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Abstract

Background: Expression quantitative trait loci (eQTL) play an important role in the regulation of gene expression.
Gene expression levels and eQTLs are expected to vary from tissue to tissue, and therefore multi-tissue analyses are
necessary to fully understand complex genetic conditions in humans. Dura mater tissue likely interacts with cranial
bone growth and thus may play a role in the etiology of Chiari Type I Malformation (CMI) and related conditions,
but it is often inaccessible and its gene expression has not been well studied. A genetic basis to CMI has been
established; however, the specific genetic risk factors are not well characterized.

Results: We present an assessment of eQTLs for whole blood and dura mater tissue from individuals with CMI. A
joint-tissue analysis identified 239 eQTLs in either dura or blood, with 79% of these eQTLs shared by both tissues.
Several identified eQTLs were novel and these implicate genes involved in bone development (IPO8, XYLT1, and
PRKAR1A), and ribosomal pathways related to marrow and bone dysfunction, as potential candidates in the
development of CMI.

Conclusions: Despite strong overall heterogeneity in expression levels between blood and dura, the majority of
cis-eQTLs are shared by both tissues. The power to detect shared eQTLs was improved by using an integrative
statistical approach. The identified tissue-specific and shared eQTLs provide new insight into the genetic basis for
CMI and related conditions.
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Background
Expression quantitative trait loci (eQTLs) are genetic
polymorphisms that affect the expression level of a gene.
A variety of methods are commonly used to detect
eQTLs in individual tissues [1-3]. The identification of
eQTLs is important for dissection of human disease, by
providing hypotheses for how genetic alterations
translate to individual differences in biological function
and risk for disease.
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Gene expression levels are known to vary widely
between different types of tissue. Consequently, the
result of gene expression analysis often depends
strongly on the type of tissue examined for any given
experiment, and this too is applicable to the identifica-
tion of eQTLs. The study of tissue-by-tissue variation
is an ongoing and dynamic area of research. In particu-
lar, the Genotype-Tissue Expression (GTEx) project [4]
is a large-scale collaborative effort to catalogue gene
expression variation and genetic association with expres-
sion among several tissue types. The GTEx database now
includes expression measurements and candidate eQTLs
for over 20 different types of tissue. From a clinical
perspective, it would be helpful to identify potential
his is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
iginal work is properly credited. The Creative Commons Public Domain
g/publicdomain/zero/1.0/) applies to the data made available in this article,

mailto:allison.AshleyKoch@duke.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Lock et al. BMC Genomics  (2015) 16:11 Page 2 of 13
commonalities between gene expression profiles in ac-
cessible tissue (such as blood) versus more inaccessible
tissue (brain, dura mater, cerebrospinal fluid) as this
information could lead to the development of bio-
markers for human diseases.
Despite strong tissue-to-tissue variability in gene

expression, results from the GTEx project suggest
that eQTLs are often, but not always, shared across
multiple tissues. Therefore, when expression levels
for multiple tissues are available, integrative methods
that detect eQTLs across all tissues simultaneously are
preferable to simply analyzing each tissue separately.
Recent methods [5,6] allow for the borrowing of informa-
tion across tissue types for more accurate detection of
eQTLs. In this study, we present tissue-by-tissue analysis
of eQTLs separately for blood and dura mater tissue, and
a joint analysis across the two tissues simultaneously. We
compare these two approaches to determine if the gain in
statistical power from the joint analysis reveals similar or
different eQTLs between the tissues.
This article describes the detection of eQTLs for both

blood and dura mater tissue for 43 individuals with
Chiari type 1 malformation (CMI). CMI is characterized
by herniation of the cerebellar tonsils below the foramen
magnum (base of the skull) and is estimated to affect 1%
of the United States population [7]. CMI is a heteroge-
neous condition as the extent of tonsillar herniation,
hypothesized mechanisms, and associated neurologic
symptoms vary. The most common cause of CMI is
cranial constriction resulting from an underdeveloped
posterior fossa (PF); other proposed mechanisms include
cranial settling, spinal cord tethering, intracranial hyperten-
sion, and intraspinal hypotension [8]. The mechanism of
cranial settling and joint instability may explain the co-
occurrence of connective tissue disorders in some patients
with CMI [9]. Symptoms of CMI vary widely in severity
and often include headache, dizziness, neck pain, fatigue
and difficulty swallowing [10].
Several lines of evidence exist that support a genetic

