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Abstract
In the present paper, we establish an existence criterion to guarantee that the
second-order self-adjoint discrete Hamiltonian system
�[p(n)�u(n – 1)] – L(n)u(n) +∇W(n,u(n)) = 0 has a nontrivial homoclinic solution,
which does not need periodicity and coercivity conditions on L(n).
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1 Introduction
Consider the second-order self-adjoint discrete Hamiltonian system

�[
p(n)�u(n – )

]
– L(n)u(n) +∇W

(
n,u(n)

)
= , (.)

where n ∈ Z, u ∈ R
N , �u(n) = u(n + ) – u(n) is the forward difference, p,L : Z → R

N×N

andW : Z×R
N →R.

Discrete Hamiltonian systems can be applied in many areas, such as physics, chemistry,
and so on. For more discussions on discrete Hamiltonian systems, we refer the reader to
[, ].
As usual, we say that a solution u(n) of system (.) is homoclinic (to ) if u(n) →  as

n→ ±∞. In addition, if u(n) �≡  then u(n) is called a nontrivial homoclinic solution.
The existence andmultiplicity of homoclinic solutions of system (.) or its special forms

have been investigated by many authors. Papers [–] deal with the periodic case where
p, L andW are periodic in n or independent of n. In contrast, if the periodicity is lost, be-
cause of lack of compactness of the Sobolev embedding, up to our knowledge, all existence
results require a coercivity condition on L:

lim|n|→∞

[
inf

x∈RN ,|x|=
(
L(n)x,x

)]
=∞. (.)

For example, see [–]. In the abovementioned papers, except [], Lwas always required
to be positive definite.
In this paper, we derive an existence result which does not need periodicity and coerciv-

ity conditions on L(n). To state our results precisely, we make the following assumptions.
(P) p(n) is N ×N real symmetric positive definite matrix for all n ∈ Z.
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(L) L(n) isN ×N real symmetric nonnegative definite matrix for all n ∈ Z, and there
exist a positive integer N ∈ Z and β >  such that

min
x∈RN ,|x|=

(
L(n)x,x

) ≥ β , |n| ≥N,

where here and in the sequel, (·, ·) denotes the standard inner product in R
N and | · | is

the induced norm.
(W) W (n,x) is continuously differentiable in x for every n ∈ Z,W (n, ) = ,

W (n,x)≥  for all (n,x) ∈ Z×R
N .

(W) lim|x|→
∇W (n,x)

|x| =  uniformly for all n ∈ Z.
(W) lim|x|→∞ |W (n,x)|

|x| =∞ uniformly for all n ∈ Z.
(W) W̃ (n,x) := 

 (∇W (n,x),x) –W (n,x)≥ , ∀(n,x) ∈ Z×R
N , and there exist

ε ∈ (, ), c > , and R >  such that

(∇W (n,x),x
) ≤ β( – ε)


|x|, ∀(n,x) ∈ Z×R

N , |x| ≤ R

and

(∇W (n,x),x
) ≤ c|x|W̃ (n,x), ∀(n,x) ∈ Z×R

N , |x| ≥ R.

Now, we are ready to state the main result of this paper.

Theorem . Assume that p, L and W satisfy (P), (L), (W), (W), (W), and (W). If
there exist n ∈ Z and x ∈R

N such that

β ≥ c sup
s≥

[
s


((
p(n) + p(n + ) + L(n)

)
x,x

)
–W (n, sx)

]
, (.)

then system (.) possesses a nontrivial homoclinic solution.

In Theorem ., we replace (L) and (W) by the following assumptions:

(L′) L(n) is N ×N real symmetric nonnegative definite matrix for all n ∈ Z, and it sat-
isfies (.).

(W′) W̃ (n,x) := 
 (∇W (n,x),x) –W (n,x) ≥ , ∀(n,x) ∈ Z × R

N , and there exist c > 
and R >  such that

(∇W (n,x),x
) ≤ c|x|W̃ (n,x), ∀(n,x) ∈ Z×R

N , |x| ≥ R.

Then we have the following corollary immediately.

Corollary . Assume that p, L andW satisfy (P), (L′), (W), (W), (W) and (W′).Then
system (.) possesses a nontrivial homoclinic solution.

