

)
(9)

is called geodesic spray coefficients. It can be proved from
the geodesic equation (8) that the Finsler structure F is a
constant along the geodesic. Plugging the Finsler structure
(5) into Eq. (9), we obtain

G0 = 1

2
aȧF2

Ra, (10)

Gi = Hyi y0, (11)

where the dot denotes the derivative with respect to time
and H ≡ ȧ/a is the Hubble parameter. Then the geodesic
equations in Finsler universe (5) are given as

d2t

dτ 2 + aȧF2
Ra = 0, (12)

d2xi

dτ 2 + 2H
dxi

dτ

dx0

dτ
= 0. (13)

In Finsler spacetime the null condition of the photon is given
as F = 0. It is of the form
(

dt

dτ

)2

− a2F2
Ra = 0. (14)

Plugging the null condition (14) into the geodesic equation
(12), we obtain the solution

dt

dτ
∝ 1

a
. (15)

It shows that the formula of the redshift z is

1 + z = c0

ca
, (16)

where c is the speed of light and the subscript zero denotes
the quantities given at the present epoch.

The recent Michelson–Morley experiment carried through
by Müller et al. [51] gives a precise limit on Lorentz invari-
ance violation. Their experiment shows that the change of
resonance frequencies of the optical resonators is of this
magnitude |δω/ω| ∼ 10−16. It means that the Minkowski
spacetime describes well the inertial system on the earth.
Thus, we must require no variation of the speed of light at
the present epoch. In Finslerian universe, the local inertial
system at large cosmological scale is built by the flat Finsler
spacetime, namely,

F2
f = yt yt − F2

Ra. (17)

Thus, the radial speed of light at large cosmological scale
can be derived from Ff = 0. It is of the form

cr = 1

1 + B cos θ
, (18)

where θ denotes the angle with respect to the z-axis. Then,
plugging Eq. (18) into Eq. (16), and noticing cr0 = 1, we
obtain

1 + z = 1 + B cos θ

a
. (19)

A direct deduction shows that the variation of the speed of
light is the variation of the fine-structure constant. By making
use of Eq. (18), we obtain the variation of the fine-structure
constant,

Δαe

αe
= −Δcr

cr0
= B cos θ + O(b2). (20)

Here, we suppose that the Finslerian parameter B is a small
quantity. Equation (20) tells us that Δαe/αe has a dipole
distribution at the cosmological scale, which is compatible
with the observations on quasar absorption spectra [11,12].

3 Gravitational field equation in Finslerian universe

In Finsler geometry, there is a geometrical invariant quantity,
i.e., Ricci scalar. It is of the form [14]

Ric ≡ Rμ
μ = 1

F2

(
2
∂Gμ

∂xμ
− yλ ∂2Gμ

∂xλ∂yμ

+2Gλ ∂2Gμ

∂yλ∂yμ
− ∂Gμ

∂yλ

∂Gλ

∂yμ

)
, (21)
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where Rμ
ν = R μ

λ νρ y
λyρ/F2. Though R μ

λ νρ depends on con-

nections, Rμ
ν does not [14]. The Ricci scalar only depends on

the Finsler structure F and is insensitive to the connections.
Plugging the geodesic coefficients (10), (11) into the formula
of the Ricci scalar (21), we obtain

F2Ric = −3
ä

a
yt yt + (aä + 2ȧ2)F2

Ra. (22)

Here, we define the modified Einstein tensor in Finsler space-
time as

Gμ
ν ≡ Ricμ

ν − 1

2
δμ
ν S, (23)

where the Ricci tensor is defined as [52]

Ricμν = ∂2
( 1

2 F
2Ric

)
∂yμ∂yν

, (24)

and the scalar curvature in Finsler spacetime is given as S =
gμνRicμν . Plugging the equation of the Ricci scalar (22) into
Eq. (23), we obtain

Gt
t = 3H2, (25)

Gi
j =

(
2ä

a
+ H2

)
δij . (26)

