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Abstract
In this paper, we establish the existence of solutions for a boundary value problem
with the nonlinear second-order q-difference equation

{
D2
qu(t) = f (t,u(t),Dqu(t)), t ∈ I,

Dqu(0) = 0, Dqu(1) = αu(1).

The existence and uniqueness of solutions for the problem are proved by means of
the Leray-Schauder nonlinear alternative and some standard fixed point theorems.
Finally, we give two examples to demonstrate the use of the main results. The
nonlinear team f contains Dqu(t) in the equation.

Keywords: q-difference equations; Leray-Schauder nonlinear alternative; boundary
value problem; fixed point theorem

1 Introduction
In this paper, we study the existence of solutions for a boundary value problem with non-
linear second-order q-difference equations

{
D

qu(t) = f (t,u(t),Dqu(t)), t ∈ I,
Dqu() = , Dqu() = αu(),

(.)

where f ∈ C(I × R,R), I = {qn : n ∈N} ∪ {, }, q ∈ (, ), and α �=  is a fixed real number.
The q-difference equations initiated at the beginning of the twentieth century [–] is

a very interesting field in difference equations. In the last few decades, it has evolved into
a multidisciplinary subject and plays an important role in several fields of physics such as
cosmic strings and black holes [], conformal quantum mechanics [], nuclear and high
energy physics []. However, the theory of boundary value problems (BVPs) for nonlinear
q-difference equations is still in the initial stages andmany aspects of this theory need to be
explored. To the best of our knowledge, for the BVPs of nonlinear q-difference equations,
a few works were done; see [–] and the references therein. In particular, the study of
BVPs for nonlinear q-difference equationwith first-order q-difference is yet to be initiated.
The main aim of this paper is to develop some existence and uniqueness results for

BVP (.). Our results are based on a variety of fixed point theorems such as the Banach
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contraction mapping principle, the Leray-Schauder nonlinear alternative and the Leray-
Schauder continuous theorem. Some examples and special cases are also discussed.

2 Preliminary results
In this section, firstly, let us recall some basic concepts of q-calculus [, ].

Definition . For  < q < , we define the q-derivative of a real-value function f as

Dqf (t) =
f (t) – f (qt)
( – q)t

, Dqf () = lim
t→

Dqf (t).

Note that limq→– Dqf (t) = f ′(t).

Definition . The higher-order q-derivatives are defined inductively as

D
qf (t) = f (t), Dn

qf (t) =DqDn–
q f (t), n ∈N .

For example, Dq(tk) = [k]qtk–, where k is a positive integer and the bracket [k]q = (qk –
)/(q – ). In particular, Dq(t) = ( + q)t.

Definition . The q-integral of a function f defined in the interval [a,b] is given by

∫ x

a
f (t)dqt :=

∞∑
n=

x( – q)qnf
(
xqn

)
– af

(
qna

)
, x ∈ [a,b],

and for a = , we denote

Iqf (x) =
∫ x


f (t)dqt =

∞∑
n=

x( – q)qnf
(
xqn

)
.

Then

∫ b

a
f (t)dqt =

∫ b


f (t)dqt –

∫ a


f (t)dqt.

Similarly, we have

Iq f (t) = f (t), Inq f (t) = IqIn–q f (t), n ∈N .

Observe that

DqIqf (x) = f (x),

and if f is continuous at x = , then IqDqf (x) = f (x) – f ().
In q-calculus, the product rule and integration by parts formula are

Dq(gh)(t) =Dqg(t)h(t) + g(qt)Dqh(t), (.)∫ x


f (t)Dqg(t)dqt =

[
f (t)g(t)

]x
 –

∫ x


Dqf (t)g(qt)dqt. (.)
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Remark . In the limit q → –, the above results correspond to their counterparts in
standard calculus.