contribution to CMI. These include twin studies, familial
clustering, and co-segregation with known genetic syn-
dromes (reviewed in [11]). However, little is known
about the underlying genetic factors, and the clinical
heterogeneity of CMI suggests that it is also genetically
heterogeneous. A case–control candidate gene association
study identified four single nucleotide polymorphisms
(SNPs) in the caudal type homeobox 1(CDX1), fms-
related tyrosine kinase 1 (FLT1), and aldehyde dehydro-
genase 1 A2 (ALDH1A2) genes that were significantly
associated (FDR < 0.10) with CMI when the study popula-
tion was restricted to 186 patients. These patients were
determined to have a small PF by MRI measurement [12].
A whole genome screen conducted in 2006 reported evi-
dence for linkage to regions on chromosomes 9 and 15
using 23 non-syndromic CMI multiplex families [13]. Our
group has carried out two additional whole genome
screens. In the first screen, we used 66 non-syndromic
CMI multiplex families and conducted a stratified linkage
analysis using clinical criteria to reduce the genetic hetero-
geneity [11]. Specifically, families were stratified based on
presence of hereditary connective tissue disorders. This
approach resulted in a marked increase in evidence for
linkage to multiple regions of the genome. In particular,
those families without presence of connective tissue dis-
orders showed regions of linkage in chromosomes 8 and
12, both of which contain growth differentiation factors
(GDF3 and GDF6, respectively). In the second genome
screen, an ordered subset analysis (OSA) using heritable
and disease-relevant cranial morphologic traits identified
increased evidence for linkage within subsets of families
with similar cranial morphology. Results from OSA
identified multiple genomic regions showing increased
evidence for linkage, including regions on chromosomes
1 and 22 which implicated several biological candidates
for disease [14].
Dura mater tissue surrounds the brain and spinal cord

and is the final layer of the meninges, being located be-
tween the pia-arachnoid and bone. It is also a connect-
ive tissue, which is important because of the previously
observed co-occurrence of CMI and connective tissue
disorders [9,11,15]. Therefore, dura is a reasonable
candidate tissue to examine in order to better understand
the genetic causes of CMI.
Another study that used the same patient cohort as

the present article identified CMI subtypes based on a
clustering analysis of blood gene expression, dura gene
expression, and cranial morphometrics [16]. These
subtypes helped explain the clinical heterogeneity of
CMI and implicated biological candidates responsible
for this heterogeneity. Nonetheless, there was generally
little concordance observed between the blood and
dura mater gene expression profiles. Importantly, this
study did not incorporate the patients’ genotypes in the
analysis.
The goals of the present study were three-fold: 1. To

illustrate the relative advantages of a joint-tissue approach
to eQTL analysis, 2. To assess the concordance of eQTLs
in blood and dura tissue, and 3. To explore the potential
relevance of the identified eQTLs to CMI pathogenesis.
All study participants underwent decompression surgery
of the skull and dura samples were obtained during sur-
gery. However, because dura tissue is much less accessible
than blood, studies have preferentially analyzed eQTLs in
blood for a range of clinical phenotypes, leaving dura
expression under studied and also not represented in
the GTEx project. By collecting both dura and blood ex-
pression levels for a common cohort we may determine
where it is appropriate to use blood as a proxy for dura
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expression. Moreover, the integration of genotype and
expression data through eQTL analysis provides novel
information about potential candidate genes involved in
the etiology of CMI.

Results
Tissue-by-tissue eQTL analysis
Separate eQTL analyses for blood and dura tissue were
performed as described in the Methods section. The ana-
lyses included data for 43 individuals, with expression for
18,557 genes and genotype for 3,926,229 SNPs. A distinc-
tion was made between local (cis) and distant (trans)
gene-SNP pairs. A histogram of p-values for significance
of each cis gene-SNP association is shown in Figure 1,
separately for dura and blood. A histogram of p-values for
significance of each trans gene-SNP association is shown
in Figure 2, separately for dura and blood. All plots are
relatively uniform with a marked increase in frequency
near 0. This indicates that some gene-SNP pairs have a
highly significant association, but the vast majority of the
pairs have no detectable association. The cis analyses have
a much more pronounced peak near 0, indicating that for
both tissues local eQTLs are substantially more likely to
be active than trans-eQTLs, as expected.
There were 81 genes with a highly significant cis-eQTL

in blood, and 175 genes with a highly significant cis-eQTL
in dura tissue (FDR < 0.01); of these, 34 genes were sig-
nificant in both blood and dura tissues. There were 163
genes with a highly significant trans-eQTL in blood,
and 187 genes with a highly significant trans-eQTL in
dura tissue (FDR < 0.01); of these, 12 genes were
significant in both blood and dura tissues. These data
are summarized in Table 1. Fisher’s exact test for asso-
ciation was highly significant for both the cis and trans
tables (p-value < 0.001), suggesting that the overlap in
eQTLs between the two tissues is not due to chance.
Figure 1 Cis-eQTL p-value histograms. Histogram of cis-eQTL p-values u
horizontal blue line corresponds to a uniform distribution of p-values.
Data for all trans-eQTLs are provided in Additional
file 1.
For cis-eQTLs the partial variability in expression that

is explained by the given SNP (R2) must be greater than
45.2% to satisfy FDR < 0.01 for dura and 48.1% to satisfy
FDR < 0.01 for blood. Thus, using stringent thresholds
we only identify those eQTLs with a large effect. Further
inspection suggested that the number of cis-eQTLs shared
by both tissues was drastically underestimated by consid-
ering the intersection of separate analyses. Figure 3 shows
the distribution of correlations between blood and dura
expression for all 18,557 genes considered, for the 314
genes with significant trans-eQTLs only, and for the 198
genes with significant cis-eQTLs only. The distribution of
correlations for all genes is centered near 0 and nearly
symmetric, the distribution for trans-genes is centered
near 0 with a slight right skew, the distribution for cis
genes is shifted dramatically to the right and 88% of cis
genes have a positive correlation. Hence, the vast majority
of genes show no detectable association of expression
between tissues, with the exception of genes with a cis-
eQTL. This suggests that most cis-eQTLs are shared
between the two tissues, and that the separate eQTL
analyses are underpowered. These results motivated
the joint-tissue analysis described below.

