provided by Crossref

# Generalized Wilker-type inequalities with two parameters 

## Hong-Hu Chu', Zhen-Hang Yang², Yu-Ming Chu ${ }^{2 *}$ and Wen Zhang ${ }^{3}$

"Correspondence:
chuyuming2005@126.com
${ }^{2}$ School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China Full list of author information is available at the end of the article

## Abstract

In the article, we present certain $p, q \in \mathbb{R}$ such that the Wilker-type inequalities

$$
\begin{aligned}
& \frac{2 q}{p+2 q}\left(\frac{\sin x}{x}\right)^{p}+\frac{p}{p+2 q}\left(\frac{\tan x}{x}\right)^{q}>(<) 1 \quad \text { and } \\
& \left(\frac{\pi}{2}\right)^{p}\left(\frac{\sin x}{x}\right)^{p}+\left[1-\left(\frac{\pi}{2}\right)^{p}\right]\left(\frac{\tan x}{x}\right)^{q}>(<) 1
\end{aligned}
$$

hold for all $x \in(0, \pi / 2)$.
MSC: 26D05; 33B10
Keywords: Wilker inequality; trigonometric function; Bernoulli number; monotonicity

## 1 Introduction

The well-known Wilker inequality $(\sin x / x)^{2}+\tan x / x>2$ for all $x \in(0, \pi / 2)$ was proposed by Wilker [1] and proved by Sumner et al. [2].

Recently, the Wilker inequality has attracted the attention of many researchers. Many generalizations, improvements, and refinements of the Wilker inequality can be found in the literature [3-10].

Pinelis [11] and Sun and Zhu [12] proved that the inequalities

$$
\left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x}-2>\lambda x^{3} \tan x \quad \text { and }\left(\frac{y}{\sinh y}\right)^{2}+\frac{y}{\tanh y}-2<\mu y^{3} \sinh y
$$

hold for all $x \in(0, \pi / 2)$ and $y>0$ if and only if $\lambda \leq 8 / 45$ and $\mu \geq 2 / 45$.
Wu and Srivastava [13] provided polynomials $P_{1}(x)$ and $P_{2}(x)$ of degree $2 n+3(n \in \mathbb{N})$ with explicit expressions and coefficients concerning Bernoulli numbers such that the double inequality

$$
P_{1}(x) \tan x<\left(\frac{\sin x}{x}\right)^{2}+\frac{\tan x}{x}-2<P_{2}(x) \tan x
$$

holds for all $x \in(0, \pi / 2)$.

Yang [14] proved that $p=5 / 3$ and $q=\log 2 /[2(\log \pi-\log 2)]$ are the best possible parameters such that the double inequality

$$
\left(\frac{\sqrt{\cos ^{2 p} x+8}+\cos ^{p} x}{4}\right)^{1 / p}<\frac{\sin x}{x}<\left(\frac{\sqrt{\cos ^{2 q} x+8}+\cos ^{q} x}{4}\right)^{1 / q}
$$

holds for all $x \in(0, \pi / 2)$.
Very recently, Yang and Chu [15] proved that the Wilker-type inequality

$$
\frac{2}{k+2}\left(\frac{\sin x}{x}\right)^{k p}+\frac{k}{k+2}\left(\frac{\tan x}{x}\right)^{p}>(<) 1
$$

holds for any fixed $k \geq 1$ and all $x \in(0, \pi / 2)$ if and only if $p>0$ or $p \leq[\log 2-\log (k+$ $2)] /[k(\log \pi-\log 2)](-12 /[5(k+2)] \leq p<0)$, and the hyperbolic version of Wilker-type inequality

$$
\frac{2}{k+2}\left(\frac{\sinh x}{x}\right)^{k p}+\frac{k}{k+2}\left(\frac{\tanh x}{x}\right)^{p}>(<) 1
$$

holds for any fixed $k \geq 1(<-2)$ and all $x \in(0, \infty)$ if and only if $p>0$ or $p \leq-12 /[5(k+2)]$ ( $p<0$ or $p \geq-12 /[5(k+2)]$ ).
More results of the Wilker-type inequalities for hyperbolic, Bessel, circular, inverse trigonometric, inverse hyperbolic, lemniscate, generalized trigonometric, generalized hyperbolic, Jacobian elliptic and theta, and hyperbolic Fibonacci functions can be found in the literature [16-28].

The main purpose of the article is to establish the Wilker-type inequalities

$$
\frac{2 q}{p+2 q}\left(\frac{\sin x}{x}\right)^{p}+\frac{p}{p+2 q}\left(\frac{\sin x}{x}\right)^{q}>(<) 1
$$

and

$$
\left(\frac{\pi}{2}\right)^{p}\left(\frac{\sin x}{x}\right)^{p}+\left[1-\left(\frac{\pi}{2}\right)^{p}\right]\left(\frac{\tan x}{x}\right)^{q}>(<) 1
$$

for all $x \in(0, \pi / 2)$ and certain $p, q \in \mathbb{R}$. Some complicated analytical computations are carried out using the computer algebra system Mathematica.

## 2 Lemmas

In order to prove our main results, we need several lemmas.
Lemma 2.1 (See $[29,30])$ Let $-\infty<a<b<\infty, f, g:[a, b] \rightarrow \mathbb{R}$ be continuous on $[a, b]$ and differentiable on $(a, b)$, and $g^{\prime}(x) \neq 0$ on $(a, b)$. Then both of the functions

$$
\frac{f(x)-f(a)}{g(x)-g(a)} \text { and } \frac{f(x)-f(b)}{g(x)-g(b)}
$$

are increasing (decreasing) on $(a, b)$ if $f^{\prime}(x) / g^{\prime}(x)$ is increasing (decreasing) on $(a, b)$. If $f^{\prime}(x) / g^{\prime}(x)$ is strictly monotone, then the monotonicity in the conclusion is also strict.

