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Abstract
We consider the large-time behavior such as the existence of attractors for the 3D
autonomous and nonautonomous Brinkman-Forchheimer equations. By means of
the decomposition method we overcome the difficulties for the existence of
absorbing sets and asymptotical compactness of the semigroup generated by a
global solution to prove the attractors for the autonomous Brinkman-Forchheimer
equation. Under suitable assumptions on the external force σ (t, x) and initial data
uτ (x), we prove the existence of a uniform attractor for a 3D nonautonomous
Brinkman-Forchheimer equation. Moreover, we apply the theory of weak continuity
and weak convergence method to establish the asymptotical compactness of the
processes.
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1 Introduction
The large-time behavior of global solutions and the associated infinite dimensional dy-
namical systems have become the essential aspects in the field of nonlinear evolutionary
equations such as the existence of global attractors, inertial manifold, uniform attractors,
pullback attractors, and their fractal dimensions for the autonomous and nonautonomous
systems with the unique solution have attracted attention of many mathematicians since
the s.

From the physical viewpoint, Gilver and Altobelli [] obtained a determination of effec-
tive viscosity for the Brinkman-Forchheimer flow model. Nield [] dealt with an important
and classical problem (the momentum equation in a porous medium, i.e., the background
of the Brinkman-Forchheimer equation) involving the fluid mechanics of the interface re-
gion between a porous medium and a fluid layer. Vafai and Kim [, ] obtained an exact
solution to this problem using a Brinkman-Forchheimer-extended Darcy equation (gen-
eralized momentum equation). Whitaker [] investigated the theoretical development of
the Forchheimer equation.

In mathematical analysis, for the autonomous Brinkman-Forchheimer equation, using
condition-(C) method, Uğurlu [] and Ouyang and Yan [] showed the existence of global
attractor in H

(�). Çelebi et al. [] proved the continuous dependence of solutions of the
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Brinkman-Forchheimer equations on the Brinkman and Forchheimer coefficients ν and
γ in H-norm, which reflects the effect of small changes in coefficients of equations on
the solutions. It was shown in [, ], and [] that the Brinkman-Forchheimer equation
has a global solution, which continuously depends on the coefficients. Moreover, they also
derived the convergence of corresponding solutions as coefficients tend to zero. In [] and
[], the existence of global attractors of the Brinkman-Forchheimer equation is obtained
by different methods. However, there are fewer results for the nonautonomous case. Re-
cently, in [], the existence of D-pullback attractors for D nonautonomous Brinkman-
Forchheimer equation is deduced by establishing the D-pullback asymptotical compact-
ness of θ -cocycle. More references about the BF equation and relate models, please refer
to [, –].

In this paper, we consider the large time behavior (i.e., the existence of global and uni-
form attractors for the autonomous and nonautonomous Brinkman-Forchheimer equa-
tions by decomposition method and weak continuous method to establish asymptoti-
cal compactness for the semigroups and processes, respectively) for the D Brinkman-
Forchheimer equation that governs the motion of fluid in a saturated porous medium:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ut – ν�u + αu + β|u|u + γ |u|u + ∇p = σ (t, x), (x, t) ∈ � ×R
+,

div u = , (x, t) ∈ � ×R
+,

u(t, x)|∂� = , t ∈R
+,

u(τ , x) = uτ (x), x ∈ �, τ ≥ .

(.)

Here � ⊂ R
 is a bounded domain with sufficiently smooth boundary ∂�, u = u(t, x) =

(u(t, x), u(t, x), u(t, x)) is the velocity vector field, p is the pressure, ν >  is the Brinkman
kinematic viscosity coefficient, α >  is the Darcy coefficient, and β >  and γ >  are the
Forchheimer coefficients.

In our paper, we use the composition to prove the existence of attractor for an au-
tonomous system by weak continuous method, which is introduced by Ball to derive the
uniform attractors for a nonautonomous system; this is different from the papers [] and
[].

The paper is organized as follows. In Section , we establish the existence of global solu-
tions for the D Brinkman-Forchheimer equation and introduce some useful preliminar-
ies and notation. Some concepts and theorems on the theory of global attractors for au-
tonomous dynamical systems are stated in Section . Some concepts and theorems on the
theory of uniform attractors for nonautonomous dynamical systems are arranged in Sec-
tion . Finally, the existence of uniform attractors for the D nonautonomous Brinkman-
Forchheimer equation is proved.

2 Global existence of solutions for 3D Brinkman-Forchheimer equations
Throughout this paper, C will stand for a generic positive constant, depending on � and
some constants, but independent of the choice of the initial time τ ∈ R and t.

The Hausdorff semidistance in X from one set B to another set B is defined as

distX(B, B) = sup
b∈B

inf
b∈B

‖b – b‖X . (.)

We denote by Lp(�) and Hm(�) the general Lebesgue and Sobolev spaces, respectively.
We set E := {u|u ∈ (C∞

 (�)), div u = }, H is the closure of the set E in (L(�)) topology,
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and V is the closure of the set E in (H
(�)) topology, that is, we set V = H ∩ (H

(�)).
We set E := {u|u ∈ (C∞

 (�)), div u = }, H is the closure of E in (L(�)) topology, V is
the closure of E in (H(�)) topology, W is the closure of E in (H(�)) topology, and H ′

and V ′ are dual spaces of H and V , respectively. Clearly, V ↪→ H ≡ H ′ ↪→ V ′, where the
injection is dense and continuous. By ‖ · ‖ and (·, ·) we denote the norm and inner product
of H , that is,

(u, v) =
∑

j=

∫

�

uj(x)vj(x) dx, ‖u‖ = (u, u), u, v ∈ (
L(�)

), (.)

and ‖ · ‖V and ((·, ·)) denote the norm and inner product in V , that is,

(
(u, v)

)
=

∑

i,j=

∫

�

∂uj

∂xi
· ∂vj

∂xi
dx, u, v ∈ V , (.)

and

‖u‖
V :=

∑

i=,j=

‖∂iuj‖
L(�), u ∈ V . (.)