Remark . IfW (n,x) satisfies thewell-knownglobalAmbrosetti-Rabinowitz superquad-
ratic condition:
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(AR) there exists μ >  such that

 < μW (n,x)≤ (∇W (n,x),x
)
, ∀(n,x) ∈ Z×R

N \ {},

then there exists a constant C >  such that

W (n,x)≥ C|x|μ, ∀(n,x) ∈ Z×R
N , |x| ≥ ;

moreover W̃ (n,x) >  for all (n,x) ∈ Z× (RN \ {}), and
(∇W (n,x),x

) ≤ μ
μ – 

|x|W̃ (n,x), ∀(n,x) ∈ Z×R
N , |x| ≥ .

In addition, by virtue of (W), there exists β >  such that

(∇W (n,x),x
) ≤ β


|x|, ∀(n,x) ∈ Z×R

N , |x| ≤ .

These show that (W) and (W) hold with R = , c = μ/(μ – ) and β > β. Let p(n) =
IN and L(n) = λn/( + n)IN and choose n =  and x = (, , . . . , ) ∈ R

N . In view of
Theorem ., if

λ >max

{
μ

μ – 
sup
s≥

[
s –W (, sx)

]
,β

}
,

then system (.) possesses a nontrivial homoclinic solution.

Example . Let p(n) = IN , L(n) = [ + λn/( + n)]IN and

W (n,x) = |x| ln( + |x|). (.)

Then

(∇W (n,x),x
)
= |x| ln( + |x|) + |x|

 + |x| .

It is easy to see that W̃ (n,x) ≥  for all (n,x) ∈ Z×R
N , and

(∇W (n,x),x
) ≤ ( ln + )|x|, ∀(n,x) ∈ Z×R

N , |x| ≤ ,(∇W (n,x),x
) ≤ |x|W̃ (n,x), ∀(n,x) ∈ Z×R

N , |x| ≥ .

These show that (W) and (W) hold with R = , c =  and β > ( ln + ). We choose
n =  and x = (, , . . . , ) ∈R

N . Then

sup
s≥

[
s


((
p(n) + p(n + ) + L(n)

)
x,x

)
–W (n, sx)

]

= sup
s≥

[
s


– s ln

(
 + s

)]
<  – ln.

In view of Theorem ., if λ ≥ ( – ln), then system (.) possesses a nontrivial homo-
clinic solution.
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2 Preliminaries
Throughout this section, we always assume that p and L satisfy (P) and (L). Let

S =
{{
u(n)

}
n∈Z : u(n) ∈R

N ,n ∈ Z
}
,

E =
{
u ∈ S :

∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]
< +∞

}
,

and for u, v ∈ E, let

〈u, v〉 =
∑
n∈Z

[(
p(n + )�u(n),�v(n)

)
+

(
L(n)u(n), v(n)

)]
.

Then E is a Hilbert space with the above inner product, and the corresponding norm is

‖u‖ =
{∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]}/

, u ∈ E.

As usual, for  ≤ s < +∞, set

ls
(
Z,RN )

=
{
u ∈ S :

∑
n∈Z

∣∣u(n)∣∣s < +∞
}

and

l∞
(
Z,RN )

=
{
u ∈ S : sup

n∈Z

∣∣u(n)∣∣ < +∞
}
,

and their norms are defined by

‖u‖s =
(∑

n∈Z

∣∣u(n)∣∣s)/s

, ∀u ∈ ls
(
Z,RN )

;

‖u‖∞ = sup
n∈Z

∣∣u(n)∣∣, ∀u ∈ l∞
(
Z,RN )

,

respectively.

Lemma . Suppose that (L) is satisfied. Then

‖u‖∞ ≤ √
β

‖u‖ +
∑

|s|≤N–

∣∣�u(s)
∣∣, u ∈ E, (.)

and

‖u‖∞ ≤max

{√

β
,
√
N

α

}
‖u‖, u ∈ E, (.)

where α =min|n|≤N,|x|=(p(n)x,x).

http://www.advancesindifferenceequations.com/content/2014/1/73
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Proof Since u ∈ E, it follows that lim|n|→∞ |u(n)| = . Hence, there exists n∗ ∈ Z such that
‖u‖∞ = |u(n∗)|. There are two possible cases.
Case (i). |n∗| ≥N. According to (L), one has

‖u‖∞ =
∣∣u(n∗)

∣∣ ≤ 
β

∑
|s|≥N

(
L(s)u(s),u(s)

) ≤ 
β

‖u‖.