Joint-tissue eQTL analysis
Joint analysis of blood and dura tissue allowed for more
accurate assessment of which eQTLs are active in blood
only, dura only, or both tissues. Permutation testing
under the joint model identified 239 genes with a highly
significant (FDR < 0.01) cis-eQTL in either tissue. The
majority (64%) of these genes were also identified by at
least one of the tissue-specific analyses. For these 239
genes we focused on model comparison using Bayesian
posterior estimates to determine if that gene had an active
sing a 1 Mb cis-region for dura (left) and blood (right) tissue. The



Figure 2 Trans-eQTL p-value histograms. Histogram of trans-eQTL p-values for dura (left) and blood (right) tissue. The horizontal blue line
corresponds to a uniform distribution of p-values.
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eQTL in blood only, dura only, or both tissues. Posterior
probabilities that each gene had an active eQTL in blood
only or dura only, as determined by the most highly asso-
ciated SNP, are shown in Figure 4. Of these eQTLs, 18
had a higher probability of being active in blood only
(relative to “dura only” or “both”), 33 had a higher prob-
ability of being active in dura only, and 188 were predicted
to be active in both tissues. A contingency table show-
ing the agreement in gene classification between the
joint-tissue and separate analyses is given in Table 2.
For a more direct comparison, we also performed gene-
level permutation-testing with the same software used for
the multi-tissue analysis but with no inter-tissue depend-
ence; this gave 126 cis-eQTLs in dura and 77 cis-eQTLs
in blood (FDR < 0.01), with 32 shared by both tissues. For
both comparisons many more genes were predicted to
have jointly present eQTLs using the multi-tissue analysis
than by simply considering the intersection of separate
analyses. This result was expected, given the high level of
between tissue correlation for genes with eQTLs.
Additional file 2 gives results from the multi-tissue

analysis for all genes considered. Additional file 3 lists
each of the 239 significant genes with additional infor-
mation for each gene. We compared the strongest eQTL
for each gene with association p-values from the gTEX
Table 1 Gene eQTL two-way tables (separate blood vs.
dura analyses)

Cis analysis Trans analysis

Dura FDR < 0.01 FDR > 0.01 FDR < 0.01 FDR > 0.01

Blood

FDR < 0.01 34 141 12 175

FDR > 0.01 47 18335 151 18243
database for blood. As expected, most (76%) of eQTLs
that were identified as active in blood only also had a
gTEX p-value < 0.05 and less (24%) of eQTLs that were
identified as active in dura only were significant in the
gTEX database. Interestingly, only 37% of eQTLs that
were determined to be active in both blood and dura
had a p-value < 0.05 in the gTEX database.
Among all genes considered, 6.6% had a measured SNP

in at least one of its probe targets. Among the 239 genes
identified, 36 (15.1%) had a SNP in a probe, and in 12 such
genes (5.0%) the eQTL SNP was in LD (R2 > 0:5) with at
least one SNP in a probe for that gene. These eQTLs were
flagged as potential artifacts due to hybridization, and this
information is given in Additional file 3. We prioritized
those genes that had eQTLs active in dura only, or that
were strongly active in both tissues, but not significant in
the gTEX database, because we deemed these eQTLs
more likely to be relevant to CMI pathophysiology. Among
these prioritized eQTLs, the genes importin 8 (IPO8),
xylosyltransferase I (XYLT1), and protein kinase cAMP-
dependent regulatory type I alpha (PRKAR1A) were all
found to have a very strong eQTL in both blood and dura
tissue. These eQTLs had an FDR < 0.001 in the joint and
tissue-by-tissue analyses, and the SNP-gene association
showed a strong linear trend in both tissues (Figure 5). All
three eQTLs did not show a significant association in the
GTEx database. However, IPO8 expression was associated
with a SNP in its probe target. We elaborate on the
biological function and potential relevance to CMI for
each of these genes in the Discussion.
Family-based association test (FBAT)
A FBAT was performed on an independent familial popu-
lation to assess the presence of genotype associations with



