Li and Vetro Boundary Value Problems (2015) 2015:159 DOI 10.1186/s13661-015-0421-6

RESEARCH

Open Access

brought to you by T CORE

Levin's type boundary behaviors for functions harmonic and admitting certain lower bounds

Zhiqiang Li¹ and Mohamed Vetro^{2*}

*Correspondence: m.vetro@hotmail.com ²Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece Full list of author information is available at the end of the article

Abstract

In this paper, we prove Levin's type boundary behaviors for functions harmonic and admitting certain lower bounds, which extend Pan, Qiao and Deng's inequalities for analytic functions in a half-space.

Keywords: Levin's type boundary behaviors; harmonic function; half-space

1 Introduction and results

Let **R** and **R**₊ be the set of all real numbers and the set of all positive real numbers, respectively. We denote by \mathbf{R}^n ($n \ge 2$) the *n*-dimensional Euclidean space. A point in \mathbf{R}^n is denoted by $P = (X, x_n), X = (x_1, x_2, ..., x_{n-1})$. The Euclidean distance between two points P and Q in \mathbf{R}^n is denoted by |P - Q|. Also |P - O| with the origin O of \mathbf{R}^n is simply denoted by |P|. The boundary and the closure of a set S in \mathbf{R}^n are denoted by ∂S and \overline{S} , respectively.

We introduce a system of spherical coordinates (r, Θ) , $\Theta = (\theta_1, \theta_2, \dots, \theta_{n-1})$, in **R**^{*n*} which are related to Cartesian coordinates $(x_1, x_2, \dots, x_{n-1}, x_n)$ by $x_n = r \cos \theta_1$.

The unit sphere and the upper half-unit sphere in \mathbb{R}^n are denoted by \mathbb{S}^{n-1} and \mathbb{S}^{n-1}_+ , respectively. For simplicity, a point $(1, \Theta)$ on \mathbb{S}^{n-1} and the set $\{\Theta; (1, \Theta) \in \Omega\}$ for a set Ω , $\Omega \subset \mathbb{S}^{n-1}$, are often identified with Θ and Ω , respectively. For two sets $\Xi \subset \mathbb{R}_+$ and $\Omega \subset \mathbb{S}^{n-1}$, the set $\{(r, \Theta) \in \mathbb{R}^n; r \in \Xi, (1, \Theta) \in \Omega\}$ in \mathbb{R}^n is simply denoted by $\Xi \times \Omega$. In particular, the half-space $\mathbb{R}_+ \times \mathbb{S}^{n-1}_+ = \{(X, x_n) \in \mathbb{R}^n; x_n > 0\}$ will be denoted by T_n .

For $P \in \mathbf{R}^n$ and r > 0, let B(P, r) denote the open ball with center at P and radius r in \mathbf{R}^n . $S_r = \partial B(O, r)$. By $C_n(\Omega)$, we denote the set $\mathbf{R}_+ \times \Omega$ in \mathbf{R}^n with the domain Ω on \mathbf{S}^{n-1} . We call it a cone. Then T_n is a special cone obtained by putting $\Omega = \mathbf{S}_+^{n-1}$. We denote the sets $I \times \Omega$ and $I \times \partial \Omega$ with an interval on \mathbf{R} by $C_n(\Omega; I)$ and $S_n(\Omega; I)$. By $S_n(\Omega; r)$ we denote $C_n(\Omega) \cap S_r$. By $S_n(\Omega)$ we denote $S_n(\Omega; (0, +\infty))$ which is $\partial C_n(\Omega) - \{O\}$.

We use the standard notations $u^+ = \max\{u, 0\}$ and $u^- = -\min\{u, 0\}$. Further, we denote by w_n the surface area $2\pi^{n/2} \{\Gamma(n/2)\}^{-1}$ of \mathbf{S}^{n-1} , by $\partial/\partial n_Q$ the differentiation at Q along the inward normal into $C_n(\Omega)$, by dS_r the (n-1)-dimensional volume elements induced by the Euclidean metric on S_r and by dw the elements of the Euclidean volume in \mathbf{R}^n .

