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Abstract

Background: Identifying variants associated with complex human traits in high-dimensional data is a central goal
of genome-wide association studies. However, complicated etiologies such as gene-gene interactions are ignored
by the univariate analysis usually applied in these studies. Random Forests (RF) are a popular data-mining technique
that can accommodate a large number of predictor variables and allow for complex models with interactions. RF
analysis produces measures of variable importance that can be used to rank the predictor variables. Thus, single
nucleotide polymorphism (SNP) analysis using RFs is gaining popularity as a potential filter approach that considers
interactions in high-dimensional data. However, the impact of data dimensionality on the power of RF to identify
interactions has not been thoroughly explored. We investigate the ability of rankings from variable importance
measures to detect gene-gene interaction effects and their potential effectiveness as filters compared to p-values
from univariate logistic regression, particularly as the data becomes increasingly high-dimensional.

Results: RF effectively identifies interactions in low dimensional data. As the total number of predictor variables
increases, probability of detection declines more rapidly for interacting SNPs than for non-interacting SNPs,
indicating that in high-dimensional data the RF variable importance measures are capturing marginal effects rather
than capturing the effects of interactions.

Conclusions: While RF remains a promising data-mining technique that extends univariate methods to condition
on multiple variables simultaneously, RF variable importance measures fail to detect interaction effects in high-
dimensional data in the absence of a strong marginal component, and therefore may not be useful as a filter
technique that allows for interaction effects in genome-wide data.
Background
Genome-wide association studies (GWAS) have been
successful in detecting single locus variants with rela-
tively large effects in some common, complex diseases
[1,2]. However, risk SNPs identified thus far can explain
only a small percentage of the estimated heritability of
such traits. This may be partly due to the fact that com-
monly used single SNP analysis strategies employed in
GWAS are designed to detect common variants with
strong marginal associations, and are not suitable for
detecting complex multigenic disease risk factors, which
may account for some of the missing heritability [3-5].
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Phenotypic variation present in common, complex
diseases is thought to involve complex etiologies inclu-
ding complicated interactions between many genetic and
environmental factors [6]. In particular, it is believed that
gene-gene interaction effects, or conditional dependence
between genetic variants affecting the phenotype, con-
tribute to complex traits. Ignoring those interactions in
univariate analyses may be limiting the success of GWAS
studies for complex diseases [2,7].
As an alternative to traditional statistical methods that

fail to appropriately account for these complex genetic
architectures, data-mining approaches designed to dis-
cover patterns in large amounts of data are gaining
popularity for genetic association studies. Many data-
mining and machine learning approaches were developed
with a main goal of prediction, such as exhaustive search
strategies [8], penalized regression [9], multifactor
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dimensionality reduction [10], neural networks [11], and
support vector machines [12], but many of these methods
have also been applied for variable selection or identifica-
tion of relevant predictor variables (filtering/screening).
One commonly-used data-mining technique is Random
Forests (RF), which builds an ensemble of classification and
regression trees that can predict an outcome (e.g. disease
status) based on a large number of predictors (e.g. SNPs),
allowing for potentially complex models that can include
interactions of the predictor variables [13]. RFs have been
proposed for analysis of genetic data [14], and more re-
cently have been suggested as a way of analyzing even large
SNP data sets from GWAS [15]. Although designed for pre-
diction, RFs give variable importance measures (VIM) that
can be used to rank SNPs, and are therefore gaining popu-
larity as a potential filter approach which considers interac-
tions. In high-dimensional data, RF VIM rankings can be
used for screening or filtering by selecting top-ranking SNPs
for follow-up study [16]; in this context, RF rankings may
have an advantage over univariate approaches because they
may better reflect complex disease models.
The performance of RFs in the context of genetic data

analysis has been investigated, and RF VIMs have been
shown to out-perform Fisher’s exact test as a screening tool
when interactions are present [17]. RFs have been utilized
in a number of genetic studies, and have recently been
applied to a genome-wide association study of multiple
sclerosis using filtering and backward elimination techni-
ques, although identification of interactions was not expli-
citly considered [15]. To facilitate genome-wide application,
RFs were iteratively applied for ‘sparsity pruning’ using
VIMs to filter out non-predictive SNPs in a backward elim-
ination technique [18].
In addition to performance as a filtering/screening

tool, other properties of VIMs have also been previously
investigated. For instance, the bias of these measures has
been assessed under linkage disequilibrium [19], and an
extension has been developed to consider the joint im-
portance of multiple variables [20]. However, previous
research has not considered the impact on interaction
detection as data dimension (i.e. number of predictor
variables) increases.
A frequently cited benefit of RFs in the analysis of gen-

etic data is that they capture interactions between pre-
dictor variables, because the hierarchical decision tree
structure can model non-linear associations [17]. The
RF methodology is not designed to explicitly test for the
presence of interactions or individual risk factor effects
with a hypothesis test of significance. Nevertheless, the
variable importance measures for individual risk factors
are expected to assess a variable’s overall impact on pre-
diction and to reflect both main and interaction effects.
Methods for estimating the importance of joint effects
including interactions (as opposed to individual predictor
variables) have been proposed [20]. However, these
are not feasible in the context of large genetic data-
sets consisting of tens or hundreds of thousands of
variables and thus interactions are usually not studied
explicitly. Yet even without explicit inclusion of inter-
action effects in the RFs, the individual SNP VIMs
used for screening are often claimed to capture inter-
action effects [21].
Previous studies of RF performance have primarily ap-

plied the approach in lower-dimensional settings, or set-
tings involving interactions with strong marginal
components. Although it has been shown that in rela-
tively small datasets RFs can detect interacting risk fac-
tors better than univariate tests of association of
individual predictors [17], this observation may not ex-
tend well to large datasets, with many potential predic-
tors in the analysis. In fact, we might expect that the
probability to detect true interactions may decrease as
dimension increases, because the probability of the co-
occurrence of interacting predictors decreases as the
feature space grows, and earlier work suggests that RFs
may be better at detecting main effects than interactions
(due to the independence assumption used in tree
construction) [22].
In this study we explore the ability of RF VIMs to cap-

ture interaction effects, particularly as the data becomes
increasingly high-dimensional. We hypothesize that
when standard RF VIMs are used to identify the best
predictors, the ability to detect interacting effects will de-
cline rapidly as the total number of studied predictor
variables is increased. Focusing on analysis of binary
case/control data, where RF is used for classification, this
paper presents a simulation study to investigate the rela-
tionship between the number of variables in a RF and
the ability of the approach to detect both marginal and
interaction effects. We compare the performance of vari-
ous RF measures of variable importance to p-values from
univariate logistic regression under different data-
generating models for complex disease, both as the num-
ber of predictors becomes large and as the strength of
marginal association diminishes.