Definition . f : I × R → R is called an S-Carathéodory function if and only if
(i) for each (u, v) ∈ R, t �→ f (t,u, v) is measurable on I ;
(ii) for a.e. t ∈ I , (u, v) �→ f (t,u, v) is continuous on R;
(iii) for each r > , there exists ϕr(t) ∈ L(I,R+) with tϕr(t) ∈ L(I,R+) on I such that

max{|u|, |v|} ≤ r implies |f (t,u, v)| ≤ ϕr(t), for a.e. I , where
L(I,R+) = {u ∈ Cq :

∫ 
 u(t)dqt exists}, and normed by ‖u‖L =

∫ 
 |u(t)|dqt for all

u ∈ L(I,R+).

Theorem. (Nonlinear alternative for single-valuedmaps []) Let E be a Banach space,
let C be a closed and convex subset of E, and let U be an open subset of C and  ∈U . Suppose
that F :U → C is a continuous, compact (that is, F(U) is a relatively compact subset of C)
map. Then either

(i) F has a fixed point in U , or
(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (, ) with u = λF(u).

Lemma . Let y ∈ C[, ], then the BVP

{
D

qu(t) = y(t), t ∈ I,
Dqu() = , Dqu() = αu(),

(.)

has a unique solution

u(t) =
∫ t


(t – qs)y(s)dqs +

∫ 



(

α
–  + qs

)
y(s)dqs

=
∫ 


G(t, s;q)y(s)dqs, (.)

where

G(t, s;q) =

α

{
 – α + αt, s ≤ t,
 – α + αqs, t ≤ s.

(.)

Proof Integrating the q-difference equation from  to t, we get

Dqu(t) =
∫ t


y(s)dqs + a. (.)

Integrating (.) from  to t and changing the order of integration, we have

u(t) =
∫ t


(t – qs)y(s)dqs + at + a, (.)

where a, a are arbitrary constants. Using the boundary conditions Dqu() = ,Dqu() =
αu() in (.), we find that a = , and

a =
∫ 



(

α
–  + qs

)
y(s)dqs.

http://www.advancesindifferenceequations.com/content/2013/1/124
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Substituting the values of a and a in (.), we obtain

u(t) =
∫ t


(t – qs)y(s)dqs +

∫ 



(

α
–  + qs

)
y(s)dqs.

This completes the proof. �

Remark . For q → , equation (.) takes the form

u(t) =
∫ t


(t – qs)y(s)dqs + at + a,

which is the solution of a classical second-order ordinary differential equation u′′(t) = y(t)
and the associated form of Green’s function for the classical case is

G(t, s) =

α

{
 – α + αt, s ≤ t,
 – α + αs, t ≤ s.

We consider the Banach space Cq = C(I,R) equipped with the standard norm ‖u‖ =
max{‖u‖∞,‖Dqu‖∞}, and ‖ · ‖∞ = sup{‖ · ‖, t ∈ I}, u ∈ Cq.
Define an integral operator T : Cp → Cp by

Tu(t) =
∫ 


G(t, s;q)f

(
s,u(s),Dqu(s)

)
dqs

=
∫ t


(t – qs)f

(
s,u(s),Dqu(s)

)
dqs

+
∫ 



(

α
–  + qs

)
f
(
s,u(s),Dqu(s)

)
dqs, t ∈ I,u ∈ Cq. (.)

Obviously, T is well defined and u ∈ Cq is a solution of BVP (.) if and only if u is a fixed
point of T .

3 Existence and uniqueness results
In this section, we apply various fixed point theorems to BVP (.). First, we give the
uniqueness result based on Banach’s contraction principle.

Theorem . Let f : I × R → R be a continuous function, and there exists L(t),L(t) ∈
C([, ], [, +∞)) such that

∣∣f (t,u, v) – f (t,u, v)
∣∣ ≤ L(t)|u – u| + L(t)|v – v|, t ∈ I, (u, v), (u, v) ∈ R.