Let Ω be a domain on **S**^{*n*-1} with smooth boundary. Consider the Dirichlet problem

 $(\Lambda_n + \lambda)\varphi = 0$ on Ω ,

 $[\]varphi = 0$ on $\partial \Omega$,

© 2015 Li and Vetro. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

where Λ_n is the spherical part of the Laplace operator

$$\Delta_n = \frac{n-1}{r} \frac{\partial}{\partial r} + \frac{\partial^2}{\partial r^2} + \frac{\Lambda_n}{r^2}.$$

We denote the least positive eigenvalue of this boundary value problem by λ and the normalized positive eigenfunction corresponding to λ by $\varphi(\Theta)$,

$$\int_{\Omega} \varphi^2(\Theta) \, dS_1 = 1$$

In order to ensure the existence of λ and smooth $\varphi(\Theta)$, we put a rather strong assumption on Ω : if $n \geq 3$, then Ω is a $C^{2,\alpha}$ -domain ($0 < \alpha < 1$) on \mathbf{S}^{n-1} surrounded by a finite number of mutually disjoint closed hypersurfaces for the definition of $C^{2,\alpha}$ -domain. Then $\varphi \in C^2(\overline{\Omega})$ and $\partial \varphi / \partial n > 0$ on $\partial \Omega$ (here and below, $\partial / \partial n$ denotes differentiation along the interior normal).

We note that each function $r^{\aleph^{\pm}}\varphi(\Theta)$ is harmonic in $C_n(\Omega)$, belongs to the class $C^2(C_n(\Omega)\setminus\{O\})$ and vanishes on $S_n(\Omega)$, where

$$2\aleph^{\pm} = -n + 2 \pm \sqrt{(n-2)^2 + 4\lambda}$$

In the sequel, for the sake of brevity, we shall write χ instead of $\aleph^+ - \aleph^-$. If $\Omega = \mathbf{S}_+^{n-1}$, then $\aleph^+ = 1$, $\aleph^- = 1 - n$ and $\varphi(\Theta) = (2nw_n^{-1})^{1/2} \cos \theta_1$.

Let $G_{\Omega}(P, Q)$ $(P = (r, \Theta), Q = (t, \Phi) \in C_n(\Omega))$ be the Green function of $C_n(\Omega)$. Then the ordinary Poisson kernel relative to $C_n(\Omega)$ is defined by

$$\mathcal{PI}_{\Omega}(P,Q) = \frac{1}{c_n} \frac{\partial}{\partial n_Q} G_{\Omega}(P,Q)$$

where $Q \in S_n(\Omega)$, $c_n = 2\pi$ if n = 2 and $c_n = (n-2)w_n$ if $n \ge 3$.

The estimate we deal with has a long history which can be traced back to Levin's type boundary behaviors for functions harmonic from below (see, for example, Levin [1], p.209).

Theorem A Let A_1 be a constant, u(z)(|z| = R) be harmonic on T_2 and continuous on ∂T_2 . Suppose that

$$u(z) \le A_1 R^{\rho}, \quad z \in T_2, R > 1, \rho > 1$$

and

$$|u(z)| \leq A_1, \quad R \leq 1, z \in \overline{T}_2.$$

Then

$$u(z) \geq -A_1 A_2 \left(1 + R^{\rho}\right) \sin^{-1} \alpha,$$

where $z = Re^{i\alpha} \in T_2$ and A_2 is a constant independent of A_1 , R, α and the function u(z).

Recently, Pan *et al.* [2] considered Theorem A in the *n*-dimensional case and obtained the following result.