Figure 3 Histogram of correlations for dura vs. blood expression. Pearson correlations between dura and blood expression values are
shown for all genes (top), those genes that had a trans-eQTL with FDR q < 0.01 in either tissue (middle), and those genes that had a cis-eQTL with
FDR q < 0.01 in either tissue (bottom).
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the occurrence of CMI. Neither a full FBAT including
over 4 million SNPs, or a reduced FBAT analysis restricted
to those 239 SNPs identified by the joint-tissue eQTL
analysis above, resulted in any highly significant associ-
ations after an FDR adjustment (FDR < 0.05). Never-
theless, p-values resulting from the FBAT analysis for
239 SNPs are listed in Additional file 3, and provide
additional support for certain candidate genes. In par-
ticular, ribosomal protein 23 (RPS23) had a strong
eQTL in both tissues (FDR < 0.001), no significant eQTL
in the GTEx database, and a small FBAT nominal p-value
(p-value = 0.01). Together these data suggested a potential
role of RPS23 in the development of CMI.
Furthermore, we considered those eQTLs within a link-

age region for CMI, as identified by the previous stratified
linkage [11] and ordered subset [14] analyses. Of all SNPs
considered, 3.0% belong to such a region. Of the 239
eQTLs identified by the joint tissue analysis, 10 belonged
to such a region and these are annotated in Additional
file 3. The enrichment of SNPs belonging to such a region
among these 239, relative to all SNPs, was not significant
(P-value = 0.18; Fisher’s exact test).

Network and pathway analyses
A functional protein interaction network based on the
joint-tissue eQTL analysis is shown in Figure 6. For rele-
vance to CMI, only those genes with a strong eQTL in
both dura and blood (log Bayes factor > 10) or a significant
eQTL in dura only were included in the network (n = 64
genes). The majority of genes do not interact with one
another based on interactions within STRING (data not
shown). However, a common network connects several



Figure 4 Probabilities for eQTL tissue specificity. Scatterplot of
posterior probabilities that an eQTL is present in blood only or dura
tissue only. The strongest eQTL for each gene with an FDR q < 0.01
under the joint analysis are shown. Each eQTL is colored by its posterior
prediction for tissue activity (blood only, dura only, or both tissues).
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genes associated with ribosome function. These genes
include the ribosomal proteins RPS26, RPS23, RPS20,
RPL14, RPL36AL, the ribosome biogenesis homolog
NSA2, and the ribosome production factor homolog
RPF2. Of the 14 genes that are included in this network,
8 have their strongest eQTL predicted to occur in dura
only (RPS20, RPL36AL, NSA2, EIF6, VRK3, RPF2,
DOHH, and WDR6). Of the remaining 5 genes, 4 did
not have their strongest eQTL replicated in the gTEX
database (p-value > 0.1) (RPS23, RPL14, XRN2, ALG11);
only RPS26 occurred in both dura and blood and shared
its most significant eQTL with the gTEX database. A
pathway enrichment analysis of genes predicted to have
eQTLs in blood and dura or dura only (n = 221 genes)
was performed using both GO and KEGG pathways. The
only pathway that was significantly enriched in this gene
set at FDR < 0.05 was the KEGG ribosome pathway, in-
cluding genes RPS20, RPL36AL, RPL22L1, RPS26, RPS23,
RPL14.
Table 2 Gene eQTL contingency table (separate vs. joint
analyses)

Joint

Separate Blood
only

Dura
only

Both
tissues

Neither,
FDR > 0.01

Blood only 12 0 0 6

Dura only 0 28 0 5

Both tissues 14 66 33 75

Neither, FDR > 0.01 21 47 1 18249
Together, these results indicate that coordinated activity
among multiple genes from the joint-tissue eQTL analysis
is primarily related to ribosomal function. The eQTL asso-
ciated with most of these genes occurs in dura only, or is
not significant in the gTEX database, suggesting that these
eQTLs may be related to CMI.

Discussion
A comparison of the tissue-by-tissue and joint-tissue ana-
lyses illustrates the advantages of an integrative multi-
tissue approach to eQTL analysis. The joint-tissue analysis
identified more significant eQTLs overall, suggesting that
borrowing information across tissue types increased statis-
tical power. In particular, the combined use of exploratory
plots and the joint-tissue analysis suggested that the num-
ber of eQTLs shared by both blood and dura was vastly
underestimated when simply taking the intersection of
tissue-by-tissue analyses. Consequently, the number of
tissue-specific eQTLs was overestimated. The joint-tissue
analysis gives a more principled way to assess whether an
eQTL is shared or specific to a given tissue.
We found substantially higher between-tissue correlation

in genes with cis-eQTLs than genes with trans-eQTLs; this
agrees with studies of eQTL specificity on other tissues
[17,18]. Approximately 79% of cis-eQTLs that were de-
tectable in either dura or blood were predicted to be
shared by both tissues. The only previous comparison of
expression levels for blood and dura, using the same
sample set, found little concordance between the two
tissues [16]; however, this analysis did not investigate
eQTLs. We similarly found that the association between
expression in blood and dura tissue was generally negli-
gible, but importantly, we found high levels of association
in expression of genes with cis-eQTLs. This is almost
certainly because most cis-eQTLs are shared across the
tissues. We posit that genes with eQTLs are more likely to
play an important role in conditions with a genetic com-
ponent, such as CMI. Thus, our conclusions provide some
support for the utility of future biomarker development
for CMI in less invasive tissues, such as blood.
We identified three genes with strong eQTLs in both

