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Abstract
In this paper, we establish common fixed point theorems for two weakly compatible
self-mappings satisfying the contractive condition or the quasi-contractive condition
in the case of a quasi-contractive constant λ ∈ (0, 1/s) in cone b-metric spaces
without the normal cone, where the coefficient s satisfies s≥ 1. The main results
generalize, extend and unify several well-known comparable results in the literature.
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1 Introduction and preliminaries
Huang and Zhang [] introduced the concept of a cone metric space, proved the prop-
erties of sequences on cone metric spaces and obtained various fixed point theorems for
contractive mappings. The existence of a common fixed point on cone metric spaces was
considered recently in [–]. Also, Ilic and Rakocevic [] introduced a quasi-contraction
on a cone metric space when the underlying cone was normal. Later on, Kadelburg et al.
obtained a few similar results without the normality of the underlying cone, but only in the
case of a quasi-contractive constant λ ∈ (, /). However, Gajic [] proved that result is
true for λ ∈ (, ) on a cone metric space by a new way, which answered the open question
whether the result is true for λ ∈ (, ). Recently, Hussain and Shah [] introduced cone
b-metric spaces, as a generalization of b-metric spaces and conemetric spaces, and estab-
lished some important topological properties in such spaces. FollowingHussain and Shah,
Huang and Xu [] obtained some interesting fixed point results for contractive mappings
in cone b-metric spaces. Although IonMarian [] proved some common fixed point the-
orems in complete b-cone metric spaces, the main ways of the proof depend strongly on
the nonlinear scalarization function ξe : Y → R. In the present paper, we will show com-
monfixed point theorems for twoweakly compatible self-mappings satisfying the contrac-
tive condition or quasi-contractive condition in the case of a quasi-contractive constant
λ ∈ (, /s) in cone b-metric spaces without the assumption of normality, where the coef-
ficient s satisfies s ≥ . As consequences, our results generalize, extend and unify several
well-known comparable results (see, for example, [–, –]).
Consistent with Huang and Zhang [], the following definitions and results will be

needed in the sequel.
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Let E be a real Banach space and let P be a subset of E. By θ we denote the zero element
of E and by intP the interior of P. The subset P is called a cone if and only if:

(i) P is closed, nonempty, and P �= {θ};
(ii) a,b ∈R, a,b ≥ , x, y ∈ P ⇒ ax + by ∈ P;
(iii) P ∩ (–P) = {θ}.
On this basis, we define a partial ordering � with respect to P by x � y if and only if

y–x ∈ P. We write x ≺ y to indicate that x � y but x �= y, while x 
 y stands for y–x ∈ intP.
Write ‖ · ‖ as the norm on E. The cone P is called normal if there is a number K >  such
that for all x, y ∈ E, θ � x� y implies ‖x‖ ≤ K‖y‖. The least positive number satisfying the
above is called the normal constant of P. It is well known that K ≥ .
In the following,we always suppose thatE is a Banach space,P is a cone inEwith intP �= ∅

and � is a partial ordering with respect to P.

Definition . [] LetX be a nonempty set and let s ≥  be a given real number. Amapping
d : X × X → E is said to be cone b-metric if and only if for all x, y, z ∈ X the following
conditions are satisfied:

(i) θ ≺ d(x, y) with x �= y and d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y,x);
(iii) d(x, y) � s[d(x, z) + d(z, y)].

The pair (X,d) is called a cone b-metric space.

Example . Consider the space Lp ( < p < ) of all real function x(t) (t ∈ [, ]) such that∫ 
 |x(t)|p dt < ∞. Let X = Lp, E =R

, P = {(x, y) ∈ E | x, y≥ } ⊂R
 and d : X×X → E such

that

d(x, y) =
(

α

{∫ 



∣∣x(t) – y(t)
∣∣p dt

} 
p
,β

{∫ 



∣∣x(t) – y(t)
∣∣p dt

} 
p
)
,

where α,β ≥  are constants. Then (X,d) is a cone b-metric space with the coefficient
s = 


p–.

Remark . It is obvious that any conemetric spacemust be a cone b-metric space.More-
over, cone b-metric spaces generalize cone metric spaces, b-metric spaces and metric
spaces.