Theorem B Let A_3 be a constant, u(P)(|P| = R) be harmonic on T_n and continuous on \overline{T}_n . If

$$u(P) \le A_3 R^{\rho}, \quad P \in T_n, R > 1, \rho > n-1$$
 (1.1)

and

$$|u(P)| \le A_3, \quad R \le 1, P \in \overline{T}_n, \tag{1.2}$$

then

$$u(P) \ge -A_3 A_4 \left(1 + R^{\rho}\right) \cos^{1-n} \theta_1,$$

where $P \in T_n$ and A_4 is a constant independent of A_3 , R, θ_1 and the function u(P).

Now we have the following.

Theorem 1 Let K be a constant, u(P) ($P = (R, \Theta)$) be harmonic on $C_n(\Omega)$ and continuous on $\overline{C_n(\Omega)}$. If

$$u(P) \le KR^{\rho(R)}, \quad P = (R, \Theta) \in C_n(\Omega; (1, \infty)), \rho(R) > \aleph^+$$
(1.3)

and

$$u(P) \ge -K, \quad R \le 1, P = (R, \Theta) \in \overline{C_n(\Omega)}, \tag{1.4}$$

then

$$\mu(P) \geq -KM (1 + \rho(R)R^{\rho(R)}) \varphi^{1-n} \theta$$
,

where $P \in C_n(\Omega)$, $\rho(R)$ is nondecreasing in $[1, +\infty)$ and M is a constant independent of K, $R, \varphi(\theta)$ and the function u(P).

By taking $\rho(R) \equiv \rho$, we obtain the following corollary, which generalizes Theorem B to the conical case.

Corollary Let K be a constant, u(P) $(P = (R, \Theta))$ be harmonic on $C_n(\Omega)$ and continuous on $\overline{C_n(\Omega)}$. If

$$u(P) \leq KR^{\rho}, \quad P = (R, \Theta) \in C_n(\Omega; (1, \infty)), \rho > \aleph^+$$

and

$$u(P) \ge -K$$
, $R \le 1, P = (R, \Theta) \in C_n(\Omega)$,

then

$$u(P) \ge -KM(1+R^{\rho})\varphi^{1-n}\theta,$$

where $P \in C_n(\Omega)$, *M* is a constant independent of *K*, *R*, $\varphi(\theta)$ and the function u(P).

Remark (see [2]) From corollary, we know that conditions (1.1) and (1.2) may be replaced with weaker conditions

$$u(P) \leq A_3 R^{\rho}, \quad P \in T_n, R > 1, \rho > 1$$

and

$$u(P) \ge -A_3, \quad R \le 1, P \in \overline{T}_n,$$

respectively.

2 Lemma

Throughout this paper, let M denote various constants independent of the variables in question, which may be different from line to line.

Lemma 1 (see [3-5])

$$\mathcal{PI}_{\Omega}(P,Q) \le Mr^{\aleph^{-}} t^{\aleph^{+}-1} \varphi(\Theta) \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}}$$
(2.1)

for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega)$ satisfying $0 < \frac{t}{r} \le \frac{4}{5}$;

$$\mathcal{PI}_{\Omega}(P,Q) \le M \frac{\varphi(\Theta)}{t^{n-1}} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}} + M \frac{r\varphi(\Theta)}{|P-Q|^n} \frac{\partial \varphi(\Phi)}{\partial n_{\Phi}}$$
(2.2)

for any $P = (r, \Theta) \in C_n(\Omega)$ and any $Q = (t, \Phi) \in S_n(\Omega; (\frac{4}{5}r, \frac{5}{4}r))$. Let $G_{\Omega,R}(P,Q)$ be the Green function of $C_n(\Omega, (0, R))$. Then

$$\frac{\partial G_{\Omega,R}(P,Q)}{\partial R} \le M r^{\aleph^+} R^{\aleph^- - 1} \varphi(\Theta) \varphi(\Phi), \tag{2.3}$$

where $P = (r, \Theta) \in C_n(\Omega)$ and $Q = (R, \Phi) \in S_n(\Omega; R)$.