Methods
Random forests
Random Forests is an ensemble or ‘forest’ of many clas-
sification and regression tree (CART) classifiers [13].
Each tree is constructed on a bootstrap sample of sub-
jects, with a random subset of the total number of pre-
dictors, p, eligible for selection at each node in the tree.
The final prediction or classification is obtained via
bootstrap aggregating (bagging) [23], and is based on a
vote over all of the trees in the ensemble. In this study,
we focus on classification for binary traits rather than
regression for quantitative traits.
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In general, a Random Forest of decision tree classifiers
is grown as follows:

1. Select a total of ntree bootstrap samples of size N
from the original data for training. On average, about
one third of the samples are left out, which are
called the ‘out-of-bag’ (OOB) data.

2. For each bootstrap sample, grow an unpruned
classification or regression tree (CART) [24].
a. At each node in the tree, randomly select mtry
variables from the total p predictor variables.

b. Choose the best split at each node from among
the mtry variables by maximizing some measure
of node purity (degree to which members of a
node belong to one class/category of the outcome
variable), such as the Gini index [24].

c. An estimate of prediction error (i.e. the
probability of misclassification) is obtained for
each tree using the OOB individuals.

3. For a given observation, the final prediction/
classification is the majority vote (the predicted class
in the majority of trees) over all trees in which that
observation was ‘out-of-bag’. The OOB prediction
error and prediction accuracy of the RF can be
calculated by considering accuracy of the OOB
prediction over all subjects.

For more detail on the method, see [13].

Variable importance measures
In addition to providing prediction, the RF method can
be used to calculate a VIM for each predictor. Ranking
based on VIMs can then be used as a screening tool to
prioritize variables for follow-up study. A number of im-
portance measures have been proposed, including Gini
importance and mean decrease in accuracy (MDA).
Let X be a particular predictor variable (e.g. SNP). The

Gini importance of X measures the total decrease in
node impurity across all nodes in the forest when X was
selected for splitting [13]. Although easy to compute, this
measure has been shown to be biased by preferentially
selecting variables with many categories [25]; hence the
more computationally intensive MDA variable import-
ance measure is typically preferred. The unscaled MDA
is the reduction in prediction accuracy after the data for
the variable of interest are permuted across all samples
within each tree; this VIM is often referred to as ‘permu-
tation importance’. If a variable is truly predictive of the
response, permuting the variable across samples should
disrupt this association and result in lower prediction ac-
curacy; conversely, prediction accuracy should not change
significantly after permuting data for unassociated vari-
ables. First, the prediction accuracy, At , is estimated from
the proportion of correctly classified OOB individuals
for each tree t in the forest T. The values of X across
samples are then randomly permuted in each tree,
and the accuracy At

* is calculated for the OOB indivi-
duals using the permuted data. The raw or unscaled
MDA is

MDA ¼ 1
ntree

∑t∈TAt−A�
t :

Variable importance can also be measured through a
scaled version of MDA,

MDAscaled ¼ MDA
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2=ntree

p

where s2 is the estimated variance of decrease in accur-
acy across trees [26]. It should be noted that for trees in
which the predictor variable X does not appear, the de-
crease in accuracy At - At

* is zero by definition. Another
version of MDA variable importance attributed to Meng
only considers trees in which X appears [27].

Interaction detection
Typically VIMs are used to rank variables, and variables
with high ranks are considered as potentially associated
with the phenotype. A true causative genetic factor may
be considered to be identified or detected by the RF ana-
lysis if it ranks highly in terms of variable importance,
above null factors that are not associated with the
phenotype. In our study, we considered a SNP to be
detected if it ranked within the top k SNPs, where k is
the number of SNPs with a simulated causal effect.
Other definitions of detection were also investigated with
similar results, so results are presented for this definition
of detection only.
In RF analysis, the importance of each variable takes

into account, or is conditional on, the effects of other
variables in the tree. However, RF importance measures
do not specify whether an effect is marginal or due to
interactions with other SNPs. Because one of the fre-
quently cited advantages of RFs is the ability to model
interactions, our primary goal was to investigate RF’s
ability to detect both the effects of SNPs that act inde-
pendently as well as those whose influence on the
phenotype is dependent on genotypes at another locus
(i.e. SNPs with interaction effects).
In order to investigate the performance of RF VIMs for

these different types of effects, we need to quantify both the
strength and type of a variable’s effect on the phenotype.
Heritability in the broad sense, or the proportion of pheno-
typic variation that can be explained by genetic variation, is
a common measure of the degree of genetic determination
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of a trait, or the total genetic effect size, and can also be
used to estimate the effect of a particular disease locus [28].
Suppose a binary disease phenotype D is controlled by two
susceptibility loci A and B, with genotypes a,b=0,1,2 at each
locus. The total heritability H2 due to the two loci can be
defined as:

H2
AB ¼ 1

P Dð Þ 1−P Dð Þð Þ∑
2
a¼0∑

2
b¼0P Gabð Þ P D Gabj Þ−P Dð Þð Þ2�

ð1Þ

where P(D) is the disease prevalence, P(Gab) is the frequency
of genotype combination ab, and P(D|Gab) is the penetrance
of the disease [29]. We can define the heritability due to the
marginal effect of SNP A as