In addition, suppose either

(H) � < |α| for  < |α| < , or
(H) � <  for |α| ≥ 

holds, where � =maxt∈[,]{L(t) + L(t)}. Then BVP (.) has a unique solution.

http://www.advancesindifferenceequations.com/content/2013/1/124
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Proof Case : |α| < . Let us set supt∈I |f (t, , )| =M and choose

r ≥ M

|α|( – δ)
, (.)

where δ is such that �
|α| ≤ δ ≤ . Nowwe show thatTBr ⊂ Br , where Br = {u ∈ Cq : ‖u‖ ≤ r}.

For each u ∈ Br , we have

∣∣Tu(t)∣∣ ≤ sup
t∈I

∣∣∣∣
∫ t


(t – qs)f

(
s,u(s),Dqu(s)

)
dqs +

∫ 



(

α
–  + qs

)
f
(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
≤ sup

t∈I

∣∣∣∣
∫ t


(t – qs)

(∣∣f (s,u(s),Dqu(s)
)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)dqs
+

∫ 



(

α
–  + qs

)(∣∣f (s,u(s),Dqu(s)
)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)dqs
∣∣∣∣

≤ sup
t∈I

∣∣∣∣
∫ t


(t – qs)

(
L(s)

∣∣u(s)∣∣ + L(s)
∣∣Dqu(s)

∣∣ + ∣∣f (s, , )∣∣)dqs
+

∫ 



(

α
–  + qs

)(
L(s)

∣∣u(s)∣∣ + L(s)
∣∣Dqu(s)

∣∣ + ∣∣f (s, , )∣∣)dqs
∣∣∣∣

≤ (
�‖u‖ +M

)
sup
t∈I

∣∣∣∣
∫ t


(t – qs)dqs +

∫ 



(

α
–  + qs

)
dqs

∣∣∣∣
≤ (

�‖u‖ +M
)
sup
t∈I

{∣∣∣∣ t

 + q
+


α
–  +

q
 + q

∣∣∣∣
}

≤ (
�‖u‖ +M

) 
|α| ≤ (�r +M)


|α| ≤

(
�

|α| + ( – δ)
)
r ≤ r,

and

∣∣DqTu(t)
∣∣ ≤ ∣∣DqTu(t)

∣∣ ≤ sup
t∈I

∣∣∣∣
∫ t


f
(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
≤ sup

t∈I

∫ t



(∣∣f (s,u(s),Dqu(s)
)
– f (s, , )

∣∣ + ∣∣f (s, , )∣∣)dqs
≤ sup

t∈I

∫ t



(
L(s)

∣∣u(s)∣∣ + L(s)
∣∣Dqu(s)

∣∣ + ∣∣f (s, , )∣∣)dqs
≤ (

�‖u‖ +M
) ≤ (

�r + |α|( – δ)r
) ≤

(
�

|α| + ( – δ)
)
r ≤ r.

Hence, we obtain that ‖Tu‖ ≤ r, so TBr ⊂ Br .
Now, for u, v ∈ Cq and for each t ∈ I , we have

∣∣Tu(t) – Tv(t)
∣∣ ≤ sup

t∈I

∣∣Tu(t) – Tv(t)
∣∣

≤ sup
t∈I

∣∣∣∣
∫ t


(t – qs)

∣∣f (s,u(s),Dqu(s)
)
– f

(
s, v(s),Dqv(s)

)∣∣dqs
+

∫ 



(

α
–  + qs

)∣∣f (s,u(s),Dqu(s)
)
– f

(
s, v(s),Dqv(s)

)∣∣dqs
∣∣∣∣

≤ sup
t∈I

∣∣∣∣
∫ t


(t – qs)

(
L(s)

∣∣u(s) – v(s)
∣∣ + L(s)

∣∣Dqu(s) –Dqv(s)
∣∣)dqs

http://www.advancesindifferenceequations.com/content/2013/1/124
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+
∫ 



(

α
–  + qs

)(
L(s)

∣∣u(s) – v(s)
∣∣ + L(s)