3 Proof of theorem

Applied Carleman's formula (see [6–8]) to $u = u^+ - u^-$ gives

$$\chi \int_{S_n(\Omega;R)} \frac{u^+ \varphi}{R^{1-\aleph^-}} dS_R + \int_{S_n(\Omega;(1,R))} u^+ \left(\frac{1}{t^{-\aleph^-}} - \frac{t^{\aleph^+}}{R^{\chi}}\right) \frac{\partial \varphi}{\partial n} d\sigma_Q + d_1 + \frac{d_2}{R^{\chi}}$$
$$= \chi \int_{S_n(\Omega;R)} \frac{u^- \varphi}{R^{1-\aleph^-}} dS_R + \int_{S_n(\Omega;(1,R))} u^- \left(\frac{1}{t^{-\aleph^-}} - \frac{t^{\aleph^+}}{R^{\chi}}\right) \frac{\partial \varphi}{\partial n} d\sigma_Q.$$
(3.1)

It immediately follows from (1.3) that

$$\chi \int_{S_n(\Omega;R)} \frac{u^+ \varphi}{R^{1-\aleph^-}} \, dS_R \le M K R^{\rho(R)-\aleph^+} \tag{3.2}$$

and

$$\int_{S_{n}(\Omega;(1,R))} u^{+} \left(\frac{1}{t^{-\aleph^{-}}} - \frac{t^{\aleph^{+}}}{R^{\chi}}\right) \frac{\partial \varphi}{\partial n} d\sigma_{Q} \\
\leq MK \int_{1}^{R} \left(r^{\rho(r)-\aleph^{+}-1} - \frac{r^{\rho(r)-\aleph^{-}-1}}{R^{\chi}}\right) \frac{\partial \varphi}{\partial n} dr \\
\leq MK R^{\rho(R)-\aleph^{+}}.$$
(3.3)

Notice that

$$d_1 + \frac{d_2}{R^{\chi}} \le M K R^{\rho(R) - \aleph^+}. \tag{3.4}$$

Hence from (3.1), (3.2), (3.3) and (3.4) we have

$$\chi \int_{S_n(\Omega;R)} \frac{u^- \varphi}{R^{1-\aleph^-}} \, dS_R \le M K R^{\rho(R)-\aleph^+} \tag{3.5}$$

and

$$\int_{S_n(\Omega;(1,R))} u^{-} \left(\frac{1}{t^{-\aleph^-}} - \frac{t^{\aleph^+}}{R^{\chi}}\right) \frac{\partial \varphi}{\partial n} \, d\sigma_Q \le M K R^{\rho(R) - \aleph^+}. \tag{3.6}$$

And (3.6) gives

$$\begin{split} &\int_{S_n(\Omega;(1,R))} u^- t^{\aleph^-} \frac{\partial \varphi}{\partial n} \, d\sigma_Q \\ &\leq M K \frac{(\rho(R)+1)^{\chi}}{(\rho(R)+1)^{\chi} - (\rho(R))^{\chi}} \left(\frac{\rho(R)+1}{\rho(R)}R\right)^{\rho(\frac{\rho(R)+1}{\rho(R)}R)-\aleph^+}. \end{split}$$

Thus

$$\int_{S_n(\Omega;(1,R))} u^- t^{\aleph^-} \frac{\partial \varphi}{\partial n} \, d\sigma_Q \le M K \rho(R) R^{\rho(R) - \aleph^+}. \tag{3.7}$$

By the Riesz decomposition theorem (see [7]), for any $P = (r, \Theta) \in C_n(\Omega; (0, R))$, we have

$$-u(P) = \int_{S_n(\Omega;(0,R))} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q + \int_{S_n(\Omega;R)} \frac{\partial G_{\Omega,R}(P,Q)}{\partial R} - u(Q) \, dS_R.$$
(3.8)

Now we distinguish three cases.