Let P be the Helmholtz-Leray orthogonal projection operator from (L(�)) onto H . Let
Au = –P�u be the Stokes operator with domain D(A) = (H(�)) ∩ (H

(�)), and let λ be
the first eigenvalue of A; then the operator A : V → V ′ has the property 〈Au, v〉 = ((u, v))
for all u, v ∈ V .

The family of functions in L
loc(R; H) denotes a local Bochner integration function class,

and L
b(R; H) denotes all translation bounded functions σ (x, t) that satisfy supt∈R

∫ t+
t ‖σ (s,

x)‖
H ds < +∞ for all σ ∈ L

loc(R; H), that is, σ is translation bounded in L
loc(R; H). Obvi-

ously, L
b(R; H) ⊂ L

loc(R; H).
Problem (.) can be written in an abstract form

ut + νAu + αu + B(u) = σ (t, x), (.)

div u = , (.)

u|∂� = , (.)

u(τ , x) = uτ , (.)

where the pressure p has disappeared by application of the Leray-Helmholtz projection P,
B(u) = PF(u), F(u) = β|u|u + γ |u|u. Clearly, system (.)-(.) is equivalent to (.).

Similarly to the autonomous case, the existence and uniqueness of a global solution for
(.) can be derived by a standard method as in [, ], or [].

Theorem . Assume that σ ∈ L
loc(R, H) and uτ ∈ H . Then problem (.)-(.) possesses

a unique global solution u(t, x), which satisfies

u ∈ C
(
[τ , +∞); H

) ∩ L(τ , T ; V ) ∩ L(τ , T ;
(
L(�)

)). (.)
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Moreover, choosing a nonautonomous fixed external force σ(t, x) ∈ L
b(R, H), the global

solution u(t, x) generates a process {Uσ (τ , t)} (τ ∈R, t > τ , σ ∈ �), which is continuous with
respect to uτ , where σ is a symbol that belongs to the symbol space � = H(σ) = [{σ(s +
h)|h ∈R}]L

loc(R,H)with [·]E meaning the closure in the topology of E.

Remark . For the autonomous system, Theorem . also holds if the external force
satisfies σ (x) ∈ H .

3 Existence of global attractors for autonomous system
The autonomous system can be written in the abstract form

ut + νAu + αu + β|u|u + γ |u|u = h(x), x ∈ �, (.)

div u = , (.)

with the slip condition and initial data.

Theorem . For any h ∈ V ′ and uτ ∈ H , the semigroup {S(t), t ≥ τ ∈ R
+} generated by

system (.)-(.) has a global attractor A, which is invariant, compact, and attracts all
bounded subsets of H in the topology of H .

The proof can be divided into two steps. First, we prove the existence of absorbing sets;
next, we shall use the decomposition method to prove the asymptotical smoothness for
the semigroup.

Since the injection H ↪→ V ′ is dense, for any h ∈ V ′, we can find a function hε ∈ H
depending on h and ε such that

∥
∥h – hε

∥
∥ ≤ ε. (.)

Using a technique similar to that in Zelik [], we decompose the semigroup into
S(t)u = Sv(t)u + Sw(t)u with Sv(t)u = v(t) and Sw(t)u = w(t) that satisfy the following
linear and nonlinear equations respectively:

⎧
⎪⎨

⎪⎩

vt + νAv + αv = h – hε ,
div v = ,
v(x, ) = uτ (x),

(.)

and
⎧
⎪⎨

⎪⎩

wt + νAw + αw + β|u|u + γ |u|u = hε ,
div w = ,
w(x, ) = , x ∈ �.

(.)

Lemma . Let the external force h ∈ V ′, and let uτ ∈ H . Then the semigroup has a
bounded absorbing set B in H , where

B =
{

u ∈ H : ‖u‖H ≤ ρ
}

is a bounded set in H .
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Proof Taking inner product of (.) with u and integrating by parts over �, we have




d
dt

‖u‖ + ν‖∇u‖ + α‖u‖ + β‖u‖
L + γ ‖u‖

L =
〈
h(x), u

〉

≤ λν‖u‖ +
‖h‖

V ′
λν

, (.)

where ‖ · ‖ denotes the H norm, and ‖∇(·)‖ is equivalent to the V norm.
The Poincaré inequality ‖∇u‖ ≥ λ‖u‖ implies




d
dt

‖u‖ + λν‖u‖ + α‖u‖ ≤ 
λν

∥
∥h(x)

∥
∥

V ′ + λν‖u‖, (.)

that is,

d
dt

‖u‖ + α‖u‖ ≤ 
λν

∥
∥h(x)

∥
∥

V ′ . (.)

By the Gronwall inequality we have

∥
∥u(x, t)

∥
∥ ≤ e–αt‖uτ‖ +


ανλ

∥
∥h(x)

∥
∥

V ′ . (.)