Definition . [] Let (X,d) be a cone b-metric space, x ∈ X and {xn} be a sequence in X.
Then

(i) {xn} converges to x whenever, for every c ∈ E with θ 
 c, there is a natural number
N such that d(xn,x)
 c for all n≥ N . We denote this by limn→∞ xn = x or xn → x
(n→ ∞).

(ii) {xn} is a Cauchy sequence whenever, for every c ∈ E with θ 
 c, there is a natural
number N such that d(xn,xm)
 c for all n,m ≥ N .

(iii) (X,d) is a complete cone b-metric space if every Cauchy sequence is convergent.

Lemma . [] Let (X,d) be a cone b-metric space. The following properties are often used
while dealing with cone b-metric spaces in which the cone is not necessarily normal.
() If u
 v and v� w, then u
 w;
() If θ � u
 c for each c ∈ intP, then u = θ ;
() If a� b + c for each c ∈ intP, then a� b;
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() If θ � d(xn,x)� bn and bn → θ , then xn → x;
() If a� λa, where a ∈ P and  < λ < , then a = θ ;
() If c ∈ intP, θ � an and an → θ , then there exists n ∈N such that an 
 c for all

n > n.

Lemma . [] The limit of a convergent sequence in a cone b-metric space is unique.

Definition . [] The mappings f , g : X → X are weakly compatible if for every x ∈ X,
fgx = gfx holds whenever fx = gx.

Definition . [] Let f and g be self-maps of a set X. If w = fx = gx for some x in X, then
x is called a coincidence point of f and g , and w is called a point of coincidence of f and g .

Lemma . [] Let f and g be weakly compatible self-maps of a set X. If f and g have a
unique point of coincidence w = fx = gx, then w is the unique common fixed point of f and g .

Definition . [] Let (X,d) be a cone metric space. A mapping f : X → X is such that,
for some constant λ ∈ (, ) and for every x, y ∈ X, there exists an element

u ∈ C(g,x, y) =
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}

for which d(fx, fy) � λu is called a g-quasi-contraction.

2 Main results
In this section, we give some common fixed point results for two weakly compatible self-
mappings satisfying the contractive condition and quasi-contractive condition in the case
of a contractive constant λ ∈ (, /s) in cone b-metric spaces without the assumption of
normality.

Theorem . Let (X,d) be a cone b-metric space with the coefficient s ≥  and let ai ≥ 
(i = , , , , ) be constants with sa + (s + )(a + a) + (s + s)(a + a) < . Suppose that
the mappings f , g : X → X satisfy the condition, for all x, y ∈ X,

d(fx, fy) � ad(gx, gy) + ad(gx, fx) + ad(gy, fy) + ad(gx, fy) + ad(gy, fx). (.)

If the range of g contains the range of f and g(X) or f (X) is a complete subspace of X, then f
and g have a unique point of coincidence in X.Moreover, if f and g are weakly compatible,
then f and g have a unique common fixed point in X.

Proof For an arbitrary x ∈ X, since f (X)⊂ g(X), there exists an x ∈ X such that fx = gx.
By induction, a sequence {xn} can be chosen such that fxn = gxn+ (n≥ ). If gxn– = gxn =
fxn– for some natural number n, then xn– is a coincidence point of f and g in X. Sup-
pose that gxn– �= gxn for all n ≥ .
Thus, by (.) for any n ∈N, we have

d(gxn+, gxn) = d(fxn, fxn–)

� ad(gxn, gxn–) + ad(gxn, fxn)

+ ad(gxn–, fxn–) + ad(gxn, fxn–) + ad(gxn–, fxn)

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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and

d(gxn, gxn+) = d(fxn–, fxn)

� ad(gxn–, gxn) + ad(gxn–, fxn–)

+ ad(gxn, fxn) + ad(gxn–, fxn) + ad(gxn, fxn–).

Hence

d(gxn, gxn+) = d(gxn+, gxn) + d(gxn, gxn+)

� (a + a + a + sa + sa)d(gxn, gxn–)

+ (a + a + sa + sa)d(gxn+, gxn).