Lemma 2.2 (See [31]) Let $A(t)=\sum_{k=0}^{\infty} a_{k} t^{k}$ and $B(t)=\sum_{k=0}^{\infty} b_{k} t^{k}$ be two real power series converging on $(-r, r)(r>0)$ with $b_{k}>0$ for all $k$. If the nonconstant sequence $\left\{a_{k} / b_{k}\right\}$ is increasing (decreasing) for all $k$, then the function $t \mapsto A(t) / B(t)$ is strictly increasing (decreasing) on $(0, r)$.

Lemma 2.3 (See [32]) Let $n \in \mathbb{N}$, and $B_{n}$ be the Bernoulli numbers. Then the power series formulas

$$
\begin{aligned}
& \frac{1}{\sin x}=\frac{1}{x}+\sum_{n=1}^{\infty} \frac{2^{2 n}-2}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1}, \quad \cot x=\frac{1}{x}-\sum_{n=1}^{\infty} \frac{2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1}, \\
& \frac{1}{\sin ^{2} x}=\frac{1}{x^{2}}+\sum_{n=1}^{\infty} \frac{(2 n-1) 2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n-2}, \\
& \frac{\cos x}{\sin ^{3} x}=\frac{1}{x^{3}}-\sum_{n=1}^{\infty} \frac{n(2 n+1) 2^{2 n+2}}{(2 n+2)!}\left|B_{2 n+2}\right| x^{2 n-1}
\end{aligned}
$$

hold for $x \in(-\pi, \pi)$, and the power series formulas

$$
\tan x=\sum_{n=1}^{\infty} \frac{\left(2^{2 n}-1\right) 2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n-1}, \quad \frac{1}{\cos ^{2} x}=\sum_{n=1}^{\infty} \frac{(2 n-1)\left(2^{2 n}-1\right) 2^{2 n}}{(2 n)!}\left|B_{2 n}\right| x^{2 n-2}
$$

hold for $x \in(-\pi / 2, \pi / 2)$.

Lemma 2.4 (See [33]) Let $B_{n}$ be the Bernoulli numbers. Then the double inequality

$$
\frac{2(2 n)!}{(2 \pi)^{2 n}}<\left|B_{2 n}\right|<\frac{2^{2 n-1}}{2^{2 n-1}-1} \frac{2(2 n)!}{(2 \pi)^{2 n}}
$$

holds for all $n \in \mathbb{N}$.

From Lemma 2.4 we immediately get the following:

Remark 2.1 Let $B_{n}$ be the Bernoulli numbers. Then the double inequality

$$
\frac{2^{2 n-1}-1}{2^{2 n-1}} \frac{(2 \pi)^{2}}{2 n(2 n-1)}<\frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|}<\frac{2^{2 n-3}}{2^{2 n-3}-1} \frac{(2 \pi)^{2}}{2 n(2 n-1)}
$$

holds for all $n \in \mathbb{N}$ and $n \geq 1$.

Lemma 2.5 Let $n \in \mathbb{N}, B_{n}$ be the Bernoulli numbers, and $a_{n}$ and $b_{n}$ be respectively defined by

$$
\begin{align*}
& a_{n}=2^{2 n}-2 n^{2}-3 n-2,  \tag{2.1}\\
& b_{n}=(2 n-3) 2^{2 n}+2 n^{2}+n+4-n(2 n-1)\left(2^{2 n-3}-1\right) \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} . \tag{2.2}
\end{align*}
$$

Then the sequence $\left\{b_{n} / a_{n}\right\}$ is strictly increasing for $n \geq 3$.

Proof Let $n \geq 3$ and

$$
\begin{equation*}
u_{n}=\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}} . \tag{2.3}
\end{equation*}
$$

Then from (2.1)-(2.3) and Remark 2.1 we get

$$
\begin{align*}
u_{n}= & \frac{(2 n-1) 2^{2 n+2}+2 n^{2}+5 n+7}{2^{2 n+2}-2 n^{2}-7 n-7}-\frac{(n+1)(2 n+1)\left(2^{2 n-1}-1\right)}{2^{2 n+2}-2 n^{2}-7 n-7} \frac{\left|B_{2 n}\right|}{\left|B_{2 n+2}\right|} \\
& -\frac{(2 n-3) 2^{2 n}+2 n^{2}+n+4}{2^{2 n}-2 n^{2}-3 n-2}+\frac{n(2 n-1)\left(2^{2 n-3}-1\right)}{2^{2 n}-2 n^{2}-3 n-2} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} \\
> & \frac{2}{a_{n} a_{n+1}}\left[4 \times 2^{4 n}-\left(6 n^{3}+7 n^{2}+5 n+11\right) 2^{2 n}-\left(2 n^{2}-2 n-7\right)\right] \\
& +\frac{\pi^{2}}{2^{2 n+2}} \frac{\left(6 n^{2}+5 n-39\right) 2^{4 n}+\left(20 n^{2}+70 n+134\right) 2^{2 n}-\left(32 n^{2}+112 n+112\right)}{a_{n} a_{n+1}} . \tag{2.4}
\end{align*}
$$

Let

$$
\begin{equation*}
u_{n}^{*}=4 \times 2^{4 n}-\left(6 n^{3}+7 n^{2}+5 n+11\right) 2^{2 n}-\left(2 n^{2}-2 n-7\right) . \tag{2.5}
\end{equation*}
$$

Then we clearly see that

$$
\begin{align*}
& u_{3}^{*}=315>0  \tag{2.6}\\
& u_{n+1}^{*}-16 u_{n}^{*}=\left(18 n^{3}+3 n^{2}-17 n+15\right) 2^{2 n+2}+\left(30 n^{2}-34 n-105\right)>0 \tag{2.7}
\end{align*}
$$

for $n \geq 3$.
It follows from (2.6) and (2.7) that

$$
\begin{equation*}
u_{n}^{*}>0 \tag{2.8}
\end{equation*}
$$

for all $n \geq 3$.
It is not difficult to verify that

$$
\begin{equation*}
a_{n}>0 \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(6 n^{2}+5 n-39\right) 2^{4 n}+\left(20 n^{2}+70 n+134\right) 2^{2 n}-\left(32 n^{2}+112 n+112\right)>0 \tag{2.10}
\end{equation*}
$$

for all $n \geq 3$.
Therefore, Lemma 2.5 follows easily from (2.3)-(2.5) and (2.8)-(2.10).