Choosing ρ = e–αt‖uτ‖ + 
ανλ

‖h(x)‖
V ′ , we get that B = {u : ‖u‖

H ≤ ρ} is an absorbing
ball for the semigroup {S(t)}t≥ in H . �

Theorem . For any h ∈ V ′, the semigroup {S(t)|t ≥ } generated by system (.)-(.)
with the initial data and boundary value problem in (.) is asymptotically smooth in H .

Proof We shall use decomposition method to achieve the result in the following lem-
mas. �

Lemma . For system (.), there exists a constant ε = ε(h, δ) such that the solution of
(.) satisfies, for any t ≥ ,

∥
∥Sv(t)uτ

∥
∥

H =
∥
∥v(x, t)

∥
∥

H ≤ Q
(‖uτ‖H

)
e–αt + δ, (.)

where Q is a positive increasing function on [, +∞).

Proof Multiplying (.) with v(t) and integrating over �, we deduce




d
dt

‖v‖ + ν‖∇v‖ + α‖v‖ ≤ 
νλ

∥
∥h – hε

∥
∥

V ′ + νλ‖v‖, (.)

which means that

d
dt

‖v‖ + α‖v‖ ≤ 
νλ

∥
∥h – hε

∥
∥

V ′ . (.)

Applying the Gronwall lemma, we have

‖v‖
H ≤ Q

(‖uτ‖H
)
e–αt +


ανλ

∥
∥h – hε

∥
∥

V ′ . (.)

Choosing ε ≤ ναλδ, we complete the proof. �
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Lemma . For any time T >  and any ε > , there exists a nonnegative constant M >
 depending on the constants T , hε , ‖uτ‖H such that the solution to system (.) has the
property

∥
∥Sw(t)uτ

∥
∥

H =
∥
∥w(t)

∥
∥

H ≤ M. (.)

Proof Taking inner product of (.) with w(t), we obtain




d
dt

∫

�

|w| dx + ν

∫

�

|∇w| dx + α

∫

�

|w| dx +
(
B(u), w

)
=

〈
hε , w

〉
, (.)

where B(u) is defined in Section .
By the Cauchy inequality and the Sobolev compact embedding V ↪→ L(�) ↪→ L(�)

we have

〈
hε , w

〉 ≤ C
∥
∥hε

∥
∥‖w‖ ≤ 

α

∥
∥hε

∥
∥ +

α



∫

�

|w| dx (.)

and

∣
∣
(
B(u), w

)∣
∣ ≤ C

(‖u‖
L + ‖w‖ + ‖u‖

L +
∥
∥uw∥∥

)

≤ C‖u‖
L +

C
ε

‖u‖
L + Cε‖w‖

L

≤ C
(‖u‖

L + ‖v‖
L

)

≤ C
(‖u‖

L + 
)
. (.)

Substituting (.) and (.) into (.) and then using Theorem . and Lemma ., we
derive

d
dt

∫

�

|w| dx ≤ C′
(∫

�

|w| dx + 
)

, (.)

where the constant C′ = C′(ν,α,β ,γ ,λ,‖hε‖,‖uτ‖) > , which yields

∫

�

|w| dx ≤ eC′t , t ≥ . (.)

Since the embedding V ↪→ H is compact, we can deduce the asymptotical smoothness
for the semigroup, which completes the proof of the lemma and Theorem .. �

4 Some preliminaries of uniform attractors
For the nonautonomous evolutionary system

∂tu = Aσ (t)u, (.)

where Aσ (t) is an operator, we introduce the two-parameter processes Uσ (t, τ ) : E → E that
describe the solution trajectory, where Uσ (t, τ ) : E → E satisfies

Uσ (t, s)Uσ (s, τ ) = Uσ (t, τ ), t ≥ s ≥ τ , τ ∈R, (.)
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Uσ (τ , τ ) = I (identity operator). (.)

The translation semigroup {S(h) : R→R|h ≥ } maps it into itself and satisfies

σ(s + h) = S(h)σ(s), (.)

Uσ (t + h, τ + h) = US(h)σ (t, τ ), (.)

for any σ ∈ �, t ≥ τ , τ ∈ R, h ≥ , where we choose arbitrary but fixed σ ∈ L
b(R; W ),

� = H(σ) = [{σ(· + h)|h ∈R}]L
loc(R;W ) is the symbol space, and the extended phase space

of the nonautonomous system (.) is E ×H(σ).

Definition . Denote by B(E) all bounded (in the norm of E) sets in E. Then a set B is
said to be a uniformly (w.r.t. σ ∈ H(σ)) absorbing for the family of processes {Uσ (t, τ )},
σ ∈ H(σ) if for any set B ∈ B(E), there exists some time t = t(B, τ ) ≥ τ such that
⋃

σ∈H(σ) Uσ (t, τ )B ⊆ B for all t ≥ t.

Definition . A closed set � ⊂ E is called a uniform (w.r.t. σ ∈ H(σ)) attractor of the
processes {Uσ (t, τ )}, σ ∈ H(σ) if for all B ∈ B(E) and arbitrary fixed τ ∈ R, there exists
some time t = t(B, τ ) ≥ τ such that

lim
t→+∞ sup

σ∈H(σ)
distE

(
Uσ (t, τ )B,�

)
= 

for all t > t, where distE(X, Y ) denotes the Hausdorff semidistance between sets X and Y
in the topology space E.

Definition . The family of processes {Uσ (t, τ )}, σ ∈ H(σ) is said to be (E × �, E)-
continuous if the map (u,σ ) �→ Uσ (t, τ ) is continuous from E × � to E for all fixed t ≥ τ ,
τ ∈R, σ ∈ �.