Since sa + (s + )(a + a) + (s + s)(a + a) < , we have

d(gxn, gxn+) � a + a + a + sa + sa
 – a – a – sa – sa

d(gxn, gxn–)

= kd(gxn, gxn–) � kd(gxn–, gxn–)

� kd(gxn–, gxn–) � · · · � knd(gx, gx),

where k = a+a+a+sa+sa
–a–a–sa–sa

. Obviously, k ∈ [, s ).
Thus, setting any positive integers m and n, we have

d(gxn, gxn+m) � sd(gxn, gxn+) + sd(gxn+, gxn+m)

� sd(gxn, gxn+) + sd(gxn+, gxn+) + sd(gxn+, gxn+m)

� sd(gxn, gxn+) + sd(gxn+, gxn+) + sd(gxn+, gxn+)

+ · · · + sm–d(gxn+m–, gxn+m–) + sm–d(gxn+m–, gxn+m)

� sd(gxn, gxn+) + sd(gxn+, gxn+) + sd(gxn+, gxn+)

+ · · · + sm–d(gxn+m–, gxn+m–) + smd(gxn+m–, gxn+m)

� (
skn + skn+ + · · · + smkn+m–)d(gx, gx)

=
skn[ – (sk)m]

 – sk
d(gx, gx)

� skn

 – sk
d(gx, gx).

Since k ∈ [, /s), we notice that skn
–sk d(gx, gx) → θ as n → ∞ for any m ∈ N+. By

Lemma ., for any c ∈ intP, we can choose n ∈ N such that skn
–sk d(gx, gx) 
 c for all

n > n. Thus, for each c ∈ intP, d(gxn+m, gxn) 
 c for all n > n,m ≥ . Therefore {gxn} is a
Cauchy sequence in g(X).
If g(X) ⊂ X is complete, there exist q ∈ g(X) and p ∈ X such that gxn → q as n → ∞

and gp = q. (If f (X) is complete, there exists q ∈ f (X) such that fxn → q as n → ∞. Since
f (X)⊂ g(X), we can find p ∈ X such that gp = q.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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Now, from (.) we show that fp = q,

d(gxn+, fp) = d(fxn+, fp)

� ad(gxn+,q) + ad(gxn+, gxn+)

+ ad(q, fp) + ad(gxn+, fp) + ad(q, gxn+).

Similarly,

d(fp, gxn+) = d(fp, fxn+)

� ad(q, gxn+) + ad(q, fp)

+ ad(gxn+, gxn+) + ad(q, gxn+) + ad(gxn+, fp),

thus, we have

d(gxn+, fp) � ad(gxn+,q) + (a + a)d(gxn+, gxn+) + (a + a)d(q, fp)

+ (a + a)d(gxn+, fp) + (a + a)d(q, gxn+)

� (sa + sa + sa + a + a)d(gxn+,q)

+ (sa + sa + sa + sa)d(gxn+, fp)

+ (sa + a + a + sa + sa)d(gxn+, gxn+).

Since  ≤ a + a + a + a < /s, by the triangular inequality, it follows that

d(gxn+, fp) � sa + sa + sa + a + a
 – sa – sa – sa – sa

d(gxn+,q)

+
sa + a + a + sa + sa
 – sa – sa – sa – sa

d(gxn+, gxn+).

Since {gxn} is a Cauchy sequence and gxn → q (n→ ∞), for any c ∈ intP, we can choose
n ∈N such that for all n≥ n,

d(gxn+, gxn+) 
 ( – sa – sa – sa – sa)c
(sa + a + a + sa + sa)

and

d(gxn+,q) 
 ( – sa – sa – sa – sa)c
(sa + sa + sa + a + a)

.

Thus, for any c ∈ intP, d(gxn+, fp) 
 c for all n ≥ n. Therefore, by Lemma ., we have
fp = q = gp.
Assume that there exist u, w in X such that fu = gu = w.

d(gu, gp) = d(fu, fp)

� ad(gu, gp) + ad(fu, gu) + ad(fp, gp) + ad(fp, gu) + ad(fu, gp)

= (a + a + a)d(gu, gp).

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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Since  ≤ a + a + a < , by Lemma ., we can obtain that d(gu, gp) = θ , i.e., w = gu =
gp = q. Moreover, the mappings f and g are weakly compatible, by Lemma ., we know
that q is the unique common fixed point of f and g . �

Example . Let E = C
R
([, ]), P = {ϕ ∈ E : ϕ ≥ } ⊂ E, X = [,∞) and d(x, y) = |x– y|et .