Lemma 2.6 Let $n \in \mathbb{N}$, $B_{n}$ be the Bernoulli numbers, $u_{n}$ be defined by (2.3), and $c_{n}$ and $v_{n}$ be respectively defined by

$$
\begin{equation*}
c_{n}=2 n\left(2^{2 n}-1\right)-2 n(2 n-1)\left(2^{2 n-3}-1\right) \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} \tag{2.11}
\end{equation*}
$$

$$
\begin{equation*}
v_{n}=\frac{c_{n+1}}{a_{n+1}}-\frac{c_{n}}{a_{n}} . \tag{2.12}
\end{equation*}
$$

Then $v_{n}>u_{n}$ for all $n \geq 3$.

Proof It follows from (2.1)-(2.3), (2.11), and (2.12) that

$$
\begin{align*}
v_{n}-u_{n}= & -\frac{2\left[\left(6 n^{2}+5 n-2\right) 2^{2 n}+4 n+5\right]}{a_{n} a_{n+1}}+\frac{n(2 n-1)\left(2^{2 n-3}-1\right)}{2^{2 n}-2 n^{2}-3 n-2} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} \\
& -\frac{(n+1)(2 n+1)\left(2^{2 n-1}-1\right)}{2^{2 n+2}-2 n^{2}-7 n-7} \frac{\left|B_{2 n}\right|}{\left|B_{2 n+2}\right|} . \tag{2.13}
\end{align*}
$$

From (2.13), Remark 2.1, and the inequality $\pi^{2}>9$ we get

$$
\begin{align*}
v_{3}- & u_{3}=\frac{8}{105}, \quad v_{4}-u_{4}=\frac{104}{3,045}, \quad v_{5}-u_{5}=\frac{15,496}{1,102,145},  \tag{2.14}\\
v_{6}- & u_{6}=\frac{23,139,208}{4,326,527,205}, \quad v_{7}-u_{7}=\frac{2,511,041,224}{1,319,700,084,885},  \tag{2.15}\\
v_{n}- & u_{n} \\
> & -\frac{2\left[\left(6 n^{2}+5 n-2\right) 2^{2 n}+4 n+5\right]}{a_{n} a_{n+1}} \\
& +\frac{n(2 n-1)\left(2^{2 n-3}-1\right)}{2^{2 n}-2 n^{2}-3 n-2} \frac{2^{2 n-1}-1}{2^{2 n-1}} \frac{(2 \pi)^{2}}{2 n(2 n-1)} \\
& -\frac{(n+1)(2 n+1)\left(2^{2 n-1}-1\right)}{2^{2 n+2}-2 n^{2}-7 n-7} \frac{2^{2 n-1}}{2^{2 n-1}-1} \frac{(2 \pi)^{2}}{(2 n+1)(2 n+2)} \\
= & -\frac{2\left[\left(6 n^{2}+5 n-2\right) 2^{2 n}+4 n+5\right]}{a_{n} a_{n+1}} \\
& +\frac{\pi^{2}}{2^{2 n+2}} \frac{\left(6 n^{2}+5 n-39\right) 2^{4 n}+\left(20 n^{2}+70 n+134\right) 2^{2 n}-\left(32 n^{2}+112 n+112\right)}{a_{n} a_{n+1}} \\
>- & \frac{2\left[\left(6 n^{2}+5 n-2\right) 2^{2 n}+4 n+5\right]}{a_{n} a_{n+1}} \\
& +\frac{81}{2^{2 n+2}} \frac{\left(6 n^{2}+5 n-39\right) 2^{4 n}+\left(20 n^{2}+70 n+134\right) 2^{2 n}-\left(32 n^{2}+112 n+112\right)}{a_{n} a_{n+1}} \\
= & \frac{\left(6 n^{2}+5 n-335\right) 2^{4 n}+\left(180 n^{2}+598 n+1,166\right) 2^{2 n}-9\left(32 n^{2}+112 n+112\right)}{a_{n} a_{n+1} 2^{2 n+2}} . \tag{2.16}
\end{align*}
$$

Note that

$$
\begin{equation*}
a_{n}>0, \quad\left(180 n^{2}+598 n+1,166\right) 2^{2 n}-9\left(32 n^{2}+112 n+112\right)>0, \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
6 n^{2}+5 n-335 \geq 6 \times 8^{2}+5 \times 8-335=89 \tag{2.18}
\end{equation*}
$$

for all $n \geq 8$.
Therefore, Lemma 2.6 follows easily from (2.14)-(2.18).

Lemma 2.7 Let $n \in \mathbb{N}$, and $w_{n}$ be defined by

$$
\begin{aligned}
w_{n}= & 32 \times 2^{6 n}-\left(48 n^{3}+206 n^{2}+165 n+2,183\right) 2^{4 n} \\
& +\left(3,284 n^{2}+5,526 n+4,716\right) 2^{2 n}-\left(1,320 n^{2}+1,980 n+1,320\right) .
\end{aligned}
$$

Then $w_{n}>0$ for all $n \geq 5$.

Proof Let

$$
w_{n}^{*}=32 \times 4^{n}-\left(48 n^{3}+206 n^{2}+165 n+2,183\right) .
$$

Then we clearly see that

$$
\begin{align*}
& w_{n}=2^{4 n} w_{n}^{*}+\left(3,284 n^{2}+5,526 n+4,716\right) 2^{2 n}-\left(1,320 n^{2}+1,980 n+1,320\right)  \tag{2.19}\\
& w_{5}^{*}=18,160>0  \tag{2.20}\\
& w_{n+1}^{*}-4 w_{n}^{*}=144 n^{3}+474 n^{2}-61 n+6,130>0 \tag{2.21}
\end{align*}
$$

for all $n \geq 5$.
Inequalities (2.20) and (2.21) lead to the conclusion that

$$
\begin{equation*}
w_{n}^{*}>0 \tag{2.22}
\end{equation*}
$$

for all $n \geq 5$.
Note that

$$
\begin{equation*}
\left(3,284 n^{2}+5,526 n+4,716\right) 2^{2 n}-\left(1,320 n^{2}+1,980 n+1,320\right)>0 \tag{2.23}
\end{equation*}
$$

for all $n \geq 5$.
Therefore, Lemma 2.7 follows from (2.19), (2.22), and (2.23).