Following a similar approach to Ref. [49], in order to con-
struct a self-consistent gravitational field equation in Finsler
spacetime (5), we investigate the covariant conservative prop-
erties of the modified Einstein tensor Gμ

ν . The covariant
derivative of Gμ

ν in Finsler spacetime is given as [14]

Gμ
ν |μ = δ

δxμ
Gμ

ν + Γ μ
μρG

ρ
ν − Γ ρ

μνG
μ
ρ , (27)

where

δ

δxμ
= ∂

∂xμ
− ∂Gρ

∂yμ

∂

∂yρ
, (28)

and Γ
μ
μρ is the Chern connection. Here, we have used ‘|’ to

denote the covariant derivative. The Chern connection can
be expressed in terms of the geodesic spray coefficients Gμ

and the Cartan connection, Aλμν ≡ F
4

∂
∂yλ

∂
∂yμ

∂
∂yν (F2) [14],

Γ ρ
μν = ∂2Gρ

∂yμ∂yν
− Aρ

μν|κ
yκ

F
. (29)

Noticing that the modified Einstein tensor Gμ
ν does not have

y-dependence, and the Cartan tensor is Aρ
μν = Ai

jk (index
i, j, k run over θ, ϕ), one can easily see that the Chern con-
nection Γ

ρ
μν equals the Christoffel connection that is deduced

from the FRW metric if Γ
ρ
μν �= Γ i

jk . By making use of this
property and the formula of the geodesic spray (10), (11), we
find that

Gμ
ν |μ = 0. (30)

Now, we have proved that the modified Einstein tensor is
conserved in Finsler spacetime. Then, in the spirit of general
relativity, we propose that the gravitational field equation in
the given Finsler spacetime (5) should be of the form

Gμ
ν = 8πGTμ

ν , (31)

where Tμ
ν is the energy-momentum tensor. The volume of

Finsler space [53] is generally different from the one of
Riemann geometry. However, in terms of the Busemann–
Hausdorff volume form, the volume of a closed Randers–
Finsler surface is the same as the unit Riemannian sphere
[53]. This is why we have used π in the field equation (31).

Since the modified Einstein tensor Gμ
ν only depends on

xμ, the gravitational field equation (31) requires that the
energy-momentum tensor Tμ

ν depends on xμ and contains
diagonal components only. Therefore, we set Tμ

ν to have the
form

Tμ
ν = diag(ρ,−p,−p,−p), (32)

where ρ = ρ(xμ) and p = p(xμ) are the energy density
and the pressure density of universe, respectively. Then the
gravitational field equation (31) can be written as

3H2 = 8πGρ, (33)
2ä

a
+ H2 = −8πGp. (34)

The covariant conservation of the energy-momentum tensor
Tμ

ν |μ gives

ρ̇ + 3H(ρ + p) = 0. (35)

Combining Eqs. (33), (35), we obtain

H2 = H2
0 (Ωm0a

−3 + ΩΛ), (36)

where H0 is the Hubble constant, ΩΛ ≡ 8πGρΛ/(3H2
0 ) and

Ωm0 ≡ 8πGρm0/(3H2
0 ).

4 Observational constraints on Finslerian universe

Here we focus on using the Union2.1 SnIa data [5] to study
the preferred direction of the universe and constrain the mag-
nitude of the Finslerian parameter B. By making use of
Eqs. (14), (19), and (36), the luminosity distance in the Fins-
lerian universe is given as

dL = (1 + z)r = 1 + z

H0

∫ z

0

× dz√
Ωm0(1 + z)3(1 − 3B cos θ) + 1 − Ωm0

, (37)

where r = √
x2 + y2 + z2 is the radial distance. To find the

preferred direction in the Finslerian universe, we perform a
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Fig. 1 The preferred directions in the galactic coordinate system.
The red point locates at (l, b) = (314.6◦ ± 20.3◦,−11.5◦ ± 12.1◦),
which is obtained by fixing the parameters Ωm0 = 0.278 and H0 =
70.0 km s−1 Mpc−1 and doing the least-χ2 fit to the Union2.1
data for formula (37). The blue point locates at (l, b) = (333.2◦ ±