blood and dura tissues that were not significant in the gTEX
database and had function that was potentially relevant to
CMI: IPO8, XYLT1, and PRKAR1A. IPO8 expression was
previously associated with osteoblast differentiation [19],
and found to be increased 25-fold in patients with Os odon-
toideum in a comparative twin study [20]. These results
suggest that IPO8 may play a role in bone development, a
process believed to underlie the etiology of CMI in at least
some cases [12,21]. XYLT1 activity has also been implicated
in ossification [22-24], specifically as a regulator of chondro-
cyte maturation [22,24]. Mutations in PRKAR1A have been
associated with Acrodysostosis, a genetic disorder of bone
growth [25]. These candidate genes all relate to bone



Figure 5 Expression vs. genotype boxplots. Boxplots show the association between IPO8 expression and the SNP rs10743724, between XYLT1
expression and the SNP rs1045885, and between PRKAR1A expression and the SNP rs2302234, for dura (top) and blood (bottom) tissues. Expression
values are z-standardized after preprocessing. The genotype is coded by number of copies of the minor allele (0, 1, or 2). All plots show a clear trend.

Figure 6 Significant gene network. Network of genes with associated functional protein interactions, created based on genes with strong
eQTLs in blood and dura (log Bayes factor > 10) or significant eQTLs in dura only. This included 64 genes, 47 of which were isolated as they had
no functional interactions with the other genes; the remaining 17 genes are shown.
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Table 3 Study population description

Description N Percentage

Total number of individuals 44

Sex

Male 28 63.6%

Female 16 36.4%

Race

Caucasian 31 70.5%

African American 13 29.6%

Syrinx

Yes 10 22.7%

No 34 77.3%

Family history

Yes 6 13.6%

No 36 81.8%

Unknown 2 4.6%

Datasets

Blood gene expression 44 100.0%

Dura gene expression 44 100.0%

Genotype 43 97.7%

Age at surgery (years)a 8.89 ± 5.19
aAverage age at surgery ± standard deviation.
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growth and development, and their relevance to CMI is sup-
ported by evidence that cranial morphometrics are heritable
within CMI families and associated with CMI case status
[12,16].
Several genes with strong eQTLs were related to ribo-

somal function. These genes had eQTLs primarily in
dura tissue only, or had an eQTL in both blood and dura
tissue, but were not significant in the gTEX database.
This suggests that ribosomal expression may be relevant
to the etiology of CMI. Mutations and expression of genes
encoding ribosomal proteins have been implicated in a
variety of conditions related to bone marrow dysfunction
and disorders of skeletal development. These include the
bone marrow disorders Diamond-Blackfan anemia and
Schwachman-Diamond syndrome, and the skeletal devel-
opment disorders Cartilage-hair hypoplasia and Treacher
Collins syndrome [26,27]. Treacher Collins syndrome is
characterized by craniofacial abnormalities [28]. There is
also a link between ribosomal bone marrow disorders and
skeletal conditions, as both Diamond-Blackfan anemia
and Schwachman-Diamond syndrome have been associ-
ated with craniofacial and skeletal anomalies [29,30]. Sev-
eral cases have been reported where CMI and bone
marrow disorders co-occur [31,32]. However, the causal
association between ribosomal function and CMI, if any,
requires further examination. Our study participants were
examined for the presence of anemia based on a review of
medical records, and only two patients were identified
with low mean corpuscular volume (MCV) values (data
not shown). It remains unclear if the ribosomal protein as-
sociations observed in the present study are representative
of a link between CMI and underlying anemia.
Gene expression of dura tissue has not been well stud-

ied, in part because of its inaccessibility without invasive
surgery. While the present study allowed a unique oppor-
tunity to examine dura expression, its scope of inference
is limited to young patients with CMI. Dura tissue is a nat-
ural candidate for the study of CMI because of its proxim-
ity to cranial bone, and the co-occurrence of CMI and
connective tissue disorders [11]. However, there may be
important genetic factors in the development of CMI that
are not manifested in blood or dura tissue, but are best
characterized within the bone itself, or other tissue types.
While the joint–tissue analysis improves power, it is

still limited by the study sample size and conservative
criteria for significance. Only eQTLs with strong relative
effects on gene expression are identified, and so these
results do not represent a comprehensive catalogue of
eQTLs in blood and dura tissues.
The interpretation of eQTL results requires caution, as

not all observed gene-SNP associations may be caused
by true regulatory effects. Some associations may be due
to technical artifacts such as RNA hybridization issues,
and we have attempted to flag suspect associations.
Furthermore, because the present study was restricted to
patients with CMI it is subject to the effects of condi-
tioning on a “collider” [33]. Specifically, an association
may be observed in a gene-SNP pair if both the gene
and the SNP are independently associated with CMI sta-
tus, even if there is no true regulatory effect.

