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Abstract

In this paper, a new reweighted /; minimization algorithm for image deblurring is
proposed. The algorithm is based on a generalized inverse iteration and linearized
Bregman iteration, which is used for the weighted /; minimization problem
minyern {||Ullw : Au=f}. In the computing process, the effective using of signal
information can make up the detailed features of image, which may be lost in the
deblurring process. Numerical experiments confirm that the new reweighted
algorithm for image restoration is effective and competitive to the recent
state-of-the-art algorithms.
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1 Introduction
Image deblurring is a fundamental problem in image processing, since many real-life prob-
lems can be modeled as deblurring problems [1]. In this paper, a new reweighted /; mini-
mization algorithm for image deblurring is proposed. The algorithm is obtained based on
a generalized inverse iteration and a linearized Bregman iteration.

Simply, we shall denote images as vectors in R” by concatenating their columns. Let
u € R” be the underlying image. Then the observed blurred image f € R” is given by

f=Au+n, (1.1)

where n € R” is an additive noise and A € R”*” is a linear blurring operator. This problem
is ill-posed due to the large condition number of the matrix A. Any small perturbation on
the observed blurred image f may cause the direct solution A~'f, which is very difficult to
obtain from the original image u [2]. This is a widely studied subject and many correspond-
ing approaches have been developed, and one of them is to minimize some cost functionals
[1]. The simplest method is a Tikhonov regularization, which minimizes an energy con-
sisting of a data fidelity term and an /; norm regularization term. A is a convolution, which
can solve the problem in the Fourier domain. In this case, the method is called a Wiener
filter [3], this is a linear method, and the edges of restored image are usually smeared. To
overcome this, a total variation (TV)-based regularization was proposed by Rudin et al.
in [4], which is known as the ROF model. Due to its virtue of preserving edges, it is widely
used in image processing, such as blind deconvolution, inpainting, and superresolution;
see [1]. However, as we know, for the TV yields staircasing [5, 6], these TV-based methods
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do not preserve the fine structures, details, and textures. To avoid these drawbacks, non-
local methods were proposed for denoising [7, 8], and then extended to deblurring [9].
Also, the Bregman iteration, introduced to image science [10], was shown to improve TV-
based blind deconvolution [11-13]. Recently, a nonlocal TV regularization was invented
based on graph theory [14] and applied to image deblurring [15]. Another approach for
deblurring is the wavelet-based method, etc. [16].

Normally, the original image u# € R” will be found by solving the following constrained
minimization problem:

;Iel]g; {](u) cAu :f}, (1.2)

where /(1) is a continuous convex function, and when /() is strictly or strongly convex,
the solution of (1.2) is unique.

This constrained optimization problem (1.2) arise in many applications, like in im-
age compression, reconstruction, inpainting, segmentation, compressed sensing, etc. The
problem (1.2) can be transformed into a linear programming problem, and then solved
by a conventional linear programming solver in many cases. Recently, fixed-point con-
tinuation method [17] and Bregman iteration [18] are very popular. Specially, Bregman
iterative regularization was proposed by Osher et al. [10]. In the past few years, a series
of new methods have been developed, and among them, the linearized Bregman method
[19-22] and the split Bregman method [23-26] got most attention.

Specially, when (i) = || u||1, the problem (1.2) becomes

min { ) : Au = £}, (13)

Obviously, the problem (1.3) is an /;-norm minimization problem. Since many practical
problems related to the sparsity of the solution make the problem (1.3) stay on focus for
years, like in signal processing, compressive sensing efc. [18, 19]. Similar to the problem
(1.2), the problem (1.3) also can be transformed into a linear program and then solved
by conventional linear programming solvers. However, such solvers are not tailored for
the matrix A that is large-scale and completely dense. Fortunately, the problem (1.3) can
be solved very effectively by the linearized Bregman method [19-22, 27]. The computing
speed of its simplified form with soft threshold operator is faster [19, 21, 22]. The corre-
sponding convergence analysis was discussed in [20].

In this paper we highlight numerical computation of coefficient in sparse reconstruc-
tion methods for image deblurring, described by an operator ® : X — Y between Hilbert
spaces X and Y. We seek sparse solutions in an orthogonal basis {1/;};en. The standard
approach is the weighted ¢; minimization (1.3):

. 1 2
uelz(llfll)lr?ll (N){E“Zujd)w/ -f +aZw/|u;|}. (1.4)
@ Jj j

Here ¢! (N) denotes the space of coefficients #; such that Zj wj|u;| < 0o. In order to sim-
plify the notation we introduce the operator A : £2(N) — Y, () — Zi u;®v;. Moreover,
we will assume that {w;};ery entail positive weights and there is a constant @y > 0 such that
w; > wo for all j € N. Hence Z; wj|u;] is really a norm on £1(N), denoted by ||u|,,. Then
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the £; minimization can be rewritten as

. 1
min {anunw + = || Au —f||2}. (1.5)
uel2(N)NEL,(N) 2

Naturally one can set wg,1(i) = WI(Z)I Then we can see the weighted ¢; norm as a kind of
approximation to £y norm, but we can easily note that when (i) = 0, wg,1(i) is not well

L L where € > 0 is a small

defined. The good news is we can regularize it as wy,1(i) = e

number [28]. So in this paper we set

wp41(i) = m

On this basis, the authors propose a new reweighted /; minimization method to solve
the problem (1.5) and illustrate by numerical experiments.