∣∣Dqu(s) –Dqv(s)
∣∣)dqs

∣∣∣∣
≤ � sup

t∈I

{∣∣∣∣ t

 + q
+


α
–  +

q
 + q

∣∣∣∣
}
‖u – v‖

≤ �

|α| ‖u – v‖ < ‖u – v‖,

and

∣∣DqTu(t) –DqTv(t)
∣∣ ≤ sup

t∈I

∣∣DqTu(t) –DqTv(t)
∣∣

≤ sup
t∈I

∣∣∣∣
∫ t



∣∣f (s,u(s),Dqu(s)
)
– f

(
s, v(s),Dqv(s)

)∣∣dqs
∣∣∣∣

≤ sup
t∈I

∣∣∣∣
∫ t



(
L(s)

∣∣u(s) – v(s)
∣∣ + L(s)

∣∣Dqu(s) –Dqv(s)
∣∣)dqs

∣∣∣∣
≤ �‖u – v‖ ≤ �

|α| ‖u – v‖ < ‖u – v‖.

Therefore, we obtain that ‖Tu–Tv‖ < ‖u– v‖, so T is a contraction. Thus, the conclusion
of the theorem follows by Banach’s contraction mapping principle.
Case : |α| ≥ . It is similar to the proof of case . This completes the proof of Theo-

rem .. �

Corollary . Assume that f : I × R → R is a continuous function and there exist two
positive constants L, L such that

∣∣f (t,u, v) – f (t,u, v)
∣∣ ≤ L|u – u| + L|v – v|, t ∈ I, (u, v), (u, v) ∈ R.

In addition, suppose either

(H) L + L < |α| for  < |α| < , or
(H) L + L <  for |α| ≥ 

holds. Then BVP (.) has a unique solution.

Corollary . Assume that f : I × R → R is a continuous function and there exist two
functions L(t),L(t) ∈ L(I,R+) such that

∣∣f (t,u, v) – f (t,u, v)
∣∣ ≤ L|u – u| + L|v – v|, t ∈ I, (u, v), (u, v) ∈ R.

In addition, suppose either

(H) A + Bq|α| < |α| for  < |α| < , or
(H) A <  for |α| ≥ 

holds, where

A =
∫ 



[
L(s) + L(s)

]
dqs, B =

∫ 


s
[
L(s) + L(s)

]
dqs.

Then BVP (.) has a unique solution.

http://www.advancesindifferenceequations.com/content/2013/1/124
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Proof It is similar to the proof of Theorem .. �

The next existence result is based on the Leray-Schauder nonlinear alternative theorem.

Lemma . Let f : I × R → R be an S-Carathéodory function. Then T : Cq → Cq is com-
pletely continuous.

Proof The proof consists of several steps.
(i) T maps bounded sets into bounded sets in Cq.
Let Br = {u ∈ Cq : ‖u‖ ≤ r} be a bounded set in Cq and u ∈ Br . Then we have

∣∣Tu(t)∣∣ ≤
∫ t


|t – qs|∣∣f (s,u(s),Dqu(s)

)∣∣dqs +
∫ 



∣∣∣∣ α –  + qs
∣∣∣∣∣∣f (s,u(s),Dqu(s)

)∣∣dqs
≤

(
 +


|α|

)∫ 


ϕr(s)dqs =

(
 +


|α|

)
‖ϕr‖L ,

and

∣∣DqTu(t)
∣∣ ≤

∫ t



∣∣f (s,u(s),Dqu(s)
)∣∣dqs ≤

∫ 


ϕr(s)dqs = ‖ϕr‖L .

Thus ‖Tu‖ ≤ max{‖Tu‖∞,‖DqTu‖∞} ≤ ( + 
|α| )‖ϕr‖L .