H2
M;A ¼ 1

P Dð Þ 1−P Dð Þð Þ∑
2
a¼0 ∑2

b¼0P Gabð Þ� �

� ∑2
b¼0P D Gabj ÞP Gabð Þ−P Dð Þð Þ2�

ð2Þ
Similarly, we can define H2

M,B for SNP B. The heritability
due to the interaction effect of SNP A and SNP B, the con-
ditional dependence of SNPs A and B on the phenotype,
can be defined as the portion of the total heritability not at-
tributable to the marginal effects at either locus: H2

I;AB ¼
H2

AB−H
2
M;A−H

2
M;B . Based on these definitions, SNP A will

confer a ‘main effect’ on the phenotype if H2
M,A> 0 and an

‘interaction effect’ if H2
I,AB> 0 for some SNP B. These ideas

can easily be extended to models with more than two
causative loci.

Simulation study design
In order to investigate the performance of RF VIMs in
detecting interactions for a binary disease phenotype, we
developed a sequence of three simulation studies. Data sets
that included variables with main effects only (H2

I;AB ¼ 0 )
Table 1 Summary of the objectives and design of simulations

Simulation 1 Simulatio

Objective To compare RF VIMs for main and
interaction effect detection.

To compa
from logis
interaction

Independent SNPs Yes Yes

# Total Loci (p) 10, 100, 500, 1000 10, 100, 50

# Causal Loci (k) 4 2

MAF Fixed at 0.1, 0.2, 0.3, or 0.4 Fixed at 0.

# Model Scenarios 5 3

Description Varying effect sizes, HX1X2
2 vs. HX3X4

2 Two intera
having ma

Phenotype
Generation

Phenotype is a dichotomized
quantitative (normally distributed) trait.

Phenotype
penetranc
and variables with interaction effects (H2
I;AB > 0 ) on the

phenotype were simulated and the performance of RFs in
detecting the effects of these different types of variables was
assessed. Because an RF analysis is dependent on the tuning
parameters selected, preliminary studies were conducted to
determine optimal settings of mtry and ntree for this study
based on prediction error (and detection probability),
current recommendations in the literature, and practical
considerations (Additional file 1). Based on these prelimin-
ary results, mtry= .1p and ntree=5,000 were used for the
analyses presented here.
The first two simulation studies were designed to assess

the performance of RF VIMs for detecting main and inter-
action effects, and compare the performance of RF with p-
value rankings from univariate logistic regression. In order
to focus on evaluating the performance of the methods in
relation to the strength and type (main vs. interaction) of ef-
fect, in these simulations all SNPs were assumed to be inde-
pendent and had the same minor allele frequencies. The
third simulation study investigated the impact of linkage
disequilibrium (LD) on the detection of main and inter-
action effects using RFs. The designs of all three simulations
are summarized in Table 1.
In all simulations, data were generated assuming that

some SNPs contribute to the overall heritability only
marginally (‘main’), some SNPs contribute both margin-
ally and interactively (‘interacting’), and that some SNPs
are not causally associated with the outcome and thus
do not contribute to the total heritability (‘null’). The
performance of RFs was evaluated for each of the three
types of variables by estimating probability of detection,
which is similar to the concept of power in a frequentist
statistical framework. A SNP effect was considered to be
detected if its rank based on the VIM was in the top k
ranks, where k is the total number of causal variants.
The probability of detection was compared for a range of
simulation scenarios for the three types of variables.
1-3

n 2 Simulation 3

re RF measures with p-values
tic regression for main and
effect detection.

Examine RF performance in presence of
realistic patterns of LD and MAF.

No (LD)

0, 1000 Fixed at 1000

2

3 Varies (0.01–0.50)

4

cting SNPs with 0, 1, or 2
in effects.

Causal SNPs chosen in blocks of strong
vs. weak LD with non-causal SNPs.

is based on direct
e functions.

Phenotypes are generated as in
Simulation 1.
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Analyses were performed using the software package
Random Jungle [26] and results were summarized and
plotted using R statistical software.

Simulation 1: comparing performance of VIMs for
detecting main vs. interaction effects
The goal of the first simulation study was to compare
the performance of RF VIMs for detecting marginal and
interaction effects. The performance of RF was also com-
pared to the most common GWAS analysis approach,
univariate logistic regression. The comparisons were per-
formed for independent SNP data with fixed MAF, but
with varying degrees of effect size and patterns of inter-
action. Case/control datasets with p total SNPs were
generated (p= 10, 100, 500, 1000), where k= 4 causal
SNPs were associated with the binary disease phenotype,
D, with two SNPs having main effects only and two SNPs
having interaction effects.
For each scenario, 100 replicate datasets were gene-

rated with 500 cases and 500 controls and MAF= 0.1,
0.2, 0.3, or 0.4 at all SNPs. Genotypes were generated as-
suming independence among SNPs and Hardy-Weinberg
equilibrium. Quantitative phenotypes were generated
conditional on genotypes under a linear model, to reflect
an underlying quantitative trait, and affection status was
assigned using a threshold. Phenotype data were thus
generated under the following probit model:

Y ¼ β0 þ β1X1 þ β2X2 þ β3X3 þ β4X4 þ β5X3X4 þ E
D ¼ I Y > mð Þ

ð3Þ
where E~N(0,σ2), β0 = 20, σ

2 =10, and the threshold m was
chosen to be median(Y) to achieve P(D)=0.5 and balanced
data. The genotypes at SNP j were coded Xj=0,1,2 reflec-
ting the number of copies of the minor allele, assuming
additive allelic effects (on Y). Note that SNPs 1 and 2 have
marginal effects only, whereas SNPs 3 and 4 are interacting.
We quantified the strength of the simulated marginal and
interacting effects in terms of heritability due to a given
genetic effect (Equations 1 and 2). Data were generated
under five models, where the vector β= (β1, β2, β3, β4, β5)
was chosen to reflect different effect sizes and patterns in
terms of total heritability due to the main effect SNPs 1 and
2 (H2

X1X2 ¼ H2
M;X1 þ H2

M;X2 ) and the total heritability due

to the interacting SNPs 3 and 4 ( H2
X3X4 ¼ H2

M;X3 þ
H2

M;X4 þ H2
I;X3X4):

Model 1: Similar effects. The total effects of main and
interacting SNPs are similar (H2

X1X2≈H
2
X3X4), with

β= (.9,.9,1.3,1.3,−1.3).