Definition . The family of processes {Uσ (t, τ )}, σ ∈H(σ) is said to be uniformly (w.r.t.
σ ∈ H(σ)) asymptotically compact in E if {Uσn (tn, τ )u(n)

τ } is precompact in E whenever
{u(n)

τ } is bounded in E,σ (n) ⊂H(σ), and {tn} ⊂Rτ , tn → +∞ as n → +∞.

Definition . A closed setA⊂ E is called a uniform (w.r.t., σ ∈H(σ)) global attractor of
the processes {Uσ (t, τ )}, σ ∈H(σ), acting on E ifA is a closed and uniformly attracting set
in E and A satisfies the following minimality property: A belongs to any closed uniformly
attracting set of the processes {Uσ (t, τ )|σ ∈H(σ)}.

Theorem . The (E × �, E)-continuous processes {Uσ (t, τ )}, σ ∈ H(σ), have a uniform
(w.r.t. σ ∈ �) compact attractor A� in E that satisfies

A� = ω,�(B) = ωτ ,�(B) =
⋃

B∈B(E)

ωτ ,�(B) (.)

if
(i) there exists a bounded uniform (w.r.t. σ ∈ �) absorbing set B of processes {Uσ (t, τ )},

σ ∈ �, and
(ii) the processes {Uσ (t, τ )} (σ ∈ �) are uniformly asymptotically compact.
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Proof See, for example, []. �

5 Uniform attractors for 3D nonautonomous Brinkman-Forchheimer equations
in H

Choose an arbitrary nonautonomous force but fixed σ(x, t) ∈ L
b(R, H), that is,

sup
t∈R

∫ t+

t

∥
∥σ(s)

∥
∥

H ds < +∞.

Taking � = H(σ) (defined in Theorem .) as the symbol space of problem (.)-(.),
∀σ ∈ � is called the symbol of system (.)-(.).

Obviously, H(σ) is strictly invariant under the acting of the translation semigroup
{S(h)}h≥, that is, S(h)H(σ) ≡H(σ) for all h ≥ .

By Theorem . the global solution generates the process class {Uσ (t, τ ), t ≥ τ , τ ∈ R},
σ ∈ H(σ), that is, Uσ (t, τ )uτ = u(t), where u(t) is the solution of problem (.)-(.) with
symbol σ ∈ � and initial data uτ ∈ H .

Lemma . Let the external force σ ∈ � and uτ ∈ H . Then the process has a bounded
uniform (w.r.t. σ ∈H(σ)) absorbing set B in H , where

B =
{

u ∈ H : ‖u‖H ≤ C‖σ‖L
b(R;H)

.= ρ
}

is a bounded set in H .

Proof Multiplying (.) with u and integrating on �, by the Young inequality we conclude




d
dt

‖u‖ + ν‖∇u‖ + α‖u‖ + β‖u‖
L + γ ‖u‖

L

=
∫

�

σ (t, x)u dx ≤ α


‖u‖ +

‖σ‖

α
. (.)

Then integrating over [τ , t], we have

‖u‖ +
∫ t

τ

(
ν‖∇u‖ + α‖u‖ + β‖u‖

L + γ ‖u‖
L

)
ds

≤ 
α

∫ t

τ

∥
∥σ (s)

∥
∥ ds + ‖uτ‖. (.)

Hence,

‖u‖ +
∫ t

τ

(λν + α)‖u‖ ds ≤ 
α

∫ t

τ

∥
∥σ (s)

∥
∥ ds + ‖uτ‖, (.)

where λ is the first eigenvalue in the Poincaré inequality.
By Gronwall’s inequality we derive

∥
∥u(t)

∥
∥ ≤ ‖uτ‖e–(λν+α)(t–τ ) +


α

∫ t

τ

e(λν+α)(s–t)∥∥σ (s)
∥
∥ ds

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α

(∫ t

t–
e(λν+α)(s–t)∥∥σ (s)

∥
∥ ds
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+
∫ t–

t–
e(λν+α)(s–t)∥∥σ (s)

∥
∥ ds + · · ·

)

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α

(∫ t

t–

∥
∥σ (s)

∥
∥ ds

+ e–(λν+α)
∫ t–

t–

∥
∥σ (s)

∥
∥ ds + e–(λν+α)

∫ t–

t–

∥
∥σ (s)

∥
∥ ds + · · ·

)

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α

(
 + e–(λν+α) + e–(λν+α) + · · · )∥∥σ (s)

∥
∥

L
b(R;H)

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α


( – e–(λν+α))

∥
∥σ (s)

∥
∥

L
b(R;H)

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α

(

 +


(λν + α)

)
∥
∥σ (s)

∥
∥

L
b(R;H)

≤ ‖uτ‖e–(λν+α)(t–τ ) +

α

(

 +


(λν + α)

)

‖σ‖
L

b(R;H). (.)

Now choosing ‖uτ‖e–(λν+α)(t–τ ) ≤ 
α

( + 
(λν+α) )‖σ‖

L
b(R;H), there exists a time t =

t(α,λ,‖σ‖
L

b(R;H)) >  such that B = {u : ‖u‖ ≤ ρ}, where ρ = 
α

( + 
(λν+α) ) ×

‖σ‖
L

b(R;H), that is, B is a uniformly (w.r.t. σ ∈ �) absorbing ball for the process {Uσ (t, τ )}
in H . �

Lemma . Let {un
τ } be a sequence converging weakly to some uτ in Banach spaces V , H ,

and (L(�)), and {σ n} ∈H(σ) be a sequence converging weakly to some σ ∈H(σ). Then
for any fixed t ≥ τ ∈ R, Uσn (t, τ )un

τ ⇀ Uσ (t, τ )uτ weakly in L(τ , T ; V ), C(τ , +∞; H), and
L(τ , T ; (L(�))) for all t ≥ τ , respectively.