Conclusions
We have presented the first joint-eQTL analysis of dura
mater and blood. We demonstrated that the integrative
statistical approach of joint-eQTL analysis is more power-
ful than identifying the intersection of single tissue ana-
lysis. Our significant eQTLs revealed functionally relevant
and novel candidate genes for the pathology of CMI and
provide the basis of further exploration.

Methods
Ethics statement
The details of this study were approved by the Duke
University Medical Center Institutional Review Board
(protocol 00020342).

Study population
Eligible study participants were pediatric patients diag-
nosed with CMI and treated with PF decompression
surgery at Duke University Medical Center over a period
of 20 months. All participants were under 18 years old but
were otherwise of varied age, sex and race. Table 3 gives
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detailed population characteristics and available data for
the 44 participants. Participation required written consent
for the release of medical records, providing a blood sam-
ple for DNA and RNA extraction, and providing a dura
sample for RNA extraction. Choice to participate in the
study did not affect the patient's quality of care, and only
7.9% of those eligible declined enrollment.

Laboratory protocols
Sample collection and storage
Samples of dura mater and blood tissue were collected
from all participants during PF decompression surgery.
Decompression surgery involves removing a small portion
of the back of the skull to alleviate pressure near the
brainstem and spinal cord, and was performed under
anesthesia. All patients underwent duraplasty, in which
the open dura mater was closed with a cadaveric pericar-
dial patch graft. During this procedure, a small piece of
dura tissue (<5 mm × 5 mm) was collected and stored in a
tube filled with 1.25 ml of RNALater (Life technologies,
Grand Island, NY). Also during surgery, blood samples
were collected in a 2.5 ml Paxgene RNA tube (Qiagen,
Valencia, CA) from an arterial line. For DNA extraction,
blood samples were collected from study participants in
EDTA tubes.

RNA extraction and expression arrays
RNA was extracted within one month after ascertain-
ment for each blood and dura sample. Prior to RNA ex-
traction for dura, the samples were homogenized at 4°C
in 2 ml Omni bead ruptor tubes prefilled with 2.38 mm
metal beads and buffer RLT (Qiagen, Valencia, CA) plus
β-Mercaptoethanol. RNA extraction, DNAse treatment,
and clean-up for dura were performed using the RNeasy
fibrous tissue mini kit (Qiagen, Valencia, CA), according
to the manufacturer's protocol. RNA extraction and
DNAse treatment for blood were performed using the
PAXgene Blood RNA kit (Qiagen, Valencia, CA), accord-
ing the manufacturer's protocol.
Nanodrop (ThermoScientific, Wilmington, DE) was used

to quantify the RNA for both blood and dura tissue. All
samples had a total yield of at least 50 ng. The RNA 6000
Pico chip (Agilent, Santa Clara, CA) was used to assess the
RNA Integrity Number (RIN). All samples had a RIN score
over 6, indicating the RNA was of satisfactory quality.
Prior to RNA amplification, samples were concentrated

using a vacuum centrifuge. The TotalPrep-96 RNA Amp-
lification Kit (Illumina, San Diego, CA) was then used to
amplify and convert the RNA samples to cRNA per the
manufacturer's instructions. All 44 dura samples, 44 blood
samples, a positive control included in the kit, a dura
control sample (Clontech human dura matter total
RNA), and a blood control sample (Clontech human
blood, peripheral leukocytes total RNA) were all run on
the same 96-well plate. The cRNA samples were then
diluted to a concentration of 150 ng/ul.
Whole genome expression data was generated for all

samples using the HT-12 v4 Expression BeadChips
(Illumina, San Diego, CA) per the manufacturer’s instruc-
tions. All samples were run in a single experimental batch.
The dura samples were distributed across 4 chips, with
the dura control sample run on each chip; the blood sam-
ples were distributed across 4 other chips, with the blood
control sample run on each chip. The age, race, gender,
and operating surgeon for the 44 samples were approxi-
mately evenly distributed between the 4 chips.

DNA extraction and genotyping arrays
DNA was extracted from EDTA tubes using the AutoPure
LS® DNA extraction kit with Puregene® system reagents
(Qiagen, Valencia, CA). A small amount of DNA (0.3 μg)
was run on a 0.8% agarose gel in order to assess quality
and each sample was quantified using the Nanodrop
(ThermoScientific, Wilmington, DE). Whole-genome
genotype data was generated via the Illumina Human610-
Quad BeadChip (Illumina, San Diego, CA) per the manu-
facturer’s instructions and chips were scanned using the
Illumina iScan system (San Diego, CA). Genotyping for
the 44 participants described in this study was performed
in a single batch.