Model 2: Main effects greater. The total effects of SNPs
1 and 2 are greater than effects of SNPs 3 and 4
(H2
X1X2 > H2

X3X4), with β= (1.0,1.0,1.0,1.0,−1.0).

Model 3: Main effects only. The total heritability is due
to SNPs 1 and 2, and SNPs 3 and 4 are not causative
(H2

X3X4 ¼ 0), with β= (.8,.8,0,0,0).

Model 4: Interaction effects greater. The total effects of
SNPs 3 and 4 are greater than SNPs 1 and 2 (H2

X1X2 <
H2

X3X4), with β= (.8,.8,1.5,1.5,−1.5).

Model 5: Interaction effects only. The total heritability
is due to SNPs 3 and 4, and SNPs 1 and 2 are not
causative (H2

X1X2 ¼ 0), with β= (0,0,1.3,1.3,−1.3).

In Models 1–5, the type of effect is a property of the
heritability corresponding to the main effect SNPs 1 and
2, and the interacting SNPs 3 and 4. Models with low
heritability (H2 ≤ 7%) were chosen to reflect realistic
effect sizes that could be expected in genetic studies and
also to investigate the performance in situations with low
power. The specific heritability components depend not
only on the β parameters, but also on the minor allele
frequencies; in particular, the level of marginal he-
ritability of interacting SNPs 3 and 4 varies with MAF
(Equation 2) [29]. See (Table B1 Additional file 2) for the
total, marginal, and interaction heritabilities of the simu-
lated datasets.
In Simulation 1, we investigated performance of VIMs

and compared variable importance rankings to p-value
rankings from logistic regression. VIMs of interest in
these simulations were raw MDA, scaled/Liaw MDA,
standard deviation of MDA, and Gini importance. “Prob-
ability of detection” is reported for each VIM for ‘main’,
‘interacting’, and ‘null’ SNPs, where the probability of de-
tection was estimated by the proportion of times across
100 replicates that each SNP was detected, averaged
across all ‘main’, ‘interacting’, and ‘null’ SNPs,
respectively.

Simulation 2: comparing main effect and interaction
detection with RF VIMs vs. logistic regression
Generally, a threshold or probit model can be approximated
by a logit model. This may give logistic regression an advan-
tage in the above Simulation 1 design, as similar models are
used for simulating and analyzing the data. In order to pro-
vide an additional comparison of RF with univariate logistic
regression, data were also generated directly from pene-
trance functions, the conditional probability of disease given
genotypes. For Simulation 2, genotype data were simulated
as previously described, with MAF fixed at 0.3 because the
effect of MAF had already been examined. Phenotypes were
generated conditional on genotypes from a specified pene-
trance function (Additional file 2), assuming two true causa-
tive loci which interact (SNP 1 and SNP 2). Three model



Winham et al. BMC Bioinformatics 2012, 13:164 Page 6 of 13
http://www.biomedcentral.com/1471-2105/13/164
scenarios were considered in which both SNPs contribute
marginally (“two main effects” – Model 6), only SNP 2 con-
tributes marginally (“one main effect” – Model 7), and nei-
ther SNP contributes marginally to the phenotype (“no
main effects” – Model 8). Total genetic effect size was fixed
at approximately 1% heritability to facilitate comparison
across models. Penetrance functions used for these simula-
tions are provided in Table B2 (Additional file 2) and are
displayed in Figure 1, along with the heritability due to each
component.

Simulation 3: investigating detection when LD is present
The goal of the third simulation was to examine the per-
formance of RF VIMs in detecting main and interaction
SNP effects under a scenario with realistic patterns of LD
and MAF. We therefore generated genotypes based on real
data, with various degrees of LD in different regions, and
compared performance of interaction detection under some
of the previously assumed data-generating models of
phenotype conditional on genotype.
A real genome-wide SNP dataset was used as the basis

for generating genotypes for p=1,000 SNPs in 56 genes,
giving rise to patterns of LD and MAF resembling those
encountered in genome-wide association studies. Details of
the genetic data simulations are discussed in Additional file
2. Phenotypes from the real genome-wide data were not uti-
lized, and instead binary phenotypes were generated condi-
tional on genotypes under Model 3 (‘main effects only’) and
Model 5 (‘interaction effects only’) from Simulation 1 in
order to investigate the impact of LD on the performance
of RF SNP detection for SNPs with both marginal and inter-
acting effects in the high-dimensional setting (p=1,000).
The two causal SNPs were chosen to have MAF of
approximately 0.3 to provide results comparable to
Simulation 1 without LD. Three patterns of LD were
Figure 1 Simulation 2 penetrance functions. Penetrance functions for th
with corresponding total, marginal, and interaction heritabilities.
considered, involving causal SNPs either in strong LD
(R2> 0.95 with at least three SNPs) or weak LD (R2< 0.3
for all SNPs) with other SNPs; either both causal SNPs
were chosen to be in strong LD, both in weak LD, or one
in strong and the other in weak LD. A fourth scenario was
also considered for comparison where all SNPs were gen-
erated independently (i.e. no LD) with MAFs identical to
those seen in the real data.
Probability of detection was defined as before, and also as

the proportion of times that any SNP in high LD
(R2> 0.85) with the causal SNP ranks in the top k in order
to assess detection of a region around the causal SNP. As in
Simulation 1, the performance of RF VIMs was compared
to p-value rankings from logistic regression.