Case 1. $P = (r, \Theta) \in C_n(\Omega; (\frac{5}{4}, \infty))$ and $R = \frac{5}{4}r$. Since $-u(x) \le u^-(x)$, we obtain

$$-u(P) = \sum_{i=1}^{4} I_i(P)$$
(3.9)

from (3.8), where

$$\begin{split} I_1(P) &= \int_{S_n(\Omega;(0,1])} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q, \\ I_2(P) &= \int_{S_n(\Omega;(1,\frac{4}{5}r])} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q, \\ I_3(P) &= \int_{S_n(\Omega;(\frac{4}{5}r,R))} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q, \\ I_4(P) &= \int_{S_n(\Omega;R)} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q. \end{split}$$

Then from (2.1) and (3.7) we have

$$I_1(P) \le M K \varphi(\Theta) \tag{3.10}$$

and

$$I_2(P) \le M K \rho(R) R^{\rho(R)} \varphi(\Theta). \tag{3.11}$$

By (2.2), we consider the inequality

$$I_3(P) \le I_{31}(P) + I_{32}(P), \tag{3.12}$$

where

$$I_{31}(P) = M \int_{S_n(\Omega; (\frac{4}{5}r, R))} \frac{-u(Q)\varphi(\Theta)}{t^{n-1}} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}} d\sigma_Q$$

and

$$I_{32}(P) = Mr\varphi(\Theta) \int_{S_n(\Omega; (\frac{4}{5}r, R))} \frac{-u(Q)r\varphi(\Theta)}{|P-Q|^n} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}} d\sigma_Q.$$

We first have

$$I_{31}(P) \le MK\rho(R)R^{\rho(R)}\varphi(\Theta) \tag{3.13}$$

from (3.7). Next, we shall estimate $I_{32}(P)$. Take a sufficiently small positive number k such that

$$S_n\left(\Omega;\left(\frac{4}{5}r,R\right)\right) \subset B\left(P,\frac{1}{2}r\right)$$

for any $P = (r, \Theta) \in \Pi(k)$, where

$$\Pi(k) = \left\{ P = (r, \Theta) \in C_n(\Omega); \inf_{(1,z) \in \partial \Omega} \left| (1, \Theta) - (1, z) \right| < k, 0 < r < \infty \right\},\$$

and divide $C_n(\Omega)$ into two sets $\Pi(k)$ and $C_n(\Omega) - \Pi(k)$.

If $P = (r, \Theta) \in C_n(\Omega) - \Pi(k)$, then there exists a positive k' such that $|P - Q| \ge k'r$ for any $Q \in S_n(\Omega)$, and hence

$$I_{32}(P) \le M K \rho(R) R^{\rho(R)} \varphi(\Theta), \tag{3.14}$$

which is similar to the estimate of $I_{31}(P)$.

We shall consider the case $P = (r, \Theta) \in \Pi(k)$. Now put

$$H_i(P) = \left\{ Q \in S_n\left(\Omega; \left(\frac{4}{5}r, R\right)\right); 2^{i-1}\delta(P) \le |P-Q| < 2^i\delta(P) \right\},\$$

where

$$\delta(P) = \inf_{Q \in \partial C_n(\Omega)} |P - Q|.$$

Since

$$S_n(\Omega) \cap \left\{ Q \in \mathbf{R}^n : |P - Q| < \delta(P) \right\} = \emptyset,$$

we have

$$I_{32}(P) = M \sum_{i=1}^{i(P)} \int_{H_i(P)} \frac{-u(Q)r\varphi(\Theta)}{|P-Q|^n} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}} d\sigma_{Q_i}$$

where i(P) is a positive integer satisfying $2^{i(P)-1}\delta(P) \le \frac{r}{2} < 2^{i(P)}\delta(P)$.

Since $r\varphi(\Theta) \leq M\delta(P)$ $(P = (r, \Theta) \in C_n(\Omega))$, similar to the estimate of $I_{31}(P)$ we obtain

$$\int_{H_i(P)} \frac{-u(Q)r\varphi(\Theta)}{|P-Q|^n} \frac{\partial\varphi(\Phi)}{\partial n_{\Phi}} d\sigma_Q \le MK\rho(R)R^{\rho(R)}\varphi^{1-n}(\Theta)$$

for $i = 0, 1, 2, \dots, i(P)$.