Lemma 2.8 Let $n \in \mathbb{N}$, and $u_{n}$ and $v_{n}$ be defined by (2.3) and (2.12), respectively. Then $v_{3}=37 u_{3} / 35$ and $v_{n}<37 u_{n} / 35$ for all $n \geq 4$.

Proof It follows from (2.1)-(2.3), (2.11), and (2.12) that

$$
\begin{align*}
35 v_{n} & -37 u_{n} \\
= & -\frac{2\left[8 \times 2^{4 n}-\left(12 n^{3}-196 n^{2}-165 n+92\right) 2^{2 n}-\left(4 n^{2}-144 n-189\right)\right]}{\left(2^{2 n}-2 n^{2}-3 n-2\right)\left(2^{2 n+2}-2 n^{2}-7 n-7\right)} \\
& -\frac{33(2 n+1)(n+1)\left(2^{2 n-1}-1\right)}{2^{2 n+2}-2 n^{2}-7 n-7} \frac{\left|B_{2 n}\right|}{\left|B_{2 n+2}\right|}+\frac{33 n(2 n-1)\left(2^{2 n-3}-1\right)}{2^{2 n}-2 n^{2}-3 n-2} \frac{\left|B_{2 n-2}\right|}{\left|B_{2 n}\right|} . \tag{2.24}
\end{align*}
$$

From Remark 2.1, (2.24), and the inequality $\pi^{2}<10$ we get

$$
\begin{equation*}
35 v_{3}-37 u_{3}=0, \quad 35 v_{4}-37 u_{4}=-\frac{288}{145} \tag{2.25}
\end{equation*}
$$

$$
\begin{align*}
35 v_{n} & -37 u_{n} \\
< & -\frac{2\left[8 \times 2^{4 n}-\left(12 n^{3}-196 n^{2}-165 n+92\right) 2^{2 n}-\left(4 n^{2}-144 n-189\right)\right]}{\left(2^{2 n}-2 n^{2}-3 n-2\right)\left(2^{2 n+2}-2 n^{2}-7 n-7\right)} \\
& -\frac{33(2 n+1)(n+1)\left(2^{2 n-1}-1\right)}{2^{2 n+2}-2 n^{2}-7 n-7} \frac{2^{2 n+1}-1}{2^{2 n+1}} \frac{(2 \pi)^{2}}{(2 n+1)(2 n+2)} \\
& +\frac{33 n(2 n-1)\left(2^{2 n-3}-1\right)}{2^{2 n}-2 n^{2}-3 n-2} \frac{2^{2 n-3}}{2^{2 n-3}-1} \frac{(2 \pi)^{2}}{2 n(2 n+1)} \\
= & -\frac{2\left[8 \times 2^{4 n}-\left(12 n^{3}-196 n^{2}-165 n+92\right) 2^{2 n}-\left(4 n^{2}-144 n-189\right)\right]}{a_{n} a_{n+1}} \\
& +\frac{33 \pi^{2}}{4} \frac{\left(6 n^{2}+5 n+11\right) 2^{4 n}-2\left(10 n^{2}+15 n+12\right) 2^{2 n}+8 n^{2}+12 n+8}{a_{n} a_{n+1} 2^{2 n}} \\
< & -\frac{2\left[8 \times 2^{4 n}-\left(12 n^{3}-196 n^{2}-165 n+92\right) 2^{2 n}-\left(4 n^{2}-144 n-189\right)\right]}{a_{n} a_{n+1}} \\
& +\frac{33 \times 10}{4} \frac{\left(6 n^{2}+5 n+11\right) 2^{4 n}-2\left(10 n^{2}+15 n+12\right) 2^{2 n}+8 n^{2}+12 n+8}{a_{n} a_{n+1} 2^{2 n}} \\
= & -\frac{w_{n}}{a_{n} a_{n+1} 2^{2 n+1}}, \tag{2.26}
\end{align*}
$$

where $w_{n}$ is given in Lemma 2.7.
Therefore, Lemma 2.8 follows easily from Lemma 2.7, (2.25), and (2.26).

Let

$$
\begin{align*}
A(x) & =(x-\sin x \cos x)(\sin x-x \cos x)^{2} \cos x,  \tag{2.27}\\
B(x) & =(\sin x-x \cos x)(x-\sin x \cos x)^{2},  \tag{2.28}\\
C(x) & =x\left(x \sin x-2 x^{2} \cos x+\sin ^{2} x \cos x\right) \sin ^{2} x \\
& =x^{3} \sin ^{2} x \cos x\left(\frac{\sin ^{2} x}{x^{2}}+\frac{\tan x}{x}-2\right) . \tag{2.29}
\end{align*}
$$

Then from the Wilker inequality and Lemma 2.3 we clearly see that

$$
A(x)>0, \quad B(x)>0, \quad C(x)>0
$$

for all $x \in(0, \pi / 2)$ and

$$
\begin{align*}
& \frac{A(x)}{\sin ^{3} x \cos ^{2} x}=\sum_{n=3}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right| a_{n}}{(2 n)!} x^{2 n}, \quad \frac{B(x)}{\sin ^{3} x \cos ^{2} x}=\sum_{n=3}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right| b_{n}}{(2 n)!} x^{2 n},  \tag{2.30}\\
& \frac{C(x)}{\sin ^{3} x \cos ^{2} x}=\sum_{n=3}^{\infty} \frac{2^{2 n}\left|B_{2 n}\right| c_{n}}{(2 n)!} x^{2 n}, \tag{2.31}
\end{align*}
$$

where $a_{n}, b_{n}$, and $c_{n}$ are respectively given by (2.1), (2.2), and (2.11).
Lemma 2.9 Let $q \in \mathbb{R}, A(x), B(x)$, and $C(x)$ be respectively given by (2.27)-(2.29), and $f(x)$ : $(0, \pi / 2) \rightarrow \mathbb{R}$ be defined as

$$
\begin{equation*}
f(x)=\frac{q B(x)+C(x)}{A(x)} \tag{2.32}
\end{equation*}
$$

Then the following statements are true:
(1) if $q=-1$, then $f(x)$ is strictly increasing from $(0, \pi / 2)$ onto $\left(2 q+12 / 5,3-\pi^{2} / 4\right)$;
(2) if $q>-1$, then $f(x)$ is strictly increasing from $(0, \pi / 2)$ onto $(2 q+12 / 5, \infty)$;
(3) if $q \leq-37 / 35$, then $f(x)$ is strictly decreasing from $(0, \pi / 2)$ onto $(-\infty, 2 q+12 / 5)$.