Case (ii). |n∗| <N. Without loss of generality, we can assume that n∗ ≥ , then

‖u‖∞ ≤ ∣∣u(N)
∣∣ + N–∑

s=n∗

∣∣�u(s)
∣∣

≤
[

β

∑
|s|≥N

(
L(s)u(s),u(s)

)]/

+
√
N

α

(N–∑
s=n∗

α
∣∣�u(s)

∣∣)/

≤ √


[

β

∑
|s|≥N

(
L(s)u(s),u(s)

)
+
N

α

N–∑
s=n∗

(
p(s + )�u(s),�u(s)

)]/

≤ max

{√

β
,
√
N

α

}
‖u‖. (.)

Cases (i) and (ii) imply that (.) and (.) hold. �

Now we define a functional � on E by

�(u) =



∑
n∈Z

[(
p(n + )�u(n),�u(n)

)
+

(
L(n)u(n),u(n)

)]
–

∑
n∈Z

W
(
n,u(n)

)
. (.)

For any u ∈ E, there exists an n ∈ N such that |u(n)| ≤  for |n| ≥ n. Hence, under as-
sumptions (P), (L), (W), and (W), the functional � is of class C(E,R). Moreover,

�(u) =


‖u‖ –

∑
n∈Z

W (n,u), ∀u ∈ E (.)

and

〈
�′(u), v

〉
= 〈u, v〉 –

∑
n∈Z

(∇W (n,u), v
)
, ∀u, v ∈ E. (.)

Furthermore, the critical points of � in E are solutions of system (.) with u(±∞) = ,
see [, ].
Let e = {e(n)}n∈Z ∈ E with e(n) = x and e(n) =  ∈ R

N for n �= n.

Lemma . Suppose that (L), (W) and (W) are satisfied. Then

sup
{
�(se) : s ≥ 

} ≤ sup
s≥

[
s


((
p(n) + p(n + ) + L(n)

)
x,x

)
–W (n, sx)

]
. (.)

http://www.advancesindifferenceequations.com/content/2014/1/73
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Proof From (.) and the definition of e, we get

�(se) =
s


∑
n∈Z

[(
p(n + )�e(n),�e(n)

)
+

(
L(n)e(n), e(n)

)]
–

∑
n∈Z

W
(
n, se(n)

)
=
s


[(
p(n + )�e(n),�e(n)

)
+

(
p(n)�e(n – ),�e(n – )

)
+

(
L(n)e(n), e(n)

)]
–W

(
n, se(n)

)
=
s


((
p(n) + p(n + ) + L(n)

)
x,x

)
–W (n, sx). (.)

Now the conclusion of Lemma . follows by (.). �

Applying themountain-pass lemmawithout the (PS) condition, by standard arguments,
we can prove the following lemma.

Lemma . Let W (n,x) ≥ , ∀(n,x) ∈ Z × R
N . Suppose that (P), (L), (W), (W) and

(W) are satisfied.Then there exist a constant c ∈ (, sups≥ �(se)] and a sequence {uk} ⊂ E
satisfying

�(uk) → c,
∥∥�′(uk)

∥∥(
 + ‖uk‖

) → . (.)

Lemma . Suppose that (P), (L), (W), (W), (W), and (W) are satisfied. Then any
sequence {uk} ⊂ E satisfying

�(uk) → c > ,
〈
�′(uk),uk

〉 →  (.)

is bounded in E.

Proof To prove the boundedness of {uk}, arguing by contradiction, suppose that ‖uk‖ →
∞. Let vk = uk/‖uk‖. Then ‖vk‖ = . By virtue of (.), (.), and (.), we have

�(uk) –


〈
�′(uk),uk

〉
=

∑
n∈Z

W̃ (n,uk) = c + o(). (.)

