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Abstract
In the article, we present certain p,q ∈ R such that the Wilker-type inequalities

2q
p + 2q

( sin x
x

)p
+

p

p + 2q

( tan x
x

)q
> (<)1 and

(π

2

)p( sin x
x

)p
+

[
1 –

(π

2

)p]( tan x
x

)q
> (<)1

hold for all x ∈ (0,π /2).
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1 Introduction
The well-known Wilker inequality (sin x/x) + tan x/x >  for all x ∈ (,π/) was proposed
by Wilker [] and proved by Sumner et al. [].

Recently, the Wilker inequality has attracted the attention of many researchers. Many
generalizations, improvements, and refinements of the Wilker inequality can be found in
the literature [–].

Pinelis [] and Sun and Zhu [] proved that the inequalities
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hold for all x ∈ (,π/) and y >  if and only if λ ≤ / and μ ≥ /.
Wu and Srivastava [] provided polynomials P(x) and P(x) of degree n +  (n ∈ N)

with explicit expressions and coefficients concerning Bernoulli numbers such that the
double inequality

P(x) tan x <
(

sin x
x

)

+
tan x

x
–  < P(x) tan x

holds for all x ∈ (,π/).
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Yang [] proved that p = / and q = log /[(logπ – log )] are the best possible pa-
rameters such that the double inequality
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holds for all x ∈ (,π/).
Very recently, Yang and Chu [] proved that the Wilker-type inequality
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holds for any fixed k ≥  and all x ∈ (,π/) if and only if p >  or p ≤ [log  – log(k +
)]/[k(logπ – log )] (–/[(k + )] ≤ p < ), and the hyperbolic version of Wilker-type
inequality
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holds for any fixed k ≥  (< – ) and all x ∈ (,∞) if and only if p >  or p ≤ –/[(k + )]
(p <  or p ≥ –/[(k + )]).

More results of the Wilker-type inequalities for hyperbolic, Bessel, circular, inverse
trigonometric, inverse hyperbolic, lemniscate, generalized trigonometric, generalized hy-
perbolic, Jacobian elliptic and theta, and hyperbolic Fibonacci functions can be found in
the literature [–].

The main purpose of the article is to establish the Wilker-type inequalities
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for all x ∈ (,π/) and certain p, q ∈ R. Some complicated analytical computations are
carried out using the computer algebra system Mathematica.

2 Lemmas
In order to prove our main results, we need several lemmas.

Lemma . (See [, ]) Let –∞ < a < b < ∞, f , g : [a, b] →R be continuous on [a, b] and
differentiable on (a, b), and g ′(x) 	=  on (a, b). Then both of the functions

f (x) – f (a)
g(x) – g(a)

and
f (x) – f (b)
g(x) – g(b)

are increasing (decreasing) on (a, b) if f ′(x)/g ′(x) is increasing (decreasing) on (a, b). If
f ′(x)/g ′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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Lemma . (See []) Let A(t) =
∑∞

k= aktk and B(t) =
∑∞

k= bktk be two real power series
converging on (–r, r) (r > ) with bk >  for all k. If the nonconstant sequence {ak/bk} is
increasing (decreasing) for all k, then the function t 
→ A(t)/B(t) is strictly increasing (de-
creasing) on (, r).

Lemma . (See []) Let n ∈ N, and Bn be the Bernoulli numbers. Then the power series
formulas
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hold for x ∈ (–π ,π ), and the power series formulas
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hold for x ∈ (–π/,π/).

Lemma . (See []) Let Bn be the Bernoulli numbers. Then the double inequality

(n)!
(π )n < |Bn| <

n–

n– – 
(n)!
(π )n

holds for all n ∈N.

From Lemma . we immediately get the following:

Remark . Let Bn be the Bernoulli numbers. Then the double inequality
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(π )
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|Bn–|
|Bn| <

n–

n– – 
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holds for all n ∈N and n ≥ .