Proof Let $a_{n}, b_{n}, c_{n}, u_{n}$, and $v_{n}$ be respectively defined by (2.1)-(2.3), (2.11), and (2.12). Then from (2.30)-(2.32) and Lemma 2.5 we have

$$
\begin{align*}
& f(x)=\frac{\sum_{n=3}^{\infty}\left(q b_{n}+c_{n}\right) x^{2 n}}{\sum_{n=3}^{\infty} a_{n} x^{2 n}},  \tag{2.33}\\
& \frac{q b_{n+1}+c_{n+1}}{a_{n+1}}-\frac{q b_{n}+c_{n}}{a_{n}}=q u_{n}+v_{n},  \tag{2.34}\\
& u_{n}=\frac{b_{n+1}}{a_{n+1}}-\frac{b_{n}}{a_{n}}>0 \tag{2.35}
\end{align*}
$$

for all $n \geq 3$.
Note that

$$
\begin{align*}
& f\left(0^{+}\right)=\frac{q b_{3}+c_{3}}{a_{3}}=2 q+\frac{12}{5}  \tag{2.36}\\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{C(x)-B(x)}{A(x)}=3-\frac{\pi^{2}}{4} \quad(q=-1),  \tag{2.37}\\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{q B(x)+C(x)}{A(x)}=+\infty \quad(q>-1),  \tag{2.38}\\
& \lim _{x \rightarrow \frac{\pi}{2}^{-}} f(x)=\lim _{x \rightarrow \frac{\pi}{2}^{-}} \frac{q B(x)+C(x)}{A(x)}=-\infty \quad(q<-1) . \tag{2.39}
\end{align*}
$$

We divide the proof into two cases.
Case $1 q \geq-1$. Then it follows from (2.34) and (2.35), together with Lemma 2.6, that

$$
\begin{equation*}
\frac{q b_{n+1}+c_{n+1}}{a_{n+1}}-\frac{q b_{n}+c_{n}}{a_{n}} \geq v_{n}-u_{n}>0 \tag{2.40}
\end{equation*}
$$

for $n \geq 3$.
Therefore, parts (1) and (2) follow from (2.33), (2.36)-(2.38), (2.40), and Lemma 2.2.
Case $2 q \leq-37 / 35$. Then (2.34) and (2.35), together with Lemma 2.8, lead to

$$
\begin{align*}
& \frac{q b_{4}+c_{4}}{a_{4}}-\frac{q b_{3}+c_{3}}{a_{3}} \leq v_{3}-\frac{37}{35} u_{3}=0  \tag{2.41}\\
& \frac{q b_{n+1}+c_{n+1}}{a_{n+1}}-\frac{q b_{n}+c_{n}}{a_{n}} \leq v_{n}-\frac{37}{35} u_{n}<0 \tag{2.42}
\end{align*}
$$

for $n \geq 4$.
Therefore, part (3) follows from (2.33), (2.36), (2.39), (2.41), (2.42), and Lemma 2.2.
Let $p, q \in \mathbb{R}, x \in(0, \pi / 2)$, and the functions $x \rightarrow S_{p}(x), x \rightarrow T_{q}(x)$, and $x \rightarrow W_{p, q}(x)$ be respectively defined by

$$
\begin{equation*}
S_{p}(x)=\frac{1-\left(\frac{\sin x}{x}\right)^{p}}{p} \quad(p \neq 0), \quad S_{0}(x)=\lim _{p \rightarrow 0} S_{p}(x)=\log \frac{x}{\sin x} \tag{2.43}
\end{equation*}
$$

$$
\begin{equation*}
T_{q}(x)=\frac{\left(\frac{\tan x}{x}\right)^{q}-1}{q} \quad(q \neq 0), \quad T_{0}(x)=\lim _{q \rightarrow 0} T_{q}(x)=\log \frac{\tan x}{x} \tag{2.44}
\end{equation*}
$$

and

$$
W_{p, q}(x)=\frac{S_{p}(x)}{T_{q}(x)} .
$$

Then we clearly see that

$$
\begin{align*}
& S_{p}\left(0^{+}\right)=T_{q}\left(0^{+}\right)=0, \\
& W_{p, q}(x)=\frac{S_{p}(x)}{T_{q}(x)}=\frac{S_{p}(x)-S_{p}\left(0^{+}\right)}{T_{q}(x)-T_{q}\left(0^{+}\right)}= \begin{cases}\frac{q}{p} \frac{1-\left(\frac{\sin x}{x}\right)^{p}}{\left(\frac{\tan x}{x}\right) q-1}, & p q \neq 0, \\
\frac{1}{\left.p-\frac{(\sin x}{x}\right)^{p}} \frac{\log \frac{\tan x}{x}}{}, & p \neq 0, q=0, \\
\frac{\log \frac{x}{\sin x}}{(\tan x}, & p=0, q \neq 0, \\
\frac{\log \left(\frac{s i n}{x}\right)}{\log \left(\frac{\operatorname{lan} x}{x}\right)}, & p=q=0,\end{cases}  \tag{2.45}\\
& W_{p, q}\left(0^{+}\right)=\frac{1}{2},  \tag{2.46}\\
& W_{p, q}\left(\frac{\pi}{2}\right)=\frac{q}{p}\left[\left(\frac{2}{\pi}\right)^{p}-1\right] \quad(p \neq 0, q<0),  \tag{2.47}\\
& W_{0, q}\left(\frac{\pi^{-}}{2}\right)=\lim _{p \rightarrow 0} W_{p, q}\left(\frac{\pi^{-}}{2}\right)=q \log \frac{2}{\pi} \quad(q<0) .
\end{align*}
$$