Data processing
Whole genome expression quality control and data
pre-processing
The GenomeStudio Gene Expression module (Illumina,
San Diego, CA) was used for initial quality assessment of
the blood and dura expression data. System controls were
checked and found to in agreement with expected per-
formance. Blood and dura control replicates were assessed
for consistency. There was high concordance between
replicates, as the Pearson correlation coefficient was > 0.99
for dura and > 0.98 for blood.
Sample outliers were identified based on the number

of genes with low detection p-values, signal intensity
measures, housekeeping gene intensity, and other system
control metrics. The distribution for each metric was
measured separately for blood and dura, and a sample
was flagged as an outlier if it was more than 4 standard
deviations from the mean in any metric. Of the 15
sample-level metrics used, one dura sample was flagged
based on two metrics: signal average and housekeeping
gene intensity. No blood samples were identified as out-
liers in any metric. No blood or dura samples were re-
moved from analysis based on these metrics.
After initial quality assessment, the R environment

[34] was used for pre-processing of expression data.
Probe intensities were log2-transformed then quantile
normalized using the R package lumi [35]. All control
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replicates clustered together based on hierarchical clus-
tering in lumi. Principal components analysis (PCA) was
performed separately for blood and dura samples to
identify outliers and clustering anomalies. No samples
were flagged as outliers, and we concluded that clustering
present in PCA plots represents real biological variation.
Sex of the samples was confirmed by examining expres-
sion of probes on the Y chromosome, and all samples
grouped with other samples of their reported sex.
The 47,210 probes mapped to 18,557 RefSeq genes, and

the mean of the normalized probe expression values was
used to summarize expression for each gene. Pearson cor-
relation between normalized probe expression was used to
assess the agreement of probes that map to the same gene.

Genotyping quality control and imputation
Genotype calls were made using GenomeStudio (Illumina,
San Diego, CA) and quality control (QC) was conducted
in PLINK [36]. QC was performed separately for the
Caucasian (N = 31) and African-American (N = 13) sub-
jects due to varying minor allele frequency (MAF) and
linkage disequilibrium (LD) across ethnic groups. All sam-
ples had call rates > 99%. X chromosome heterozygosity
was assessed and one Caucasian sample was excluded due
to discrepancy between genotype and clinical definitions
of gender, leaving N = 43 eligible samples. Identity-by-
descent (IBD) estimates were calculated to identify du-
plicate or related individuals and principal component
analysis (PCA) was used to check for population sub-
structure; no subjects were removed for these reasons.
SNPs with MAF < 5% or Hardy-Weinberg Equilibrium
(HWE) p-values < 0.001 were removed. After initial QC,
518,054 SNPs remained for the Caucasian subjects and
489,095 SNPs remained for the African-American subjects.
To increase genome-wide coverage, we imputed missing

genotypes using the 1000Genomes (www.1000genomes.
org) global reference panel. Samples were first phased using
SHAPEIT [37] and genotypes were subsequently imputed
using IMPUTE2 [38]. Imputed probes with certainty values
< 90% were zeroed out and SNPs missing in more than one
person, corresponding to a SNP call rate of 92.3% for the
Caucasian subjects and 96.7% for the African-American
subjects, were removed. SNPs with MAF < 5% across both
populations were also removed. Accuracy of the imputed
data was assessed by masking SNPs genotyped on the
Illumina panel and comparing the imputed genotypes to
the observed genotypes. The overall concordance was
98.7%. After all quality control steps, 3,926,229 SNPs
remained.

Data analysis
Tissue-by-tissue eQTL analysis
Independent eQTL analyses for blood and dura tissue
were performed using Matrix EQTL [2]. The strength of
association between a given gene-SNP pair was measured
using an additive linear model. The variables sex, race and
age were included as covariates for adjustment. For a
given gene-SNP pair the full model was

Expressionj ¼ β0 þ βsnp⋅SNPj þ βsex⋅SEXj

þ βrace⋅RACEj þ βage⋅AGEj þ �j;

where

� Expressionj is log-normalized expression for the
given gene, for sample j.

� SNPj is the minor allele count (0,1,2) for the given
SNP, for sample j.

� SEXj is the sex of sample j (0 = female, 1 = male)
� RACEj is the race of sample j (0 = Caucasian,

1 = African American)
� AGEj is the age, in years, of sample j.

Significance testing for the hypothesis of no SNP-gene
association (βsnp = 0) was performed assuming independent
Gaussian errors ∈j
We tested the association of all gene-SNP pairs (18,557

genes × 3,926,229 SNPs), for blood and dura tissue. A dis-
tinction was made between local (cis) and distant (trans)
regulatory associations. Specifically, gene-SNP pairs in
which the given SNP was within 1 Mb upstream or
downstream of the RefSeq coding region for the given
gene were considered cis, while all other pairs were
considered trans. To improve power when adjusting for
multiple comparisons, the Benjamini-Hochberg false dis-
covery rate (FDR) [39] was computed separately for cis-
and trans-eQTLs.