So

$$I_{32}(P) \le M K \rho(R) R^{\rho(R)} \varphi^{1-n}(\Theta).$$
 (3.15)

From (3.12), (3.13), (3.14) and (3.15) we see that

$$I_3(P) \le MK\rho(R)R^{\rho(R)}\varphi^{1-n}(\Theta). \tag{3.16}$$

On the other hand, we have from (2.3) and (3.5) that

$$I_4(P) \le MKR^{\rho(R)}\varphi(\Theta). \tag{3.17}$$

We thus obtain from (3.10), (3.11), (3.16) and (3.17) that

$$-u(P) \le MK (1 + \rho(R)R^{\rho(R)}) \varphi^{1-n}(\Theta).$$
(3.18)

Case 2. $P = (r, \Theta) \in C_n(\Omega; (\frac{4}{5}, \frac{5}{4}])$ and $R = \frac{5}{4}r$.

Equation (3.8) gives that $-u(P) = I_1(P) + I_5(P) + I_4(P)$, where $I_1(P)$ and $I_4(P)$ are defined in Case 1 and

$$I_5(P) = \int_{S_n(\Omega;(1,R))} \mathcal{PI}_{\Omega}(P,Q) - u(Q) \, d\sigma_Q.$$

Similar to the estimate of $I_3(P)$ in Case 1 we have

$$I_5(P) \le MK\rho(R)R^{\rho(R)}\varphi^{1-n}(\Theta),\tag{3.19}$$

which together with (3.10) and (3.17) gives (3.18).

Case 3. $P = (r, \Theta) \in C_n(\Omega; (0, \frac{4}{5}])$. It is evident from (1.4) that we have $-u \leq K$, which also gives (3.18).

From (3.18) we finally have

$$u(P) \geq -KM(1 + \rho(R)R^{\rho(R)})\varphi^{1-n}\theta,$$

which is the conclusion of Theorem 1.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

The authors read and approved the final manuscript.

Author details

¹Institute of Management Science and Engineering, Henan University, Kaifeng, 475001, China. ²Department of Mathematics, University of Ioannina, Ioannina, 451 10, Greece.

Acknowledgements

This paper was written while the corresponding author was at the Department of Mathematics of the University of Ioannina, as a visiting professor.

Received: 17 May 2015 Accepted: 22 August 2015 Published online: 10 September 2015

References

- 1. Levin, B: Lectures on Entire Functions. Translations of Mathematical Monographs, vol. 150. Am. Math. Soc., Providence (1996)
- 2. Pan, G, Qiao, L, Deng, G: A lower estimate of harmonic functions. Bull. Iran. Math. Soc. 40(1), 1-7 (2014)
- Azarin, V: Generalization of a theorem of Hayman on subharmonic functions in an m-dimensional cone. Transl. Am. Math. Soc. 80(2), 119-138 (1969)
- 4. Qiao, L, Deng, GT: Growth properties of modified α -potentials in the upper-half space. Filomat 27(4), 703-712 (2013)
- 5. Qiao, L, Deng, GT: Growth of certain harmonic functions in an *n*-dimensional cone. Front. Math. China 8(4), 891-905 (2013)
- 6. Qiao, L: Integral representations for harmonic functions of infinite order in a cone. Results Math. 61(1), 63-74 (2012)
- Rashkovskii, A, Ronkin, L: Subharmonic functions of finite order in a cone. I. General theory. Teor. Funkc. Funkc. Anal. Ih Prilozh. 54(3), 74-89 (1990)
- Yoshida, H: Harmonic majorant of a radial subharmonic function on a strip and their applications. Int. J. Pure Appl. Math. 30(2), 259-286 (2006)