(ii) T maps bounded sets into equicontinuous sets of Cq.
Let r, r ∈ I , r < r, and let Br be a bounded set of Cq as before. Then, for u ∈ Br , we

have

∣∣Tu(r) – Tu(r)
∣∣ = ∣∣∣∣

∫ r


(r – qs)f

(
s,u(s),Dqu(s)

)
dqs

–
∫ r


(r – qs)f

(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
=

∣∣∣∣
∫ r


(r – r)f

(
s,u(s),Dqu(s)

)
dqs

+
∫ r

r
(r – qs)f

(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
≤

∫ r


|r – r|ϕr(s)dqs +

∫ r

r
|r – qs|ϕr(s)dqs → 

(r – r → ),

and

∣∣dqTu(r) –DqTu(r)
∣∣ = ∣∣∣∣

∫ r


f
(
s,u(s),Dqu(s)

)
dqs –

∫ r


f
(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
=

∣∣∣∣
∫ r

r
f
(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣ ≤
∫ r

r
ϕr(s)dqs→ 

(r – r → ).

http://www.advancesindifferenceequations.com/content/2013/1/124
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As a consequence of the Arzelá-Ascoli theorem, we can conclude that T : Cq → Cq is
completely continuous. This proof is completed. �

Theorem. Let f : I×R → R be an S-Carathéodory function. Suppose further that there
exists a real number M >  such that

|α|M
( + |α|)‖ϕr‖L

> 

holds, where

‖ϕr‖L =
∫ 


ϕr(s)dqs �= .

Then BVP (.) has at least one solution.

Proof In view of Lemma ., we obtain that T : Cq → Cq is completely continuous. Let
λ ∈ (, ) and u = λTu. Then, for t ∈ I , we have

∣∣u(t)∣∣ = ∣∣λTu(t)∣∣
≤

∫ t


|t – qs|∣∣f (s,u(s),Dqu(s)

)∣∣dqs
+

∫ 



∣∣∣∣ α –  + qs
∣∣∣∣∣∣f (s,u(s),Dqu(s)

)∣∣dqs
≤

(
 +


|α|

)∫ 


ϕr(s)dqs =

(
 +


|α|

)
‖ϕr‖L ,

and

∣∣Dqu(t)
∣∣ = ∣∣DqλTu(t)

∣∣ ≤
∫ t



∣∣f (s,u(s),Dqu(s)
)∣∣dqs≤

∫ 


ϕr(s)dqs = ‖ϕr‖L .

Hence, consequently,

|α|‖u‖
( + |α|)‖ϕr‖L

≤ .

Therefore, there existsM >  such that ‖u‖ �=M. Let us setU = {u ∈ Cq : ‖u‖ <M}. Note
that the operator T : U → Cq is completely continuous (which is known to be compact
restricted to bounded sets). From the choice of U , there is no U ∈ ∂U such that u = λTu
for some λ ∈ (, ). Consequently, by Theorem ., we deduce that T has a fixed point
u ∈ U which is a solution of problem (.). This completes the proof. �

The next existence result is based on the Leray-Schauder continuation theorem.

Theorem . Let f : I × R → R be an S-Carathéodory function. Suppose further that
there exist functions p(t),q(t), r(t) ∈ L(I,R+) with tp(t) ∈ L(I,R+) such that

∣∣f (t,u, v)∣∣ ≤ p(t)|u| + q(t)|v| + r(t), for a.e. t ∈ I and (u, v) ∈ R.

http://www.advancesindifferenceequations.com/content/2013/1/124
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ThenBVP (.) has at least one solution provided (N +)P+P +Q < ,where N =max{ 
α
, –


α
}.

Proof We consider the space

P =
{
u ∈ Cq :Dqu() = ,Dqu() = αu()

}
and define the operator T : P × [, ] → P by

T(u,λ) = λTu = λ

∫ 


G(t, s;q)f

(
s,u(s),Dqu(s)

)
dqs, t ∈ I. (.)