Lemma 2.10 Let $x \in(0, \pi / 2)$, and $W_{p, q}(x)$ be defined by (2.45). Then the following statements are true:
(1) $W_{p, q}(x)$ is strictly decreasing on $(0, \pi / 2)$ if $q \geq-1$ and $p+2 q+12 / 5 \geq 0$;
(2) $W_{p, q}(x)$ is strictly increasing on $(0, \pi / 2)$ if $-37 / 35<q \leq-1$ and $p \leq \pi^{2} / 4-3$;
(3) $W_{p, q}(x)$ is strictly increasing on $(0, \pi / 2)$ if $q \leq-37 / 35$ and $p+2 q+12 / 5 \leq 0$.

Proof Let $p q \neq 0$ and $x \in(0, \pi / 2)$. Then (2.43) and (2.44) lead to

$$
\begin{align*}
{\left[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)}\right]^{\prime} } & =\left[\frac{\sin x-x \cos x}{x-\sin x \cos x}\left(\frac{\sin x}{x}\right)^{p-q} \cos ^{q+1} x\right]^{\prime} \\
& =-\frac{x^{q-p-1} \sin ^{p-q-1} x \cos ^{q} x}{(x-\sin x \cos x)^{2}} A(x)[f(x)+p] \tag{2.48}
\end{align*}
$$

where $A(x)$ and $f(x)$ are respectively given by (2.27) and (2.32).
(1) If $q \geq-1$ and $p+2 q+12 / 5 \geq 0$, then from Lemma 2.9(1) and (2) and from (2.48) we have

$$
\begin{equation*}
\left[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)}\right]^{\prime}<-\frac{x^{q-p-1} \sin ^{p-q-1} x \cos ^{q} x}{(x-\sin x \cos x)^{2}} A(x)\left(p+2 q+\frac{12}{5}\right) \leq 0 \tag{2.49}
\end{equation*}
$$

for $x \in(0, \pi / 2)$.
Therefore, Lemma 2.10(1) follows easily from (2.45) and (2.49) together with Lemma 2.1.
(2) If $-37 / 35<q \leq-1$ and $p \leq \pi^{2} / 4-3$, then (2.48) and Lemma 2.9(1) lead to

$$
\begin{align*}
{\left[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)}\right]^{\prime} } & \geq-\frac{x^{q-p-1} \sin ^{p-q-1} x \cos ^{q} x}{(x-\sin x \cos x)^{2}} A(x)\left[p+\frac{C(x)-B(x)}{A(x)}\right] \\
& >-\frac{x^{q-p-1} \sin ^{p-q-1} x \cos ^{q} x}{(x-\sin x \cos x)^{2}} A(x)\left(p+3-\frac{\pi^{2}}{4}\right) \geq 0 \tag{2.50}
\end{align*}
$$

for $x \in(0, \pi / 2)$.
Therefore, Lemma 2.10(2) follows from (2.45) and (2.50) together with Lemma 2.1.
(3) If $q \leq-37 / 35$ and $p+2 q+12 / 5 \leq 0$, then Lemma 2.9(3) and (2.48) lead to the conclusion that

$$
\begin{equation*}
\left[\frac{S_{p}^{\prime}(x)}{T_{q}^{\prime}(x)}\right]^{\prime}>-\frac{x^{q-p-1} \sin ^{p-q-1} x \cos ^{q} x}{(x-\sin x \cos x)^{2}} A(x)\left(p+2 q+\frac{12}{5}\right) \geq 0 \tag{2.51}
\end{equation*}
$$

for $x \in(0, \pi / 2)$.
Therefore, Lemma 2.10(3) follows from (2.45) and (2.51) together with Lemma 2.1.
Remark 2.2 It is not difficult to verify that (2.48) is also true if $p q=0$.

## 3 Main results

Let

$$
\begin{align*}
& E_{1}=\left\{(p, q) \mid q \geq-1, p+2 q+\frac{12}{5} \geq 0\right\},  \tag{3.1}\\
& E_{2}=\left\{(p, q) \left\lvert\,-\frac{37}{35}<q \leq-1\right., p \leq \frac{\pi^{2}}{4}-3\right\},  \tag{3.2}\\
& E_{3}=\left\{(p, q) \left\lvert\, q \leq-\frac{37}{35}\right., p+2 q+\frac{12}{5} \leq 0\right\},  \tag{3.3}\\
& D_{1}=\{(p, q) \mid p q(p+2 q)>0\}, \quad D_{2}=\{(p, q) \mid p q(p+2 q)<0\},  \tag{3.4}\\
& D_{3}=\{(p, q) \mid p>0, q<0\}, \quad D_{4}=\{(p, q) \mid p<0, q<0\},  \tag{3.5}\\
& G_{1}=E_{1} \cap D_{1}, \quad G_{2}=E_{2} \cup E_{3} \cap D_{2},  \tag{3.6}\\
& G_{3}=E_{1} \cap D_{2}, \quad G_{4}=E_{2} \cup E_{3} \cap D_{1},  \tag{3.7}\\
& G_{5}=E_{1} \cap D_{3}, \quad G_{6}=E_{2} \cup E_{3} \cap D_{4},  \tag{3.8}\\
& G_{7}=E_{1} \cap D_{4}, \quad G_{8}=E_{2} \cup E_{3} \cap D_{3} . \tag{3.9}
\end{align*}
$$