Proof Noting that {Uσn (t, τ )un
τ } = {un(t)}, Uσ (t, τ )uτ = u(t), by Theorem . we know that

{un(t)} and u are bounded in L(τ , T ; V ), C(τ , +∞; H), and L(τ , T ; (L(�))), and hence
the weak convergence holds. �

Lemma . For any σ ∈ � = H(σ), the family of processes {Uσ (t, τ )}, t ≥ τ ∈R, generated
by the global solution of (.)-(.) are (H × �, H) continuous.

Proof Let t and τ be fixed, and for any T > , t ≥ τ , t, τ ∈ [, T], let {(un
τ ,σ n)} ⊂ H ×H(σ)

be a sequence that converges to some {(uτ ,σ )} ⊂ H ×H(σ), and let un(t) and u(t) be the
solutions of problem (.)-(.) with symbols σ n, σ and initial data un

τ , uτ , respectively.
Setting

wn(t) = u(t) – un(t) = Uσ (t, τ )uτ – Uσn (t, τ )un
τ , n = , , . . . ,

we can see that wn(t) is a solution of the following problem for each integer n:

∂wn

∂t
+ νAwn + αwn + B(u) – B

(
un) = σ – σ n, (.)

wn|t=τ = wn
τ = uτ – un

τ , τ ≥ . (.)
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Taking the inner product of (.) with wn in H , we get




d
dt

(
wn, wn) + ν

(∇wn,∇wn) + α
(
wn, wn) +

(
B(u) – B

(
un), wn)

=
(
σ – σ n, wn) ≤ α

(
wn, wn) +


α

∥
∥σ – σ n∥∥, (.)

where

∣
∣
(
B(u) – B

(
un), wn)∣∣

≤ C
∣
∣
(
β|u|u + γ |u|u – β

∣
∣un∣∣un – γ

∣
∣un∣∣un, wn)∣∣

≤ C
∣
∣
(
β|u|u – β

∣
∣un∣∣u + β

∣
∣un∣∣u – β

∣
∣un∣∣un, wn)

+
(
γ |u|u – γ

∣
∣un∣∣u + γ

∣
∣un∣∣u – γ

∣
∣un∣∣un, wn)∣∣

≤ C
[
β
(‖u‖V +

∥
∥un∥∥

V

)

+ γ
(‖u‖V ‖un‖V + ‖u‖(L(�)) +

∥
∥un∥∥

(L(�))
)]∥

∥wn∥∥. (.)

Hence, from (.)-(.) it follows that




d
dt

∥
∥wn(t)

∥
∥ = –

(
B(u) – B

(
un), wn) +

(
σ – σ n, wn)

≤ 
α

∥
∥σ – σ n∥∥ + C

[
β
(‖u‖V +

∥
∥un∥∥

V

)

+ γ
(‖u‖V ‖un‖V + ‖u‖(L(�)) +

∥
∥un∥∥

(L(�))
)]∥

∥wn∥∥. (.)

Applying the Gronwall inequality to (.), we obtain

∥
∥wn(t)

∥
∥ =

∥
∥Uσ (t, τ )uτ – Uσn (t, τ )un

τ

∥
∥

≤
[
∥
∥uτ – un

τ

∥
∥ +


α

∫ t

τ

∥
∥σ (s) – σ n(s)

∥
∥ ds

]

exp

{

C
∫ t

τ

[
β
(‖u‖V +

∥
∥un∥∥

V

)

+ γ
(‖u‖V ‖un‖V + ‖u‖(L(�)) +

∥
∥un∥∥

(L(�))
)]

ds
}

≤
[
∥
∥uτ – un

τ

∥
∥ +


α

∫ T

τ

∥
∥σ (s) – σ n(s)

∥
∥ ds

]

× exp

{

C
∫ T

τ

[
β
(‖u‖V +

∥
∥un∥∥

V

)

+ γ
(‖u‖V ‖un‖V + ‖u‖(L(�)) +

∥
∥un∥∥

(L(�))
)]

ds
}

→  (.)

since by Theorem . the following estimates hold for any fixed t ≥ τ ∈R:

exp

{

C
∫ T

τ

[
β
(‖u‖V +

∥
∥un∥∥

V

)
+ γ

(‖u‖V ‖un‖V + ‖u‖(L(�)) +
∥
∥un∥∥

(L(�))
)]

ds
}

≤ exp

[

C(T ,γ ,β)
∫ T

τ

(‖u‖
V +

∥
∥un∥∥

V + ‖u‖
(L(�)) +

∥
∥un∥∥

(L(�))
)

ds
]

< +∞. (.)
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Therefore, (.) implies the (H × H(σ), H) continuity of the processes {Uσ (t, τ ), t ≥
τ ∈R}, σ ∈H(σ), defined on H . �

Lemma . Let {un
τ } be a sequence in H converging strongly to some uτ ∈ H in the norm

of H , and let {σ n} be a sequence of H(σ) converging strongly to some σ ∈ H(σ). Then for
any fixed τ ∈R, Uσn (·, τ )un

τ → Uσ (·, τ )uτ strongly in L(τ , T ; H) foe all t ≥ τ .