8.8◦,−12.7◦ ± 6.3◦), which is obtained by the least-χ2 fit to the data
of the fine-structure constant. The contours enclose 68 % confidence
regions for the preferred directions. The angular separation between
the two preferred directions is about 18.2◦

least-χ2 fit to the Union2.1 SnIa data

χ2 ≡
∑ (μth − μobs)

2

σ 2
μ

, (38)

where μth is the theoretical distance modulus given by

μth = 5 log10
dL

Mpc
+ 25. (39)

μobs and σμ, given by the Union2.1 SnIa data, denote the
observed values of the distance modulus and the measure-
ment errors, respectively. The least-χ2 fit of Eq. (37) to the
Union2.1 data shows that the preferred direction locates at
(l, b) = (314.6◦ ± 20.3◦,−11.5◦ ± 12.1◦), and the magni-
tude of anisotropy B = (−3.60 ± 1.66) × 10−2. The pre-
ferred direction is consistent with the dipole direction derived
by Ref. [13]. Before using our model to fit the Union2.1 SnIa
data, we have fixed the Hubble constant H0 and Ωm0 to be
H0 = 70.0 km s−1 Mpc−1 and Ωm0 = 0.278, which are
derived by fitting the Union2.1 data to the standard ΛCDM
model.

In the Finslerian universe (5), the fine-structure constant
has a dipole structure [see Eq. (20) for details]. We fit the
data of the quasar absorption spectra [12] obtained by the
Very Large Telescope (VLT) and the Keck Observatory to
Eq. (20), and we find the magnitude of the dipole to be
B = (0.97 ± 0.21) × 10−5, pointing toward (l, b) =
(333.2◦ ± 8.8◦,−12.7◦ ± 6.3◦) in the galactic coordinate
system. We plot the preferred direction of the Union2.1 sam-
ple and the dipole direction of the fine-structure constant in
the galactic coordinate system in Fig. 1. We can see that they

are consistent within 1σ uncertainty. The angular separation
between the two directions is about 18.2◦.

5 Conclusions and remarks

In this paper, we have suggested that the universe is Finsle-
rian. The Finslerian universe (5) breaks the rotational sym-
metry in the x–z and y–z planes, and it modifies the speed
of light at a large cosmological scale. The preferred direc-
tion of the Union2.1 SnIa sample and the dipole structure
of the fine-structure constant are naturally given in a Fins-
lerian universe. Equations (20) and (37) show that the pre-
ferred directions of cosmic accelerating expansion and fine-
structure constant both locate at the same direction. This fact
is compatible with our numerical results. By applying Eq.
(37) to the Union2.1 SnIa data, we found a preferred direc-
tion (l, b) = (314.6◦ ±20.3◦,−11.5◦ ±12.1◦). By applying
Eq. (20) to the data of quasar absorption spectra, we found a
preferred direction (l, b) = (333.2◦ ± 8.8◦,−12.7◦ ± 6.3◦).
The angular separation between the two preferred direc-
tions is about 18.2◦, which means that the two directions
are compatible within 1σ uncertainty. However, our numer-
ical results show that the anisotropic magnitude that corre-
sponds to Union2.1 SnIa data and the data of quasar absorp-
tion spectra are different. This fact contradicts the prediction
of the Finslerian universe, which requires that the absolute
values of magnitude of the anisotropy should be the same.
If the universe is Finslerian, such a contradiction may be
attributed to two reasons. One reason is that the Finslerian
parameter B should be a function of the redshift, since the
ranges of the redshifts of the two observational datasets are
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different. The other reason is that the Union2.1 SnIa data
are not accurate enough. Our numerical results for the mag-
nitude of Finslerian parameter B show that the statistical
significance of Union2.1 SnIa data is about 2σ confidence
level, while the data of the fine-structure constant is about
4σ confidence level. Thus, further astronomical observations
are needed in order to enhance the statistical significance in
the future.
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