Then (X,d) is a cone b-metric space with the coefficient s = , but it is not a cone metric
space.We consider the functions f , g : X → X defined by fx = 

 lnx+, gx = lnx+. Hence

d(fx, fy) =
∣∣∣∣  lnx +  –



ln y – 

∣∣∣∣


et

�
∣∣∣∣  lnx +



ln y

∣∣∣∣


et

=
∣∣∣∣ 

(
lnx –



ln y

)
+



(
ln y –



lnx

)∣∣∣∣


et

� 


∣∣∣∣lnx – 

ln y

∣∣∣∣


et +



∣∣∣∣ln y – 

lnx

∣∣∣∣


et

=



d(gx, fy) +



d(gy, fx).

Here  ∈ X is the unique common fixed point of f and g .

Example . Let X be the set of Lebesgue measurable functions on [, ] such that∫ 
 |u(x)| dx <∞, E = CR([, ]), P = {ϕ ∈ E : ϕ ≥ } ⊂ E. We define d : X ×X → E as

d
(
u(t), v(t)

)
= et

∫ 



∣∣u(s) – v(s)
∣∣ ds,

for all x, y ∈ X. Then (X,d) is a cone b-metric space with the coefficient s = , but it is not
a cone metric space. Considering the functions fu = 

u(t) and gu = 
u(t) (t ∈ [, ]), we

have

d(fu, fv) = et
∫ 



∣∣∣∣ u(s) –


v(s)

∣∣∣∣


ds

=
et



∫ 



∣∣∣∣ u(s) –


v(s)

∣∣∣∣


ds

=


d(gu, gv).

Clearly,  ∈ X is the unique common fixed point of f and g .

Remark . Compared with the common fixed point results on cone metric spaces in
[, , ], the common fixed point theorems in complete b-cone metric spaces in [] and
the fixed point results in cone b-metric spaces in [], Theorem . is shown to be a proper
generalization by Examples . and .. Furthermore, Theorem . generalizes and unifies
[, Theorem . and .].

Definition . Let (X,d) be a cone b-metric space with the coefficient s ≥ . A mapping
f : X → X is such that, for some constant λ ∈ (, /s) and for every x, y ∈ X, there exists an

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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element

ν ∈ C(g,x, y) =
{
d(gx, gy),d(gx, fx),d(gy, fy),d(gx, fy),d(gy, fx)

}
(.)

for which d(fx, fy) � λu is called a g-quasi-contraction.

Theorem . Let (X,d) be a cone b-metric space with the coefficient s ≥  and let the
mapping f : X → X be a g-quasi-contraction. If the range of g contains the range of f and
g(X) or f (X) is a complete subspace of X, then f and g have a unique point of coincidence
in X.Moreover, if f and g are weakly compatible, then f and g have a unique common fixed
point in X.

Proof For each x ∈ X, set gx = fx and gxn+ = fxn (n ∈ N). If gxn– = gxn = fxn– for
some natural number n, then xn– is a coincidence point of f and g in X.
Suppose that gxn– �= gxn for all n ≥ . Now we prove that {gxn} is a Cauchy sequence.

First, we show that

d(gxn, gx) = d(fxn–, fx) � sλ
 – sλ

d(gx, gx) for all n ∈ N+. (.)

Clearly, we note (.) holds when n = . We assume that (.) holds for some n ≤ N – 
(N ∈ N+), then we prove that (.) holds for all n = N . Because f is a g-quasi-contractive
mapping, there exists a real number k ≤ N such that

d(gxN , gx) � λd(gxk , gx). (.)

In order to prove that (.) holds, we show that for all ≤ i, j ≤ N , there exists  ≤ k ≤ N
such that

d(gxi, gxj) � λd(gxk , gx). (.)

Clearly, (.) is true for N = . Suppose that (.) is true for each N = P ∈ N, that is, for
all  ≤ i, j ≤ P, there exists  ≤ k ≤ P such that

d(gxi, gxj) � λd(gxk , gx). (.)

Let us prove (.) holds for N = P + .
By (.), we only show that for any  ≤ i ≤ P + , there exists  ≤ k ≤ P +  such that

d(gxP+, gxi ) � λd(gxk , gx).

Since f is a g-quasi-contractive mapping, there exists

νi ∈ C(g,xP,xi–) =
{
d(gxP, gxi–),d(gxP, gxP+),

d(gxi–, gxi ),d(gxP, gxi ),d(gxi–, gxP+)
}

such that d(gxP+, gxi ) � λνi .