Results and discussion
Simulation 1: comparing performance of VIMs for
detecting main vs. interaction effects
As expected, in general, causal SNPs (both ‘main’ and
‘interacting’) have larger VIMs than null SNPs, particu-
larly for small p (Figure B1, Additional file 2). The causal
SNPs also have larger variability in variable importance
between trees than null SNPs, as expected.
For all types of SNPs (‘main’, ‘interacting’, and ‘null’), both

the estimated variable importance and the probability of
detection decline as the total number of predictors
increases. However, as the total number of predictors
increases, the probability of detection declines more rap-
idly for interacting SNPs than for non-interacting SNPs
(Figure 2; Figures B2-B4, Additional file 2). Only results
for Model 2 ( H2

X1X2 > H2
X3X4 ) and Model 4 ( H2

X1X2 <

H2
X3X4 ) are displayed in Figure 2; results for Models 1, 3,

and 5 show similar patterns (Figures B2-B4, Additional file
2). Overall, the detection probability of all SNPs increases
with effect size (H2), as expected. For example, for the
e two locus interactions in the three models used in Simulation 2,



Figure 2 Simulation 1 results. Probability of detection for ‘main’, ‘interacting’, and ‘null’ SNPs plotted against the number of total SNPs for select RF
VIMs and logistic regression (LR). Top row shows results for the “main effects greater” Model 2; bottom row shows results for “interaction effects
greater” Model 4. Results are plotted separately across MAF. Average PE estimates range between 0.430 and 0.476 (Additional file 2 Table B3).
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non-interacting SNPs, detection probability increases as
HX1X2

2 increases. However, for the interacting SNPs, detec-
tion probability is largely dependent upon their marginal
effect (marginal heritability, HM,i

2 ) rather than their total ef-
fect (HX3,X4

2 ), which includes their interaction effect. Thus,
detection probability is strongest for the SNPs with the lar-
gest marginal heritability (HM,i

2 ), not necessarily the largest
total heritability. For example, under Model 4 with MAF of
0.3, the detection probability is higher for the main effect
SNPs than for the interacting SNPs, despite the fact that the
total effect of the interacting SNPs (HX3,X4

2 ) is larger than
the effect of the main effect SNPs (H2

X1,X2). This is because
under this model the main effects SNPs have a larger mar-
ginal heritability (0.015) than the interacting SNPs (0.009).
Figure 2 demonstrates that the decrease in detection prob-
ability for SNPs with small marginal effects becomes more
pronounced in situations with large p.
A pattern is observed across MAF, where ‘main’ SNPs are

more readily detected than ‘interacting’ SNPs for higher fre-
quencies, corresponding to scenarios where HM,X1

2 and H2
M,

X2 are high. As MAF increases, the difference in detection
between ‘main’ and ‘interacting’ SNPs also increases; for low
MAFs, ‘interacting’ SNPs are more frequently detected,
while for more common variants the ‘main effects’ SNPs
are more frequently detected. This is because under our
data generating model, as MAF increases the heritability
due to the marginal effects of interacting SNPs 3 and 4
(HM,X3

2 and HM,X4
2 ) decreases (Table B1, Additional file 2),

making them more difficult to detect using RF.
RF prediction errors, under the different simulation

models, are shown in Additional file 2 (Table B3). These
results demonstrate an inverse relationship between de-
tection probability based on VIMs and the estimates of
prediction error for the RF models. While all estimates
of prediction error are relatively high (40-50%), which is
expected given the low heritability of the assumed mod-
els, the estimates of prediction error are lower for mod-
els with higher detection probabilities. For models with
weak marginal effects (low HM,i

2 ), the SNP effects are not
well detected, and consistent with this, the prediction
errors are high (close to 50%).
Of importance is the fact that the probability of detec-

tion is not strongly affected by method of ranking (RF
VIMs or logistic regression), and in particular the RF
VIMs rarely outperform logistic regression for values of
p>10 for the scenarios studied here (Figure 2; Figures
B2-B4, Additional file 2). In all scenarios, logistic regres-
sion has slightly higher detection probability for the non-
interacting SNPs. When MAF is high (corresponding to
situations when the marginal heritability attributable to
the ‘interacting’ SNPs is lower than the ‘main’ SNPs;
Table B1, Additional file 2), RF variable importance
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measures have higher probability of detection than logis-
tic regression for interacting SNPs, but only when p is
low. For instance, Liaw MDA generally has higher detec-
tion probability for the ‘interacting SNPs’ when MAF=
0.3, 0.4 if p≤ 100.

Simulation 2: comparing main effect and interaction
detection with RF VIMs vs. logistic regression
Results for Simulation 2 based on penetrance functions
are portrayed in Figure 3, where probability of detection
is reported separately for SNPs 1 and 2. When marginal
effects are present at both SNPs (Model 6), detection
probability is high for both SNPs, but steadily declines as
p increases. When only SNP 2 exhibits a marginal com-
ponent (Model 7), detection probability for SNP 2 is
high, but detection probability is much lower for inter-
acting SNP 1, particularly for large p. When no marginal
effects are present at either locus (Model 8), detection
probability is near zero when p>10. The detection prob-
ability is highest when marginal heritability (HM,i

2 ) is
highest, which has a greater impact than method of
ranking. No single RF method consistently outperforms
the others; however, in general RF VIMs perform slightly
better than logistic regression models.
Because total H2 is low for the assumed models, we ex-

pect prediction error estimates to be high (Additional file 2,
Table A4). However, the prediction error estimates are par-
ticularly high (close to 0.5) for Model 8, which has no
marginal effects, indicating that under this model RF
cannot detect the SNP effects. Thus, as in Simulation 1,
the high prediction error observed under the pure
interaction model provides additional evidence that
RF was not able to capture the SNP effects in the absence
of marginal effects.