Then (3.1)-(3.9) lead to

$$
\begin{align*}
G_{1}= & \{(p, q) \mid p>0, q>0\} \cup\{(p, q) \mid 0<p<-2 q, q \geq-1\} \\
& \cup\left\{(p, q) \mid q>0,-\frac{12}{5} \leq p+2 q<0\right\}  \tag{3.10}\\
G_{2}= & G_{6}=\left\{(p, q) \left\lvert\, p \leq \frac{\pi^{2}}{4}-3\right., q \leq-1\right\} \\
& \cup\left\{(p, q) \left\lvert\, \frac{\pi^{2}}{4}-3<p<0\right., q \leq-\frac{37}{35}, p+2 q+\frac{12}{5} \leq 0\right\} \tag{3.11}
\end{align*}
$$

$$
\begin{align*}
G_{3}= & \{(p, q) \mid p<0, p+2 q>0\} \cup\{(p, q) \mid-1 \leq q<0, p+2 q>0\} \\
& \cup\left\{(p, q) \mid-1 \leq q<0,-2 q-\frac{12}{5} \leq p<0\right\},  \tag{3.12}\\
G_{4}= & G_{8}=\left\{(p, q) \left\lvert\, 0<p \leq-2 q-\frac{12}{5}\right.\right\},  \tag{3.13}\\
G_{5}= & \{(p, q) \mid p>0,-1 \leq q<0\},  \tag{3.14}\\
G_{7}= & \left\{(p, q) \mid-1 \leq q<0,-2 q-\frac{12}{5} \leq p<0\right\} . \tag{3.15}
\end{align*}
$$

Theorem 3.1 Let $G_{1}, G_{2}, G_{3}$, and $G_{4}$ be respectively defined by (3.10)-(3.13). Then the Wilker-type inequality

$$
\begin{equation*}
\frac{2 q}{p+2 q}\left(\frac{\sin x}{x}\right)^{p}+\frac{p}{p+2 q}\left(\frac{\tan x}{x}\right)^{q}>1 \tag{3.16}
\end{equation*}
$$

holds for all $x \in(0, \pi / 2)$ if $(p, q) \in G_{1} \cup G_{2}$, and inequality (3.16) is reversed if $(p, q) \in G_{3} \cup$ $G_{4}$.

Proof Let $W_{p, q}(x)$ be defined by (2.45). We only prove that inequality (3.16) holds for all $x \in(0, \pi / 2)$ if $(p, q) \in G_{1} \cup G_{2}$; the reversed inequality for $(p, q) \in G_{3} \cup G_{4}$ can be proved by a completely similar method.
We divide the proof into two cases.
Case $1(p, q) \in G_{1}$. Then (3.1), (3.4), and (3.6) lead to

$$
\begin{align*}
& q \geq-1, \quad p+2 q+\frac{12}{5} \geq 0,  \tag{3.17}\\
& p q(p+2 q)>0 . \tag{3.18}
\end{align*}
$$

It follows from (2.45), (2.46), Lemma 2.10(1), and (3.17) that

$$
\begin{equation*}
w_{p, q}(x)=\frac{q}{p} \frac{1-\left(\frac{\sin x}{x}\right)^{p}}{\left(\frac{\tan x}{x}\right)^{q}-1}<\frac{1}{2} \tag{3.19}
\end{equation*}
$$

for $x \in(0, \pi / 2)$.
Therefore, inequality (3.16) follows easily from (3.18) and (3.19).
Case $2(p, q) \in G_{2}$. Then from (2.45), (2.46), Lemma 2.10(2) and (3), (3.2)-(3.4), and (3.6) we clearly see that

$$
\begin{equation*}
w_{p, q}(x)=\frac{q}{p} \frac{1-\left(\frac{\sin x}{x}\right)^{p}}{\left(\frac{\tan x}{x}\right)^{q}-1}>\frac{1}{2} \tag{3.20}
\end{equation*}
$$

and

$$
\begin{equation*}
p q(p+2 q)<0 \tag{3.21}
\end{equation*}
$$

Theorem 3.2 $\operatorname{Let} G_{5}, G_{6}, G_{7}$, and $G_{8}$ be respectively defined by (3.11) and (3.13)-(3.15). Then the Wilker-type inequality

$$
\begin{equation*}
\left(\frac{\pi}{2}\right)^{p}\left(\frac{\sin x}{x}\right)^{p}+\left[1-\left(\frac{\pi}{2}\right)^{p}\right]\left(\frac{\tan x}{x}\right)^{q}<1 \tag{3.22}
\end{equation*}
$$

holds for all $x \in(0, \pi / 2)$ if $(p, q) \in G_{5} \cup G_{6}$, and inequality (3.22) is reversed if $(p, q) \in$ $G_{7} \cup G_{8}$.

Proof Let $W_{p, q}(x)$ be defined by (2.45). We only prove that inequality (3.22) holds for all $x \in(0, \pi / 2)$ if $(p, q) \in G_{5} \cup G_{6}$; the reversed inequality for $(p, q) \in G_{7} \cup G_{8}$ can be proved by a completely similar method.

We divide the proof into two cases.
Case $1(p, q) \in G_{5}$. Then from (2.45), (2.47), Lemma 2.10(1), (3.1), (3.5), and (3.8) we clearly see that

$$
\begin{equation*}
w_{p, q}(x)=\frac{q}{p} \frac{1-\left(\frac{\sin x}{x}\right)^{p}}{\left(\frac{\tan x}{x}\right)^{q}-1}>\frac{q}{p}\left[\left(\frac{2}{\pi}\right)^{p}-1\right] \tag{3.23}
\end{equation*}
$$

and

$$
\begin{equation*}
p>0 . \tag{3.24}
\end{equation*}
$$

Therefore, inequality (3.22) follows easily from (3.23) and (3.24).
Case $2(p, q) \in G_{6}$. Then (2.45), (2.47), Lemma 2.10(2) and (3), (3.2), (3.3), (3.5), and (3.8) lead to the conclusion that

$$
\begin{equation*}
w_{p, q}(x)=\frac{q}{p} \frac{1-\left(\frac{\sin x}{x}\right)^{p}}{\left(\frac{\tan x}{x}\right)^{q}-1}<\frac{q}{p}\left[\left(\frac{2}{\pi}\right)^{p}-1\right] \tag{3.25}
\end{equation*}
$$

and

$$
\begin{equation*}
p<0 . \tag{3.26}
\end{equation*}
$$

Therefore, inequality (3.22) follows easily from (3.25) and (3.26).

## Competing interests

The authors declare that they have no competing interests.