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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By (.), we discuss that there exists an element

d(gxP+, gxi ) ∈ {
d(gxP, gxi–),d(gxP, gxP+),d(gxi–, gxi ),

d(gxP, gxi ),d(gxi–, gxP+)
}

such that d(gxP+, gxi ) � λd(gxP+, gxi ) (≤ i ≤ P + ).
If the above inequality does not hold for  ≤ i ≤ P + , then (.) is true for N = P + 

by (.).
We continue in the same way, and after P +  steps, we get  ≤ ij ≤ P +  ( ≤ j ≤ P + )

such that

d(gxP+, gxij ) � λd(gxP+, gxij+ ) ( ≤ j ≤ P).

Notice that there exist  ≤ r < s≤ P +  such that ir = is. That is,

d(gxP+, gxir ) � λs–rd(gxP+, gxis ) = λs–rd(gxP+, gxir ) ( ≤ r < s ≤ P + ).

As λ ∈ (, ), by Lemma .(), we get a contradiction. From (.), (.) is true forN = P+.
Hence, (.) is true for all N ∈N, which implies that (.) holds for N ∈N.
Next, let us prove that for all n ∈N+,

d(gxn, gx) � s
 – sλ

d(gx, gx). (.)

Using the triangular inequality, from (.) we obtain

d(gxn, gx) � s
[
d(gxn, gx) + d(gx, gx)

]

� sλ
 – sλ

d(gx, gx) + sd(gx, gx)

=
s

 – sλ
d(gx, gx).

Now, we show that {gxn} is a Cauchy sequence. For all n >m, there exists

ν ∈ C(g,xm–,xn–) =
{
d(gxm–, gxn–),d(gxm–, gxm),

d(gxn–, gxn),d(gxm–, gxn),d(gxm, gxn–)
}

(.)

such that d(gxm, gxn) = d(fxm–, fxn–)� λν.
By the contractive condition, there exist but not all

νk ∈ {
d(gxi, gxj)| ≤ i < j ≤ n

}
(k = , , , . . . ,m)

such that

νk � λνk+ (k = , , , . . . ,m – ). (.)

http://www.fixedpointtheoryandapplications.com/content/2013/1/120
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In fact, from (.) we have

ν ∈ C(g,xm–,xn–)

=
{
d(gxm–, gxn–),d(gxm–, gxm),d(gxn–, gxn),d(gxm–, gxn),d(gxm, gxn–)

}
⊂ Am–,n– =

{
d(gxi, gxj)

∣∣i=m,m–,n–;
j=m,n,n–, i < j

}
.

Let ν = d(gxi, gxj) = d(fxi–, fxj–) � λν, where

ν ∈ C(g,xi–,xj–) ⊂ Ai–,j– =
{
d(gxr , gxs)

∣∣r=i,i–,j–;
s=i,j,j–, r < s

}

=
{
d(gxr , gxs)

∣∣r=m,m–,m–,n–,n–;
s=m,m–,n,n–,n–, r < s

}
.

In general, if there exists

νk ∈ {
d(gxi, gxj)

∣∣i=m,m–,m–,...,m–k,n–,n–,...,n–k;
j=m,m–,m–,...,m–k+,n,n–,n–,...,n–k, i < j

}
( ≤ k ≤ m),

then we have

νk+ ∈ C(g,xi–,xj–) ⊂ Ai–,j– =
{
d(gxr , gxs)

∣∣r=i,i–,j–;
s=i,j,j–, r < s

}
( ≤ k ≤ m – )

such that νk = d(gxi, gxj) = d(fxi–, fxj–)� λνk+ ( ≤ k ≤ m – ).
As

{
d(gxr , gxs)

∣∣r=i,i–,j–;
s=i,j,j–, r < s

}

⊂ {
d(gxr , gxs)

∣∣r=m,m–,m–,...,m–k,m–k–,n–,n–,...,n–k,n–k–;
s=m,m–,m–,...,m–k+,m–k,n,n–,n–,...,n–k,n–k–, r < s

}

=
{
d(gxi, gxj)

∣∣i=m,m–,m–,...,m–k,m–k–,n–,n–,...,n–k,n–k–;
j=m,m–,m–,...,m–k+,m–k,n,n–,n–,...,n–k,n–k–, i < j

}
⊂ {

d(gxi, gxj)| ≤ i < j ≤ n
}

( ≤ k ≤ m – ),

we can obtain (.).
Using the triangular inequality, we get

d(gxi, gxj) � sd(gxi, gx) + sd(gx, gxj) ( ≤ i, j ≤ n),

so we obtain

d(gxn, gxm) = d(fxn–, fxm–) � λν � λν � · · · � λmνm

� λmsd(gxi, gx) + λmsd(gx, gxj)

� sλm

 – sλ
d(gx, gx).