Lemma . Let n ∈N, Bn be the Bernoulli numbers, and an and bn be respectively defined
by

an = n – n – n – , (.)

bn = (n – )n + n + n +  – n(n – )
(
n– – 

) |Bn–|
|Bn| . (.)

Then the sequence {bn/an} is strictly increasing for n ≥ .
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Proof Let n ≥  and
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–
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Then from (.)-(.) and Remark . we get
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It follows from (.) and (.) that
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It is not difficult to verify that
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for all n ≥ .
Therefore, Lemma . follows easily from (.)-(.) and (.)-(.). �

Lemma . Let n ∈N, Bn be the Bernoulli numbers, un be defined by (.), and cn and vn

be respectively defined by

cn = n
(
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)
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(
n– – 

) |Bn–|
|Bn| , (.)
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vn – un = –
[(n + n – )n + n + ]

anan+
+

n(n – )(n– – )
n – n – n – 

|Bn–|
|Bn|

–
(n + )(n + )(n– – )

n+ – n – n – 
|Bn|

|Bn+| . (.)

From (.), Remark ., and the inequality π >  we get
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Therefore, Lemma . follows easily from (.)-(.). �
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Lemma . Let n ∈N, and wn be defined by
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Lemma . Let n ∈ N, and un and vn be defined by (.) and (.), respectively. Then
v = u/ and vn < un/ for all n ≥ .
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vn – un
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where wn is given in Lemma ..
Therefore, Lemma . follows easily from Lemma ., (.), and (.). �

Let

A(x) = (x – sin x cos x)(sin x – x cos x) cos x, (.)

B(x) = (sin x – x cos x)(x – sin x cos x), (.)
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(
x sin x – x cos x + sin x cos x

)
sin x

= x sin x cos x
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Then from the Wilker inequality and Lemma . we clearly see that
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where an, bn, and cn are respectively given by (.), (.), and (.).

Lemma . Let q ∈R, A(x), B(x), and C(x) be respectively given by (.)-(.), and f (x) :
(,π/) →R be defined as

f (x) =
qB(x) + C(x)

A(x)
. (.)
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Then the following statements are true:
() if q = –, then f (x) is strictly increasing from (,π/) onto (q + /,  – π/);
() if q > –, then f (x) is strictly increasing from (,π/) onto (q + /,∞);
() if q ≤ –/, then f (x) is strictly decreasing from (,π/) onto (–∞, q + /).

Proof Let an, bn, cn, un, and vn be respectively defined by (.)-(.), (.), and (.).
Then from (.)-(.) and Lemma . we have
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Therefore, part () follows from (.), (.), (.), (.), (.), and Lemma .. �

Let p, q ∈ R, x ∈ (,π/), and the functions x → Sp(x), x → Tq(x), and x → Wp,q(x) be
respectively defined by
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Tq(x) =
( tan x
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q
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–
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Lemma . Let x ∈ (,π/), and Wp,q(x) be defined by (.). Then the following state-
ments are true:

() Wp,q(x) is strictly decreasing on (,π/) if q ≥ – and p + q + / ≥ ;
() Wp,q(x) is strictly increasing on (,π/) if –/ < q ≤ – and p ≤ π/ – ;
() Wp,q(x) is strictly increasing on (,π/) if q ≤ –/ and p + q + / ≤ .

Proof Let pq 	=  and x ∈ (,π/). Then (.) and (.) lead to

[ S′
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T ′
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]′
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[
sin x – x cos x
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[
f (x) + p

]
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where A(x) and f (x) are respectively given by (.) and (.).
() If q ≥ – and p + q + / ≥ , then from Lemma .() and () and from (.) we
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xq–p– sinp–q– x cosq x
(x – sin x cos x) A(x)

(
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)
≤  (.)

for x ∈ (,π/).
Therefore, Lemma .() follows easily from (.) and (.) together with Lemma ..
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() If –/ < q ≤ – and p ≤ π/ – , then (.) and Lemma .() lead to
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]′
≥ –
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() If q ≤ –/ and p + q + / ≤ , then Lemma .() and (.) lead to the con-
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for x ∈ (,π/).
Therefore, Lemma .() follows from (.) and (.) together with Lemma .. �

Remark . It is not difficult to verify that (.) is also true if pq = .