Proof From (.) we can derive that for any t ≥ τ , t, τ ∈ [, T], the following inequality
holds:

∥
∥u(t) – un(t)

∥
∥ ≤ ∥

∥wn(t)
∥
∥

=
∥
∥Uσ (t, τ )uτ – Uσn (t, τ )un

τ

∥
∥

≤ C(T)
[
∥
∥uτ – un

τ

∥
∥ + C

∫ t

τ

∥
∥σ (s) – σ n(s)

∥
∥ ds

]

. (.)

Integrating (.) over [τ , T] with respect to t, we have

∫ T

τ

∥
∥u(t) – un(t)

∥
∥ dt

≤
∫ T

τ

∥
∥Uσ (t, τ )uτ – Uσn (t, τ )un

τ

∥
∥ dt

≤ C
∫ T

τ

[
∥
∥uτ – un

τ

∥
∥ + C

∫ t

τ

∥
∥σ (s) – σ n(s)

∥
∥ ds

]

dt

≤ C(T)ε. (.)

The proof of the lemma is thus complete. �

Lemma . For any σ ∈ H(σ) and uτ ∈ H , the family of processes {Uσ (t, τ ), t ≥ τ ∈ R},
σ ∈ H(σ), defined on H , corresponding to equations (.)-(.) is uniformly (w.r.t. σ ∈ �)
asymptotically compact in H .

Proof Assume that {un
τ } is a bounded sequence in H , {σ n} ⊂ H(σ) and {tn} ∈ (τ , +∞),

tn → +∞ as n → +∞.
From the proof of the existence of uniformly absorbing sets we can see that for any fixed

τ ∈ R, there exists a time T = T(ρ, τ ) depending on the radius ρ of the absorbing ball
and τ such that for all tn ≥ T, {Uσn (tn, τ )un

τ } ⊆ B, where B is defined in Lemma ..
By Lemma . the sequence {Uσn (tn, τ )un

τ } is weakly precompact in H , and hence we
have

Uσn (tn, τ )un
τ ⇀ u weakly in H as n → +∞ (.)

for some u ∈ H and some subsequence (still denoted by) Uσn (tn, τ )un
τ .

Similarly, for each T >  and tn ≥ T + T ,

un
T

.= Uσn (tn – T , τ )un
τ ⇀ uT weakly in H as n → +∞ (.)

for some uT ∈ H .
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Noting that the translation semigroup {S(h) : h ≥ } satisfies

US(h)σ (t, τ ) = Uσ (t + h, τ + h), ∀h ≥ , t ≥ τ ∈R,σ ∈H(σ), (.)

we see that

Uσn (tn, τ ) = Uσn (tn, tn – T)Uσn (tn – T , τ )

= US(tn–T)σn (T , )Uσn (tn – T , τ ), tn – T ≥ τ . (.)

Letting σ n
T = S(tn – T)σ n, from (.) and (.) we derive

Uσn (tn, τ )un
τ = Uσn

T
(T , )Uσn (tn – T , τ )un

τ

= Uσn
T

(T , )un
T , tn – T ≥ τ . (.)

Since {σ n
T } ⊂ H(σ) and � = H(σ) is compact in L

loc(R; H), there exist a subsequence
of {σ n

T } (also denoted by {σ n
T }) and some σT ∈H(σ) such that

σ n
T → σT strongly in L

loc(R; H) as n → +∞,∀T > . (.)

By Lemmas . and . and by formulas (.)-(.) and (.) we conclude

u = UσT (T , )uT , ∀T > . (.)

Next, we want to prove the asymptotic compactness in H , that is,

∥
∥Uσn

T
(tn, τ )un

τ – u
∥
∥ →  as n → +∞, (.)

that is, it suffices to prove that

∥
∥Uσn

T
(tn, τ )un

τ

∥
∥ → ‖u‖ as n → +∞ (.)

and

Uσn
T

(tn, τ )un
τ ⇀ u in H as n → +∞. (.)

However, (.) clearly ensures (.). Next, we only need to prove (.).
To this end, we shall prove that

lim inf
n→+∞

∥
∥Uσn (tn, τ )un

τ

∥
∥ = lim inf

n→+∞
∥
∥Uσn

T
(T , )un

T
∥
∥ ≥ ‖u‖, (.)

lim sup
n→+∞

∥
∥Uσn (tn, τ )un

τ

∥
∥ = lim sup

n→+∞

∥
∥Uσn

T
(T , )un

T
∥
∥ ≤ ‖u‖. (.)

However, the weak convergence of the corresponding sequences (i.e., (.) and (.))
and Lemma . ensure that (.) is true, so our aim is only to prove (.).
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Taking the inner product with the both sides of equation (.) by u, we obtain




d
dt

(u, u) + α(u, u) =
(
–B(u) – νAu + σ , u

)
=

(
σ (t), u

)
– G

(
u(t)

)
, (.)

where G(u(t)) = (B(u) + νAu + αu, u) = (PF(u) + νAu + αu, u) = (P(β|u|u + γ |u|u) + νAu +
αu, u).

Integrating (.) over [τ , t] with respect to the time variable, we derive

‖u‖ =
(
u(t), u(t)

)
=

(
u(τ ), u(τ )

)
e–α(t–τ ) + 

∫ t

τ

e–α(t–s)(σ (s), u(s)
)

ds

– 
∫ t

τ

e–α(t–s)G
(
u(s)

)
ds. (.)