Since sλm
–sλ d(gx, gx) → θ asm → ∞, by Lemma ., it is easy to see that for any c ∈ intP,

there exists n ∈N such that for all n >m > n,

d(gxn, gxm) � sλm

 – sλ
d(gx, gx) 
 c.
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So, {gxn} is a Cauchy sequence in g(X). If g(X) ⊂ X is complete, there exist q ∈ g(X) and
p ∈ X such that gxn → q as n→ ∞ and g(p) = q.
Now, from (.) we get

ν ∈ C(g,xn,p) =
{
d(gxn, gp),d(gxn, fxn),d(gp, fp),d(gxn, fp),d(fxn, gp)

}

such that d(fxn, fp) � λν .
We have the following five cases:
() d(fxn, fp) � λd(gxn, gp) � sλd(gxn+, gp) + sλd(gxn+, gxn);
() d(fxn, fp) � λd(gxn, fxn) = λd(gxn, gxn+);
() d(fxn, fp) � λd(gp, fp) � sλd(gxn+, gp) + sλd(gxn+, fp), that is,

d(fxn, fp) � sλ
–sλd(gxn+, gp);

() d(fxn, fp) � λd(gxn, fp) � sλd(gxn+, fp) + sλd(gxn+, gxn), that is,
d(fxn, fp) � sλ

–sλd(gxn+, gxn);
() d(fxn, fp) � λd(fxn, gp) = λd(gxn+, gp).

As sλ
–sλ > sλ, then we obtain that

d(gxn+, fp) � sλ
 – sλ

[
d(gxn+, gxn) + d(gxn+,q)

]
.

Since gxn → q as n→ ∞, for any c ∈ intP, there exists n ∈N such that for all n > n,

d(gxn+, gxn)
 ( – sλ)c
sλ

and d(gxn+,q) 
 ( – sλ)c
sλ

.

By Lemmas . and ., we have gxn → fp as n → ∞ and q = fp.
Now, if w is another point such that gu = fu = w, then

d(w,q) = d(fu, fp) � λν,

where λ ∈ (, s ) and

ν ∈ C(f ;u,p) =
{
d(gu, gp),d(gu, fu),d(gp, fp),d(gu, fp),d(fu, gp)

}
.

It is obvious that d(w,q) = θ , i.e., w = q. Therefore, q is the unique point of coincidence of
f , g in X. Moreover, the mappings f and g are weakly compatible, by Lemma . we know
that q is the unique common fixed point of f and g .
Similarly, if f (X) is complete, the above conclusion is also established. �

Example . Let X = R, E = C
R
[, ] and P = {f ∈ E : f ≥ }. Define d : X × X → E by

d(x, y) = |x – y|  ϕ where ϕ : [, ] → R such that ϕ(t) = et . It is easy to see that (X,d) is
a cone b-metric space with the coefficient s =  

 , but it is not a cone metric space. The
mappings f , g : X → X are defined by fx = αx and gx =

√
αx (α ∈ [ 

√
, 

√
)). Themapping f

is a g-quasi-contraction with the constant λ = α

 ∈ [  ,

√

 ). Moreover,  ∈ X is the unique

common fixed point of f and g .

Remark . Kadelburg and Radenovi [] obtained a fixed point result without the nor-
mality of the underlying cone, but only in the case of a quasi-contractive constant λ ∈
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(, /) (see [, Theorem .]). However, Ljiljana [] proved the result is true for λ ∈ (, )
on a cone metric space by a new way. Referring to this way, Theorem . presents a sim-
ilar common fixed point result in the case of the contractive constant λ ∈ (, /s) in cone
b-metric spaces without the assumption of normality. Moreover, it is obvious that Ex-
ample . given above shows that Theorem . not only improves and generalizes [,
Theorem .], but also generalizes and unifies [, Theorem ].
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