Simulation 3: investigating detection when LD is present
The results of the third set of simulations (Tables 2 and 3)
demonstrate how the level of LD impacts the probability of
detection for both marginal and interaction effects. For both
Figure 3 Simulation 2 results. Probability of detection for SNP1 and SNP2
interactions and two main effects (Model 6 - left), one main effect (Model 7
range between 0.465 and 0.508 (Additional file 2 Table B4).
the two locus model with main effects only (Model 3,
Table 2) and with interaction effects (Model 5, Table 3), the
detection probability is lower for the causative SNPs in
strong LD as compared to the causative SNPs in weak LD
for all VIMs. Additionally, strong LD reduces the detection
probability of the causal variant far below what can be
expected if all genetic predictors are independent, regardless
of the type of effect or VIM, although when considering de-
tection of the causal region (rather than the particular SNP)
the detection probability is less affected (Tables 2 and 3).
For main effect SNPs, the RF VIMs give similar detection
probabilities when the causative SNPs are in weak LD with
other SNPs and when they are independent (Table 2). How-
ever, for interacting SNPs that are in weak LD with other
SNPs, the detection probability is higher (Table 3), espe-
cially when the other causative SNP is in strong LD with
other SNPs (Scenario 3). The Gini importance is more
strongly impacted by both strong and weak LD, with greater
reductions (with strong LD) and gains (with weak LD) in
power than the other importance measures.
In general, the RF VIMs show improved detection over

logistic regression for the SNP in weak LD if the other
causative SNP is in strong LD (Scenario 3), particularly
when the causative genetic factors are interacting
(Table 3). In other situations, RF and logistic regression
perform similarly when LD is present, with RF perform-
ing slightly better under weak LD and logistic regression
performing slightly better under strong LD.

Discussion
In this study, we investigate the ability of Random For-
ests to detect both marginal and interacting effects in
high-dimensional data, in order to validate the claim that
RF methods are well suited to describe gene-gene inter-
actions and to determine their usefulness as filter meth-
ods or screening tools that allow for interaction effects
in large datasets, assuming sample sizes and genetic ef-
fect sizes likely to be encountered in real data analysis.
While RFs are often cited as an approach suitable for
plotted against total number of SNPs by VIM for models with
- center), and no main effects (Model 8 - right). Average PE estimates



Table 2 Simulation 3 results, Model 3

Level of LD MAF Detection Definition Raw MDA Liaw MDA SD MDA Gini LR P-value

1 Strong .294 Causal SNP 0.13 0.12 0.14 0.08 0.21

Causal Region 0.38 0.3 0.4 0.29 0.49

Strong .309 Causal SNP 0.25 0.18 0.28 0.26 0.33

Causal Region 0.56 0.48 0.55 0.58 0.48

2 Weak .294 Causal SNP 0.72 0.58 0.73 0.78 0.73

Weak .281 Causal SNP 0.66 0.56 0.71 0.79 0.76

3 Strong .294 Causal SNP 0.15 0.13 0.11 0.08 0.21

Causal Region 0.5 0.46 0.52 0.39 0.71

Weak .294 Causal SNP 0.59 0.52 0.63 0.78 0.5

4 None .294 Causal SNP 0.67 0.57 0.72 0.73 0.75

None .294 Causal SNP 0.68 0.6 0.67 0.7 0.76

Detection probability with and without LD for main effects only Model 3 for RF VIMs and logistic regression (LR). Total number of SNPs = 1,000, MAF� 0.3. Average
PE estimates range from 0.458 to 0.477 (Additional file 2, Table B6).
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detecting genetic effects in the presence of interactions,
McKinney et al. [22] suggested that RFs may be better
suited for detecting marginal effects than interactions.
However, the effect of data dimensionality on RF’s ability
to detect interaction effects has not been previously
described. We found that as dimensionality increases,
the ability of RF to detect SNP effects diminishes, and
this decline is more rapid for interacting SNPs than for
SNPs with a large univariate effect. Our results demon-
strate that the detection probability of RF is driven by
the strength of the marginal components.
In Simulation 1, we observed an inverse relationship

between MAF and interaction detection probability,
which is a result of the dependency of effect size (i.e.
heritability) on MAF. For example, under the data-
generating threshold model with stronger interaction
effects (Model 4), the marginal effect of the two intera-
cting SNPs (HM,X3

2 and HM,X4
2 ) decreases and the
Table 3 Simulation 3 results, Model 5

Level of LD MAF Detection Definition Raw

1 Strong .294 Causal SNP 0

Causal Region 0

Strong .309 Causal SNP 0

Causal Region 0

2 Weak .294 Causal SNP 0

Weak .281 Causal SNP 0

3 Strong .294 Causal SNP 0

Causal Region 0

Weak .294 Causal SNP 0

4 None .294 Causal SNP 0

None .294 Causal SNP 0

Detection probability with and without LD for interaction effects only Model 5 for R
Average PE estimates range from 0.479 to 0.496 (Additional file 2, Table B6).
interaction effect of these two SNPs (HI,X3X4
2 ) increases,

as the MAF increases (Table B1, Additional file 2). In the
case of MAF= 0.1 and 0.2, the marginal effects of the
interacting SNPs are strong, and the RF VIMs perform
well. However, as MAF increases and these marginal
effects diminish, RF has a low probability of detecting
the interacting SNPs for large p. This demonstrates that
in high-dimensional settings RF VIMs are driven by the
magnitude of the marginal effects (HM

2 ), regardless of the
presence of an interaction effect (HI

2), and that VIMs are
capturing marginal effects rather than interactions as ori-
ginally claimed. This was also clearly demonstrated by
Simulation 2, with models generated from penetrance
functions with MAF fixed at 0.3. SNPs that had some
level of marginal heritability had higher detection pro-
bability, whereas interacting SNPs with no marginal con-
tribution to the total heritability were rarely detected, if
at all.
MDA Liaw MDA SD MDA Gini LR P-value