Substituting u(t) in (.) by Uσn
T

(T , )un
T and changing the integration domain to [, T],

we deduce
∥
∥Uσn

T
(T , )un

T
∥
∥ =

(
Uσn

T
(T , )un

T , Uσn
T

(T , )un
T
)

=
(
un

T , un
T
)
e–αT + 

∫ T


e–α(T–s)(σ n

s (s), Uσn
s (s, )un

s
)

ds

– 
∫ T


e–α(T–s)G

(
Uσn

s (s, )un
s
)

ds

= I + I + I. (.)

Similarly, substituting u(t) in (.) by UσT (T , )uT and changing the integration domain
to [, T], we have

∥
∥UσT (T , )uT

∥
∥ =

(
UσT (T , )uT , UσT (T , )uT

)

= (uT , uT )e–αT + 
∫ T


e–α(T–s)(σs(s), Uσs (s, )us

)
ds

– 
∫ T


e–α(T–s)G

(
Uσs (s, )us

)
ds. (.)

Next, we shall deal with the right-hand side of (.) term by term. From Lemma . we
derive

lim sup
n

I = lim sup
n

(
un

T , un
T
)
e–αT ≤ ρe–αT . (.)

Since L([τ , T]; V ) ↪→↪→ L([τ , T]; H), from (.), (.), and Lemma . we deduce
that

Uσn
s (s, )un

s ⇀ Uσs (s, )us weakly in L([τ , T]; H
)
,∀T > τ , (.)

whence we can deduce from (.) that

lim
n→∞ I = lim

n→∞ 
∫ T


e–α(T–s)(σ n

s (s), Uσn
s (s, )un

s
)

ds

= 
∫ T


e–α(T–s)(σs(s), Uσs (s, )us

)
ds. (.)
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Next, we will deal with I on the right-hand side of (.), which we shall prove in
Lemma . (to be proved later on), that is, we want to prove

lim sup
n

I = lim sup
n

(

–
∫ T


e–α(t–s)G

(
Uσn

s (s, )un
s
)

ds
)

= – lim inf
n

(


∫ T


e–α(t–s)G

(
Uσn

s (s, )un
s
)

ds
)

≤ –
∫ T


e–α(t–s)G

(
Uσs (s, )us

)
ds. (.)

Combining (.), (.), and (.)-(.), we obtain

lim sup
n

(∥
∥Uσn

T
(T , )un

T
∥
∥) =

(
Uσn

T
(T , )un

T , Uσn
T

(T , )un
T
)

≤ ρe–αT + 
∫ T


e–α(T–s)(σs(s), Uσs (s, )us

)
ds

– 
∫ T


e–α(t–s)G

(
Uσs (s, )us

)
ds

=
∥
∥UσT (T , )uT

∥
∥ – (uT , uT )e–αT + ρe–αT

≤ ∥
∥UσT (T , )uT

∥
∥ + ρe–αT . (.)

Hence, letting T tend to +∞ in (.), we derive

lim
n→∞

∥
∥Uσn (tn, τ )un

τ

∥
∥ = lim sup

n,T→∞

∥
∥Uσn

T
(T , )un

T
∥
∥

≤ lim sup
n,T→∞

(∥
∥UσT (T , )uT

∥
∥ + ρe–αT)

=
∥
∥Uσ (t, τ )uτ

∥
∥ = ‖u‖, (.)

which, along with (.), gives

lim sup
n,T→∞

∥
∥Uσn

T
(T , )un

T
∥
∥ = lim

n→∞
∥
∥Uσn (tn, τ )un

τ

∥
∥ =

∥
∥Uσ (t, τ )uτ

∥
∥ = ‖u‖. (.)

Combining the norm convergence (.) and weak convergence (.), we obtain

lim
n→∞

∥
∥Uσn

T
(tn, τ )un

τ – u
∥
∥ = . (.)

To complete the proof of Lemma ., we need to prove the following lemma. �

Lemma .

lim sup
n

I = lim sup
n

(

–
∫ T


e–α(t–s)G

(
Uσn

s (s, )un
s
)

ds
)

= – lim inf
n

(


∫ T


e–α(t–s)G

(
Uσn

s (s, )un
s
)

ds
)

≤ –
∫ T


e–α(t–s)G

(
Uσs (s, )us

)
ds. (.)
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Proof From (.), (.), and Lemma ., by the embedding theorem we have:

Uσn
T

(s, )un
T ⇀ UσT (s, )uT weakly in C(, T ; H), (.)

Uσn
T

(s, )un
T → UσT (s, )uT strongly in L(, T ; H), (.)

Uσn
T

(s, )un
T ⇀ UσT (s, )uT weakly in L(, T ;

(
L(�)

)). (.)

To end the proof of (.), we should complete the proof of the following formula:

lim inf
n

(∫ T


e–α(t–s)G

(
Uσn

s (s, )un
s
)

ds
)

≥
∫ T


e–α(t–s)G

(
Uσs (s, )us

)
ds, (.)

where G(u(t)) = (B(u) + νAu, u) = (P(β|u|u + γ |u|u) + νAu, u).
Since A : D(A) �→ H is a linear positive definite operator, from (.)-(.) it follows

that

lim inf
n

∫ T


e–α(t–s)(νAUσn

s (s, )un
s , Uσn

s (s, )un
s
)

ds

≥
∫ T


e–α(t–s)(νAUσs (s, )us, Uσs (s, )us

)
ds. (.)

Next, we want to prove that

lim
n→+∞

∫ T


e–α(t–s)(B

(
Uσn

s (s, )un
s
)
, Uσn

s (s, )un
s
)

ds

=
∫ T


e–α(t–s)(B

(
Uσs (s, )us

)
, Uσs (s, )us

)
ds. (.)