If δ := lim supk→∞ ‖vk‖∞ = , then it follows from (L), (W) and (.) that

∑
|uk |<R

∣∣(∇W (n,uk),uk
)∣∣ ≤ β


∑

|uk |<R
|uk| ≤ β


∑

|s|≥N

∣∣uk(s)∣∣ + β


∑

|s|<N

∣∣uk(s)∣∣
≤ 


‖uk‖ +Nβ‖uk‖‖vk‖∞ ≤

[


+ o()

]
‖uk‖ (.)

and

∑
|uk |≥R

|(∇W (n,uk),uk)|
‖uk‖ ≤ c

∑
|uk |≥R

|vk|W̃ (n,uk) ≤ c‖vk‖∞
∑

|uk |≥R

W̃ (n,uk)

≤ c(c + )‖vk‖∞ → , k → ∞. (.)

http://www.advancesindifferenceequations.com/content/2014/1/73
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Combining (.) with (.) and using (.) and (.), we have

 + o() ≤ ‖uk‖ – 〈�′(uk),uk〉
‖uk‖ ≤

∑
n∈Z

|(∇W (n,uk),uk)|
‖uk‖

=
∑

|uk |<R

|(∇W (n,uk),uk)|
‖uk‖ +

∑
|uk |≥R

|(∇W (n,uk),uk)|
‖uk‖ ≤ 


+ o(). (.)

This contradiction shows that δ > .
Going if necessary to a subsequence, we may assume the existence of nk ∈ Z such that

∣∣vk(nk)∣∣ = ‖vk‖∞ >
δ


.

Let wk(n) = vk(n + nk), then

∣∣wk()
∣∣ > δ


, ∀k ∈ N. (.)

Now we define ũk(n) = uk(n + nk). Then ũk(n)/‖uk‖ = wk(n) and ‖wk‖ = ‖vk‖. Passing
to a subsequence, we have wk ⇀ w in l(Z,RN ), then wk(n) → w(n) for all n ∈ Z. Clearly,
(.) implies that w() �= .
It is obvious that w(n) �=  implies limk→∞ |ũk(n)| = ∞. Hence, it follows from (.),

(.), and (W) that

 = lim
k→∞

c + o()
‖uk‖ = lim

k→∞
�(uk)
‖uk‖

= lim
k→∞

[


–

∑
n∈Z

W (n,uk)
|uk| |vk|

]

= lim
k→∞

[


–

∑
n∈Z

W (n + kn, ũk)
|ũk| |wk|

]

≤ 

– lim inf

k→∞
∑
n∈Z

W (n + kn, ũk)
|ũk| |wk|

= –∞,

which is a contradiction. Thus {uk} is bounded in E. �

3 Proof of theorem
Proof of Theorem . Applying Lemmas . and ., we deduce that there exists a bounded
sequence {uk} ⊂ E satisfying (.). By Lemma . and (.), one has

c≤ β

c
. (.)

Going if necessary to a subsequence, we can assume that uk ⇀ ū in E and �′(uk) → .
Next, we prove that ū �= .

http://www.advancesindifferenceequations.com/content/2014/1/73
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Arguing by contradiction, suppose that ū = , i.e. uk ⇀  in E, and so uk(n) →  for
every n ∈ Z. Hence,

‖uk‖ =
∑

|n|≥N

∣∣uk(n)∣∣ + ∑
|n|<N

∣∣uk(n)∣∣ ≤ 
β

‖uk‖ + o(). (.)

According to (W) and (.), one gets

∑
|uk |<R

(∇W (n,uk),uk
) ≤ β( – ε)


∑

|uk |<R
|uk| ≤  – ε


‖uk‖ + o(). (.)

By virtue of (.), (.), and (.), we have

�(uk) –


〈
�′(uk),uk

〉
=

∑
n∈Z

W̃ (n,uk) = c + o(). (.)

Using (W), (.), (.), (.), and (.), we obtain

∑
|uk |≥R

(∇W (n,uk),uk
) ≤ c

∑
|uk |≥R

|uk|W̃ (n,uk)

≤ c‖uk‖∞
∑

|uk |≥R

W̃ (n,uk)

≤ cc‖uk‖∞ + o()

≤ cc
(

√
β

‖uk‖ +
∑

|s|≤N–

∣∣�uk(s)
∣∣)

+ o()

=
cc
β

‖uk‖ + o()

≤ 

‖uk‖ + o(), (.)

which, together with (.), (.), and (.), yields

o() =
〈
�′(uk),uk

〉
= ‖uk‖ –

∑
n∈Z

(∇W (n,uk),uk
)

≥ ε


‖uk‖ + o(), (.)

resulting in the fact that ‖uk‖ → . Consequently, it follows from (W), (.), and (.)
that

 < c = lim
k→∞

�(uk) = �() = .

This contradiction shows ū �= . By standard arguments, we easily prove that ū is a non-
trivial solution of (.). �
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