.05 0.09 0.05 0.02 0.09

.2 0.19 0.21 0.1 0.3

.2 0.17 0.15 0.16 0.14

.47 0.42 0.38 0.41 0.33

.43 0.34 0.49 0.52 0.4

.35 0.25 0.35 0.42 0.29

.06 0.09 0.04 0.04 0.12

.32 0.27 0.27 0.14 0.41

.51 0.45 0.4 0.62 0.3

.28 0.21 0.3 0.31 0.33

.29 0.27 0.3 0.31 0.29

F VIMs and logistic regression (LR). Total number of SNPs = 1,000, MAF� 0.3.
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In our simulations, we also observed a strong inverse
relationship between estimated prediction error and de-
tection probability. This relationship is expected, since if
the RF model was not predictive of phenotype, then no
predictive signal was detected for any variable, and hence
the true causative factors (if they exist) were not identi-
fied. Therefore we do not advocate utilizing a ranked list
to screen predictors if prediction error is high, because
even if true causative factors exist, they will not be highly
ranked. Nevertheless, the relationship between predic-
tion error and detection probability based on VIMs por-
trays a consistent story: prediction error estimates are
only lower than what is expected by chance if the true
causal effects are detected. As dimension becomes large,
detection probability diminishes and becomes highly
dependent on the strength of the marginal effects, and
the poor prediction errors are a reflection on the failure
of RF to model interactions in these scenarios.
The models used for simulating the data had low H2 to

reflect realistic effect sizes for a study of common SNP
variants assessed with a genome-wide platform. It has
been shown that SNPs identified thus far through GWAS
explain only a small portion of the heritability and have
poor predictive performance, which is consistent with
the models chosen for our simulation study. Neverthe-
less, we also considered interaction models with stronger
effect sizes and higher H2 (data not shown). In these
high-heritability models, models with marginal effects
resulted in greatly improved prediction error, whereas
interaction models without strong marginal effects still
showed little if any improvement, reflecting the same
general trend described in this study.
The use of alternative definitions of SNP detection and

detection probability could impact the findings of this
study; however, we found that a previous definition of
power utilized by Bureau et al. [20] is similar to our def-
inition in practice and provided similar results. Detection
can also be defined using a percentage threshold (i.e. top
x% of SNPs) to account for non-constant p, but this def-
inition also does not dramatically change the results.
Additionally, RF analyses are dependent on various tun-
ing parameters. In our preliminary investigations to se-
lect the tuning parameters, we found that increasing the
value of ntree beyond 5,000 did not improve prediction
error or probability of SNP detection. Although increas-
ing the value of mtry from 0.1p to 0.5p resulted in a
slight improvement in prediction error, it did not result
in a gain in power. Importantly, the observation that as
dimensionality increases, the ability of RF to detect inter-
acting SNPs diminishes more rapidly than for SNPs with
a large marginal component remained unchanged as
mtry was increased (Additional file 1). Hence results of
analyses with the value of mtry= 0.1p are reported here,
since this value of mtry is more practical for real data
analysis as dimension increases, and is the value sug-
gested by Goldstein et al. (2010) [15]. In our application
of RF, classification trees were grown by splitting to pur-
ity, the current default setting available in software and
recommended in the literature. However, some research
suggests that this setting may be problematic because the
large number of terminal nodes may lead to bias and a loss
of consistency in the forest [30,31]. Although the optimal
settings of the number of terminal nodes for classification
are still unknown, it is possible that a reduced number of
terminal nodes could improve results. Further investigation
of optimal parameterization of the tree-building algorithm
is warranted.
Notably, our simuations revealed that the advantage of

RF over univariate logistic regression is lost for larger
values of p, conflicting with the findings of previous
studies. Lunetta et al. (2004) compared the performance
of RF variable importance rankings to univariate Fisher’s
exact test for p= 100 and 1,000 SNPs and found that
when interaction effects were present, RF outperformed
the univariate method [17]. However, the multiplicative
models investigated by Lunetta et al. (2004) have strong
marginal components, indicating that the improved
performance may be due to the marginal rather than
non-linear association. Moreover, the Fisher’s exact test
applied by Lunetta et al. is not the most powerful uni-
variate approach, and would rarely be applied in a
GWAS setting. They also reported that for the purely
epistatic datasets of Ritchie et al. (2003), interaction
effects were identified with RF, but these scenarios were
low-dimensional with p= 10 [32]. In fact, in a methods
comparison between multifactor dimensionality reduc-
tion, neural networks, and RF for purely epistatic models
with p= 100 total loci, RF was shown to have extremely
low power [33]. In the current study, a broader range of
disease models with varying effect types and dimension-
ality were considered to fully explore performance of RF
as dimension increases. Under the Simulation 1 thresh-
old model, we failed to see an improvement with RF over
logistic regression for any VIMs. In Simulation 2, the
most commonly used VIM (Liaw MDA) again displayed
little advantage over p-values from logistic regression,
particularly for higher p. In contrast, the less commonly
used Gini importance and Liaw SD showed a slight ad-
vantage over logistic regression in detecting marginal
effects.
The results of the study indicate that as a tool for vari-

able selection, both RF VIMs and univariate logistic re-
gression can detect SNPs with marginal components, but
neither may be adequate for interaction detection in high
dimensions. In lower dimensions, RFs capture interactive
effects and may therefore outperform univariate logistic
regression. However, in lower dimensions higher order
logistic regression models and pair-wise scans are
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possible, limiting the advantage of RF. In fact, some
researchers feel that interactions modeled by RF but not
confirmed with logistic regression are unlikely to be real.
Nevertheless, the advantages of RF reside in the ability to
incorporate the effects of multiple variables simultan-
eously and model conditional associations in both low
and high dimensional data (even if interactions may not
be specifically modeled), which cannot be captured with
univariate procedures. Thus RF is recommended as a
complimentary approach to other variable selection
methods. Moreover, we note that machine learning
methods such as RF were designed to improve prediction
rather than variable selection; therefore if the research
objective is to develop a predictive model, then RF may
be more appropriate.
Bureau et al. [20] previously recognized that RF VIMs