Joint-tissue eQTL analysis
Joint eQTL analysis of blood and dura tissue was per-
formed using the eQTL Bayesian Model Averaging
(eqtlbma) method [5]. As with the separate analyses,
eQTLs were identified using an additive linear model
with sex, race and age included as covariates for adjust-
ment; a model for dependence between tissues was also
used for the association of each gene-SNP pair. For a
given gene-SNP pair and tissue s (s = blood or s = dura),
the full model was

Expressionj;s ¼ β0;s þ γsβsnp;s SNPj þ βsex⋅SEXj

þ βrace RACEj þ βage⋅AGEj þ �j;s:;

Where Expression, SNP, SEX, and AGE are defined as
above, and γs defines whether an eQTL is active in tissue s
(0 = inactive, 1 = active). A hierarchical normal random-
effects model was used to account for dependence be-
tween the tissue-specific eQTL effects βsnp,s. A Bayesian
framework allowed for computation of the posterior

http://www.1000genomes.org
http://www.1000genomes.org
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probability (the probability given the data) for each of the
following scenarios:

� eQTL not present in either tissue (γblood = γdura = 0)
� eQTL present in blood but not dura (γblood= 1; γdura= 0)
� eQTL present in dura but not blood (γblood= 0; γdura= 1)
� eQTL present in both tissues (γblood = 1; γdura = 1)

We employed a permutation testing procedure to
assess significance for the hypotheses that a given gene
is not associated with any SNP in either tissue. For
more details on the Bayesian probability framework and
permutation procedure used, see the Methods section of
the eqtlbma article [5]. For significance testing we use
FDR to control for multiple comparisons.
The multi-tissue model was estimated for local eQTLs

only, with a cis region of 1 Mb. The eqtlbma software
was used with default settings; this included estimating
the model for a pre-specified grid of hyperparameter
values and averaging posterior estimates. We used 10,000
permutations to assess gene-level significance. For highly
significant genes we considered the SNP that is most
highly associated with that gene, as determined by the
posterior probability that γblood = 1 or γdura = 1, for further
analysis and interpretation.
The GTEx data portal (http://www.gtexportal.org,

accessed 01/12/2014) includes eQTL p-values for associ-
ation between expression levels and minor allele fre-
quency for most genes and SNPs considered in this
study, for a variety of tissue types. Where available, we
collected GTEx p-values for blood tissue for those gene-
SNP pairs that were highly significant in our multi-tissue
analysis, to assess whether these associations are repli-
cated in a larger population that is not affected with
CMI. GTEx data were available for 87% of the gene-SNP
pairs considered.
SNPs that are within the target region of a probe may

affect RNA hybridization and lead to false-positive eQTL
findings [40,41]. With this in mind, gene-SNP pairs in
which the given SNP had high LD (R2 > 0.5) with a SNP in
the probe target region for the given gene were considered
potential artifacts.

Family-based association test
We also conducted a family-based association test (FBAT)
[42] on an independent cohort of 421 related individ-
uals to explore the relationship between certain eQTL
SNPs and incidence of CMI. This cohort includes
multi-generational pedigrees for 66 families, with 183
affected (diagnosed with CMI) and 192 unaffected
individuals. Linkage studies involving a sample from
this cohort, for the same families, have been described
previously [11,14]. Genotype data were generated and
imputed as described above.
We performed FBAT for linkage and association, using
default settings, for all 4,493,641 SNPs included in this
cohort. We performed separate FDR corrections for
multiple comparisons, one for all SNPs and the other for
those SNPs that were identified as significant by the
multi-tissue eQTL analysis.

Network and pathway analyses
To identify coordinated activity between genes, protein
network and pathway enrichment analyses were per-
formed on those genes that had highly significant
eQTLs in blood and dura, or dura only, in the multi-
tissue analysis. STRING [43] was used to construct
functional protein association networks. WebGestalt
[44] was used to perform enrichment analysis of Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathways.

Additional files

Additional file 1: Significant Trans eQTLs. This .xls spreadsheet
provides data for all significant trans eQTLs (FDR < 0.01), with the blood
and dura analyses as separate tabs. The given gene, the given SNP, the
p-value, and the t-statistic are listed for each eQTL.

Additional file 2: Joint-tissue analysis statistics. This .xls spreadsheet
provides joint-tissue results for all genes considered. Statistics given for each
gene include its p-value under permutation, mean log Bayes factor, most
highly associated SNP, and log Bayes factors for the given gene-SNP pair.

Additional file 3: Significant gene table. This .xls spreadsheet provides
additional information for those genes with significant eQTLs (FDR < 0.01)
in blood or dura mater based on the joint-tissue analysis. Statistics given for
each gene include the mean log Bayes factor; the most highly associated
SNP; the probability that the given gene-SNP pair is an eQTL in blood only,
dura only, or both tissues; the p-value of the given SNP under a family
based association test for association with CMI; whether the given SNP falls
in a pre-identified linkage region; the p-value of the given gene-SNP pair in
the gTEX database for blood; the number of probes that map to the gene;
the SNPs that fall within a probe region, and the maximum R2 value between
the most highly associated SNP and a SNP within a probe region. A second
tab in this spreadsheet gives probe-level information for those genes with
multiple probes. For each gene the mean correlation between probes for
blood and dura expression are provided; for each probe the standard
deviation for blood and dura expression, and the R2 value measuring
association with the eQTL SNP, are provided.
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