3 Main results
Let
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}
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{
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∣∣p > , q < 

}
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{
(p, q)|p < , q < 

}
, (.)

G = E ∩ D, G = E ∪ E ∩ D, (.)

G = E ∩ D, G = E ∪ E ∩ D, (.)

G = E ∩ D, G = E ∪ E ∩ D, (.)

G = E ∩ D, G = E ∪ E ∩ D. (.)

Then (.)-(.) lead to

G =
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G =
{

(p, q)|p < , p + q > 
} ∪ {

(p, q)| –  ≤ q < , p + q > 
}

∪
{

(p, q)| –  ≤ q < , –q –



≤ p < 
}

, (.)

G = G =
{

(p, q)
∣∣∣ < p ≤ –q –




}
, (.)

G =
{

(p, q)|p > , – ≤ q < 
}

, (.)

G =
{

(p, q)
∣∣∣ –  ≤ q < , –q –




≤ p < 
}

. (.)

Theorem . Let G, G, G, and G be respectively defined by (.)-(.). Then the
Wilker-type inequality

q
p + q

(
sin x

x

)p

+
p

p + q

(
tan x

x

)q

>  (.)

holds for all x ∈ (,π/) if (p, q) ∈ G ∪ G, and inequality (.) is reversed if (p, q) ∈ G ∪
G.

Proof Let Wp,q(x) be defined by (.). We only prove that inequality (.) holds for all
x ∈ (,π/) if (p, q) ∈ G ∪ G; the reversed inequality for (p, q) ∈ G ∪ G can be proved
by a completely similar method.

We divide the proof into two cases.
Case  (p, q) ∈ G. Then (.), (.), and (.) lead to

q ≥ –, p + q +



≥ , (.)

pq(p + q) > . (.)

It follows from (.), (.), Lemma .(), and (.) that

wp,q(x) =
q
p

 – ( sin x
x )p

( tan x
x )q – 

<



(.)

for x ∈ (,π/).
Therefore, inequality (.) follows easily from (.) and (.).
Case  (p, q) ∈ G. Then from (.), (.), Lemma .() and (), (.)-(.), and (.)

we clearly see that

wp,q(x) =
q
p

 – ( sin x
x )p

( tan x
x )q – 

>



(.)

and

pq(p + q) < . (.)

Therefore, inequality (.) follows from (.) and (.). �
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Theorem . Let G, G, G, and G be respectively defined by (.) and (.)-(.).
Then the Wilker-type inequality

(
π



)p( sin x
x

)p

+
[

 –
(

π



)p](
tan x

x

)q

<  (.)

holds for all x ∈ (,π/) if (p, q) ∈ G ∪ G, and inequality (.) is reversed if (p, q) ∈
G ∪ G.

Proof Let Wp,q(x) be defined by (.). We only prove that inequality (.) holds for all
x ∈ (,π/) if (p, q) ∈ G ∪ G; the reversed inequality for (p, q) ∈ G ∪ G can be proved
by a completely similar method.

We divide the proof into two cases.
Case  (p, q) ∈ G. Then from (.), (.), Lemma .(), (.), (.), and (.) we

clearly see that

wp,q(x) =
q
p

 – ( sin x
x )p

( tan x
x )q – 

>
q
p

[(

π

)p

– 
]

(.)

and

p > . (.)

Therefore, inequality (.) follows easily from (.) and (.).
Case  (p, q) ∈ G. Then (.), (.), Lemma .() and (), (.), (.), (.), and (.)

lead to the conclusion that

wp,q(x) =
q
p

 – ( sin x
x )p

( tan x
x )q – 

<
q
p

[(

π

)p

– 
]

(.)

and

p < . (.)

Therefore, inequality (.) follows easily from (.) and (.). �
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