do not explicitly test for interactions, and proposed joint
importance measures based on permuting pairs of SNPs
to identify pair-wise interactions. However, this joint per-
mutation is computationally intractable in high-
dimensional data, even for pair-wise interactions. The
hope is that in genome-wide data, the original VIMs may
still capture complex associations. Yet we found that RFs
fail to capture interactions in high-dimensional settings.
While RF seems to identify interactions in low-
dimensional data, why do these properties fail to extend
to higher dimensions? Unlike univariate analyses, RFs
take additional factors into account and model the con-
ditional relationships between variables within a tree.
The decision trees in RF can efficiently detect condi-
tional dependencies between predictors that are in the
same tree, and therefore interactions are modeled in
low-dimensional settings when most variables tend to be
present in each tree. However, there is a limit to the
depth of a tree based on sample size, and therefore in
high-dimensional settings not every variable will make it
into a given tree—variables with strong marginal associa-
tions are more likely to be chosen for a given split. The
probability that a pair of interacting SNPs are in the
same tree together is low, particularly if the marginal
effects of both SNPs are relatively small; if a pair of SNPs
are rarely present in the same tree, then their conditional
association is rarely modeled. Research on the asymp-
totic theory of RF has shown that for a fixed number of
predictors p, RF is sparse (i.e. depends only on the true
number of causal predictors, not the total p) as the sam-
ple size approaches infinity [34]. However, our results
demonstrate that with practical sample size limitations,
RF has little ability to detect interactions.
Increasing the sample size tends to increase the tree-

depth and number of possible splits per tree, which
increases the number of variables included per tree and
the probability that the effects of a pair of interacting
SNPs will be jointly modeled. To investigate the impact
of sample size on power, we considered a difficult genetic
model with low power (Model 8) and increased the sam-
ple size from N= 1,000 to N= 5,000 and 10,000. We
found that increasing the sample size did increase power
(as expected), particularly for p= 10 and 100; however,
even with N= 10,000 power is still extremely low when
p= 1,000, indicating that to detect an interaction with
low heritability and no marginal effects, sample sizes
much greater than 10 times the number of predictors are
necessary (for full results see Additional file 2). In prac-
tice, sample size is often N< p, hindering the ability of
interaction detection of any statistical method, including
RF.
Poor SNP effect detection in high-dimensional data is

exacerbated in the presence of strong LD, both for marginal
and interaction effects. If the true causative SNPs are in
regions of strong LD, the causative effects must compete
with correlated predictors for positions in each tree, since
non-causative variables may also be associated with the
phenotype because of LD. The result is lower importance
rankings and a reduction in the probability of SNP detec-
tion. Our results were similar to those observed in previous
studies, which also found that the presence of SNPs that are
highly correlated with risk SNPs reduces RF performance
[27,35]. Although SNP detection is reduced for predictors
in strong LD, predictors in weak LD show improved results,
particularly for interacting SNPs. In fact, the strong LD of
one causative factor can improve the detection probability
of other causative factors, including interactions. If one risk
SNP is highly correlated with other predictors, this
increases the probability that additional risk SNPs will
appear in a tree together with at least one SNP in the first
causative region, increasing the chance of modeling a joint
association. This may have implications for LD pruning
with RFs, which may be helpful for detecting marginal
effects but in certain situations could reduce the chance of
detecting effects of interacting SNPs. These observations
raise questions about the most appropriate use of RF for
genetic datasets.
The results of this study allow us to draw a number of

conclusions about the performance of RF, but some in-
herent limitations remain. In the current study we only
considered simple disease models with architectures in-
volving marginal effects and two-locus interactions, and
investigation of more complex architectures is warranted.
Nevertheless, our results demonstrate difficulties with
detecting even these simple lower-order interactions
using RF. Furthermore, only a limited number of LD pat-
terns were investigated. Although this was not a thorough
examination of the consequences of LD on interaction
detection, our results provide some insight into the im-
pact of LD on the performance of RF for identifying inter-
acting SNPs. While beyond the scope of the current
study, these findings motivate further research into how
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RF should be applied in practice for different types of
data.
These results call into question the applicability of RF

as a variable selection and screening tool in a GWAS set-
ting. In high-dimensional data, true causal SNPs without
a strong marginal component are not highly ranked by
the variable importance measures, indicating little poten-
tial improvement of RF as a filter approach over current
univariate techniques. Therefore, extensions that im-
prove the detection of interacting factors would be
highly advantageous. As the RF methodology currently
stands, the primary goal is not identification of interac-
tions. Because the method incorporates conditional
effects, allows for the analysis of high-dimensional data
where the number of predictors far exceeds the sample
size, and provides a ranking scheme to implement poten-
tial filtering, it seems that extension to better capture
interaction effects seems promising. This work provides
insight into why RF variable importance measures fail to
capture interactions in a high-dimensional setting, which
motivates further research to develop new variable im-
portance measures to properly account for interacting
variables or to modify the approach for accurate variable
selection in the presence of interactions.
Conclusions
The ability of Random Forests variable importance mea-
sures to detect interaction effects has not been previ-
ously investigated in high-dimensional data. We found
that as dimensionality increases, the probability of detec-
tion declines more rapidly for interacting SNPs than for
non-interacting SNPs and Random Forests no longer
outperforms univariate logistic regression. Random For-
ests efficiently model complex relationships including
interactions in low dimensional data, but in high dimen-
sional data they only effectively identify genetic effects
with a marginal component. Therefore current variable
importance measures may not be useful as filter techni-
ques to capture nonlinear effects in genome-wide data
and extensions are necessary to better characterize
interactions.
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