Setting

Kn
 (s) =

(
B
(
Uσn

s (s, )un
s
)
, Uσn

s (s, )un
s
)
,

K(s) =
(
B
(
Uσs (s, )us

)
, Uσs (s, )us

)
,

we consider

I =
∣
∣
∣
∣

∫ T


e–α(t–s)(Kn

 (s) – Kn
 (s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫ T


e–α(t–s)(β

∣
∣Uσs (s, )us

∣
∣Uσs (s, )us + γ

∣
∣Uσs (s, )us

∣
∣Uσs (s, )us

– β
∣
∣Uσn

s (s, )un
s
∣
∣Uσn

s (s, )un
s – γ

∣
∣Uσn

s (s, )un
s
∣
∣Uσn

s (s, )un
s ,

Uσs (s, )us – Uσn
s (s, )un

s
)

ds
∣
∣
∣
∣

≤ C
∣
∣
∣
∣

∫ T


e–α(t–s)(β

∣
∣Uσs (s, )us

∣
∣Uσs (s, )us – β

∣
∣Uσn

s (s, )un
s
∣
∣Uσs (s, )us

+ β
∣
∣Uσn

s (s, )un
s
∣
∣Uσs (s, )us – β

∣
∣Uσn

s (s, )un
s
∣
∣Uσn

s (s, )un
s ,

Uσs (s, )us – Uσn
s (s, )un

s
)
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+
(
γ
∣
∣Uσs (s, )us

∣
∣Uσs (s, )us – γ

∣
∣Uσn

s (s, )un
s
∣
∣Uσs (s, )us

+ γ
∣
∣Uσn

s (s, )un
s
∣
∣Uσs (s, )us – γ

∣
∣Uσn

s (s, )un
s
∣
∣Uσn

s (s, )un
s ,

Uσs (s, )us – Uσn
s (s, )un

s
)

ds
∣
∣
∣
∣

≤ C
∣
∣
∣
∣

∫ T


e–α(t–s)[β

(∥
∥Uσs (s, )us

∥
∥

V +
∥
∥Uσn

s (s, )un
s
∥
∥

V

)

+ γ
(∥
∥Uσs (s, )us

∥
∥

V

∥
∥Uσn

s (s, )un
s
∥
∥

V +
∥
∥Uσs (s, )us

∥
∥

(L(�))

+
∥
∥Uσn

s (s, )un
s
∥
∥

(L(�))
)]∥

∥Uσs (s, )us – Uσn
s (s, )un

s
∥
∥ ds

∣
∣
∣
∣

≤ C
∣
∣
∣
∣

∫ T


e–α(t–s)β

(∥
∥Uσs (s, )us

∥
∥

V +
∥
∥Uσn

s (s, )un
s
∥
∥

V

)

+ γ
(∥
∥Uσs (s, )us

∥
∥

V

∥
∥Uσn

s (s, )un
s
∥
∥

V +
∥
∥Uσs (s, )us

∥
∥

(L(�))

+
∥
∥Uσn

s (s, )un
s
∥
∥

(L(�)) + C
)

ds
∣
∣
∣
∣

×
∣
∣
∣ sup
s∈[,T]

∥
∥Uσs (s, )us – Uσn

s (s, )un
s
∥
∥

∣
∣
∣. (.)

By Theorem ., Lemma ., and Lemma ., since

∣
∣
∣
∣

∫ T


e–α(t–s)β

(∥
∥Uσs (s, )us

∥
∥

V +
∥
∥Uσn

s (s, )un
s
∥
∥

V

)

+ γ
(∥
∥Uσs (s, )us

∥
∥

V

∥
∥Uσn

s (s, )un
s
∥
∥

V +
∥
∥Uσs (s, )us

∥
∥

(L(�))

+
∥
∥Uσn

s (s, )un
s
∥
∥

(L(�)) + C
)

ds
∣
∣
∣
∣

< +∞, (.)

we conclude

I ≤ C(T) sup
s∈[,T]

∥
∥Uσs (s, )us – Uσn

s (s, )un
s
∥
∥ →  (.)

as n → ∞, that is,

lim
n→+∞ I = lim

n→+∞

∫ T


e–α(t–s)(Kn

 (s) – Kn
 (s)

)
ds

= lim
n→+∞ e–α(t–s)(B

(
Uσs (s, )us

)
, Uσs (s, )us

)

–
(
B
(
Uσn

s (s, )un
s
)
, Uσn

s (s, )un
s
)
) ds

= . (.)

Combining (.)-(.) and (.), we complete the proof. �
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Remark . For all bounded sets B ∈ H ,

A� = ωτ ,H(σ)(B) .=
⋃

B∈B(H)

⋂

t≥τ

⋃

σ∈H(σ)

⋃

s≥t
Uσ (s, τ )B. (.)

Combining the uniformly (w.r.t. σ ∈ H(σ)) absorbing property (i.e., Lemma .), the
continuity of the process (i.e., Lemma .), the asymptotic compactness property of the
processes {Uσ (t, τ )} (σ ∈ H(σ)) in H (i.e., Lemma .), from Theorem . we deduce the
existence of a uniform attractor in the following theorem.

Theorem . Assume that uτ ∈ H , σ ∈ � ⊂ L
loc(R; H). Then the family of processes

{Uσ (t, τ ), t ≥ τ ∈ R} (σ ∈ H(σ)) generated by the global solution of problem (.) or (.)-
(.) possesses a uniform (w.r.t. σ ∈ � = H(σ)) attractor AH(σ) = A� in H .
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