## Authors' contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

## Author details

${ }^{1}$ School of Civil Engineering and Architecture, Changsha University of Sciences \& Technology, Changsha, 410114, China
${ }^{2}$ School of Mathematics and Computation Sciences, Hunan City University, Yiyang, 413000, China. ${ }^{3}$ Albert Einstein
College of Medicine, Yeshiva University, New York, NY 10033, United States.

## Acknowledgements

The research was supported by the Natural Science Foundation of China under Grants 11371125, 61374086, and 11401191 and the Natural Science Foundation of Zhejiang Province under Grant LY13A010004

## References

1. Wilker, JB: Problem E3306. Am. Math. Mon. 96(1), 55 (1989)
2. Sumner, JS, Jagers, AA, Vowe, M, Anglesio, J: Inequalities involving trigonometric functions. Am. Math. Mon. 98(3), 264-267 (1991)
3. Wu, S-H, Srivastava, HM: A weighted and exponential generalization of Wilker's inequality and its applications. Integral Transforms Spec. Funct. 18(7-8), 529-535 (2007)
4. Wu, S-H: On extension and refinement of Wilker's inequality. Rocky Mt. J. Math. 39(2), 683-687 (2009)
5. Neuman, E, Sándor, J: On some inequalities involving trigonometric and hyperbolic functions with emphasis on the Cusa-Huygens, Wilker, and Huygens inequalities. Math. Inequal. Appl. 13(4), 715-723 (2010)
6. Neuman, E: On Wilker and Huygens type inequalities. Math. Inequal. Appl. 15(2), 271-279 (2012)
7. Sándor, J: The Huygens and Wilker-type inequalities as inequalities for means of two arguments. Adv. Stud. Contemp. Math. 22(4), 487-498 (2012)
8. Chen, C-P, Sándor, J: Inequality chains for Wilker, Huygens and Lazarević type inequalities. J. Math. Inequal. 8(1), 55-67 (2014)
9. Wu, S-H, Yue, H-P, Deng, Y-P, Chu, Y-M: Several improvements of Mitrinović-Adamović and Lazarević's inequalities with applications to the sharpening of Wilker-type inequalities. J. Nonlinear Sci. Appl. 9(4), 1755-1765 (2016)
10. Wu, S-H, Li, S-G, Bencze, M: Sharpened versions of Mitrinović-Adamović, Lazarević and Wilker's inequalities for trigonometric and hyperbolic functions. J. Nonlinear Sci. Appl. 9(5), 2688-2696 (2016)
11. Pinelis, I: L'Hospital rules for monotonicity and the Wilker-Anglesio inequality. Am. Math. Mon. 111(10), 905-999 (2004)
12. Sun, Z-J, Zhu, L: On Wilker-type inequalities. ISRN Math. Anal. 2011, Article ID 681702 (2011)
13. Wu, S-H, Srivastava, HM: A further refinement of Wilker's inequality. Integral Transforms Spec. Funct. 19(9-10), 757-765 (2008)
14. Yang, Z-H: The sharp inequalities related to Wilker type. Math. Inequal. Appl. 17(3), 1015-1026 (2014)
15. Yang, Z-H, Chu, Y-M: Sharp Wilker-type inequalities with applications. J. Inequal. Appl. 2014, Article ID 166 (2014)
16. Zhu, L: On Wilker-type inequalities. Math. Inequal. Appl. 10(4), 727-731 (2007)
17. Baricz, Á, Sándor, J: Extensions of the generalized Wilker inequality to Bessel functions. J. Math. Inequal. 2(3), 397-406 (2008)
18. Zhu, L: Some new Wilker-type inequalities for circular and hyperbolic functions. Abstr. Appl. Anal. 2009, Article ID 485842 (2009)
19. Sándor, J: On some Wilker and Huygens type trigonometric-hyperbolic inequalities. Proc. Jangjeon Math. Soc. 15(2), 145-153 (2012)
20. Chen, C-P, Cheung, W-S: Wilker- and Huygens-type inequalities and solution to Oppenheim's problem. Integral Transforms Spec. Funct. 23(5), 325-336 (2012)
21. Chen, C-P: Wilker and Huygens type inequalities for the lemniscate functions. J. Math. Inequal. 6(4), 673-684 (2012)
22. Wu, S-H, Debnath, L: Wilker-type inequalities for hyperbolic functions. Appl. Math. Lett. 25(5), 837-842 (2012)
23. Chen, C-P: Wilker and Huygens type inequalities for the lemniscate functions II. Math. Inequal. Appl. 16(2), 577-586 (2013)
24. Chen, C-P: Sharp Wilker- and Huygens-type inequalities for inverse trigonometric and inverse hyperbolic functions. Integral Transforms Spec. Funct. 23(12), 865-873 (2012)
25. Neuman, E: Wilker and Huygens-type inequalities for generalized trigonometric and for generalized hyperbolic functions. Appl. Math. Comput. 230, 211-217 (2014)
26. Neuman, E: Wilker- and Huygens-type inequalities for Jacobian elliptic and theta functions. Integral Transforms Spec. Funct. 25(3), 240-248 (2014)
27. Mortici, C: A subtly analysis of Wilker inequality. Appl. Math. Comput. 231, 516-520 (2014)
28. Bahşi, M: Wilker-type inequalities for hyperbolic Fibonacci functions. J. Inequal. Appl. 2016, Article ID 146 (2016)
29. Anderson, GD, Vamanamurthy, MK, Vuorinen, M: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)
30. Anderson, GD, Qiu, S-L, Vamanamurthy, MK, Vuorinen, M: Generalized elliptic integrals and modular equations. Pac. J. Math. 192(1), 1-37 (2000)
31. Biernacki, M, Krzyż, J: On the monotonity of certain functionals in the theory of analytic functions. Ann. Univ. Mariae Curie-Skłodowska, Sect. A 9(1), 135-147 (1955)
32. Editorial Committee of Mathematics Handbook: Mathematics Handbook. Peoples' Education Press, Beijing (1979) (in Chinese)
33. Abramowitz, M, Stegun, IA: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington (1964)