Obviously, we can see that P ⊂ Cq. In view of Lemma ., it is easy to know that for each
λ ∈ [, ], T(u,λ) is completely continuous in P. It is clear that u ∈ P is a solution of BVP
(.) if and only if u is a fixed point of T(·, ). Clearly, T(u, ) =  for each u ∈ P. If for each
λ ∈ [, ] the fixed points of T(·, ) in P belong to a closed ball of P independent of λ, then
the Leray-Schauder continuation theorem completes the proof.
Next we show that the fixed point of T(·, ) has a priori boundM, which is independent

of λ. Assume that u = T(u,λ), and set

P =
∫ 


p(s)dqs, P =

∫ 


sp(s)dqs,

Q =
∫ 


q(s)dqs, R =

∫ 


r(s)dqs.

By (.), it is clear that |G(t, s;q)| ≤ N for each α �= . For any u ∈ P, we have

∣∣u(t)∣∣ = ∣∣∣∣u() –
∫ 

t
Dqu(s)dqs

∣∣∣∣ ≤
∣∣∣∣ αDqu()

∣∣∣∣ +
∣∣∣∣
∫ 

t
Dqu(s)dqs

∣∣∣∣
≤ (N +  – t)‖Dqu‖∞ ≤ (N +  + t)‖Dqu‖∞, t ∈ I,

and so it holds that

‖Dqu‖∞ ≤ ∥∥λf
(
s,u(s),Dqu(s)

)∥∥
L ≤ ∥∥f (s,u(s),Dqu(s)

)∥∥
L

≤ ∥∥p(t)∣∣u(s)∣∣ + q(t)
∣∣Dqu(s)

∣∣ + r(s)
∥∥
L

≤ (
(N + )P + P +Q

)‖Dqu‖∞ + R;

therefore,

‖Dqu‖∞ ≤ R
 – ((N + )P + P +Q)

:=M.

At the same time, we have

∣∣u(t)∣∣ ≤ λ

∣∣∣∣
∫ 


G(t, s,q)f

(
s,u(s),Dqu(s)

)
dqs

∣∣∣∣
≤ N

∫ 



∣∣f (s,u(s),Dqu(s)
)∣∣dqs

http://www.advancesindifferenceequations.com/content/2013/1/124
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≤ N
∫ 



(
p(t)

∣∣u(s)∣∣ + q(t)
∣∣Dqu(s)

∣∣ + r(s)
)
dqs

≤ NP‖u‖∞ +NQ‖Dqu‖∞ +NR, t ∈ I,

and so

‖u‖∞ ≤ N(QM + R)
 –NP

:=M.

SetM =max{M,M}, which is independent of λ. So, BVP (.) has at least one solution.
This completes the proof. �

4 Example
Example . Consider the following BVP:

{
D

qu(t) = et + 
 sin(u(t)) +


 tan

–(Dqu(t)), t ∈ I,
Dqu() = , Dqu() = 

u().
(.)

Here, f (t,u(t),Dqu(t)) = et + 
 sin(u(t)) +


 tan

–(Dqu(t)), q = 
 , α = 

 . Clearly, |f (t,u,
v) – f (t,u, v)| ≤ 

 |u – u| + 
 |v – v|. Then L = 

 , L =

 and L + L = 

 < α. By
Corollary ., we obtain that BVP (.) has a unique solution.

Example . Consider the following BVP:

{
D

qu(t) =
t
 sin(u(t)) +


(+

√
)

√
t (Dqu(t))β + 

 t, t ∈ I,
Dqu() = , Dqu() = 

u().
(.)

Here, q = 
 ,  < β < . It is obvious that |f (t,u, v)| ≤ t

 |u|+ 
(+

√
)

√
t |v|+ 

 t, where p(t) =
t
 ,

q(t) = 
(+

√
)

√
t , r(t) =


 t. Then P = 

 , P = 
 , Q = 

 , R = , so (N + )P + P +Q = 
 < .

By Theorem ., we obtain that BVP (.) has at least one solution.
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