The rest of the paper is organized as follows. In Section 2, we summarize the existing
methods for solving the constrained problem (1.3). In Section 3, the generalized shrinkage
operator is proposed. The new algorithm is proposed in Section 4. Numerical results are
shown in Section 5. Finally, we draw some conclusions in Section 6.

2 Preliminaries

2.1 Generalized inverse

We are interested in the iterative formula of the generalized inverse, because it is used
by our new algorithm. Therefore, before we give a detailed discussion, we first give some
definitions and lemmas.

Definition 2.1 [29] Let A € C"*", then X is called the pseudoinverse of A and denoted
by AT, If X satisfies the following properties, i.e., the Moore-Penrose conditions:

1. AXA=A4,
2. XAX =X,
(2.1)
3. (AX)" = AKX,
4. (XA)* = XA.

Remark 2.1 The inner inverse is not unique. In general, the set of the inner inverses of
the matrix A is denoted A™.

Definition 2.2 [29] Let A, B € C"*", the set

w(A,B) = {X|X = AYB,Y € C"""} (2.2)
is called the range of (4, B).
Lemma 2.1 [30] Let A € C"*" #0; if initial matrix Vy satisfies

Vo € n(A*,A%), (2.3)

oI -AVp) <1, (2.4)
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where I is an identity matrix with the same dimension as matrix A and A* is the conjugate
transpose of matrix A. Then the sequence {V,},en generated by

Vpr=Vy+ Voll-AV,), q=12,... 2.5)
is convergent to A",

2.2 Linearized Bregman iteration
The Bregman distance [31], based on the convex function J, between points u and v, is
defined by

D (u,v) =J(u) =] (v) = (p,u—v), (2.6)

where p € 3J(v) is an element in the subgradient set of J at the point v. In general Df (u,v) #
Df (v, u) and the triangle inequality is not satisfied, so Df (u,v) is not a distance in the usual
sense. For details, see [31].

To solve (1.3), in [19] the linearized Bregman iteration is generated by

K
uk*l = argming, (uDf (u, u*) + 55 ||u — (u* = SAT (Au* - f)) 1%},
k+1 k_ 1 k+l k 1 2TtS k k k 2.7)
plt=p —E(u -u )—;A (Au*-f), p edJw"),
where § is a constant and p° = u° = 0. Hereafter, we use || - || = || - ||» to denote the J; norm.
When J(u) = || u]l1, algorithm (2.7) can be rewritten as
k+1 _ ok AT —A k ,
P A 29
u*t=8T,(vV),
where #° =% = 0, and
Ty (@) = [t (0(D), & (@0(2), ..., 12 (0(m) ] (2.9)
is the soft thresholding operator [18] with
0, <A
6.(6) - <! (2.10)

sgn(€)(IEl - 1), &]>A.

Namely, the algorithm (2.8) is called an A7 linearized Bregman iteration.

Subsequently, when A is any matrix, the constraint condition Au = f of the problem
(1.3) is not satisfied. So the conditions will be extended to solve the least-squares prob-
lem min,cgx ||Au — f]1%, and the algorithm becomes the following A linearized Bregman
iteration [22]:

fk+1 :fk +f —Auk,

. (2.11)
uk+l = STM(A rfk+l)’

where A" is generalized inverse of matrix A.
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3 The generalized shrinkage operator

Theorem 3.1 T),(v) = arg minyepn {1t]|ull1 + 31lu - v|?}.

Proof Let f(u) = pllully + 2l = VKl = w 30 lual + 3 30, (VF — u;)?, then we have

Bf(u)_ u+u,~—vf, u; >0, 31)
au,» - —/,L+ul'—l/]»<, I/tl'<0. '

l

Case 1: vf > u > 0.
(1) If u; > 0, and notice that % =0 then u; = vf — u > 0, for this case f(u) gets its
minimum at point u; = vf — 1 along the direction e; and the minimum is

1
O ey = RV = 1) + 5122 481 (5 0) = Ay + . (3:2)

(2) If u; < 0, and notice that % =u;— vf.‘ — < 0, again we find that f (1) decreases along
the direction e;:

S @) |u=0 = %(Vik)2 +81 (>0)= Ay + 6. (3.3)

Since Ay — A; = %(V{‘)Z — (uvk - u) = %(v{.‘ —u)? > 0, along the direction e; we find that
the minimizer of f(u) is u; = vf - .

Case 2: VK < —u < 0.

(1) If u; > 0, since 3%4) =u; — vf + i > 0, f(u) increases along the direction e;:

S@)]y=0 = %(Vf()z +33= A3 +43. (3.4)

(2) If u; < 0, since %—EZ) =0 we have u; = vf-( + 1 < 0, the minimizer of f(u) along the

direction e; is u; = v{‘ + u and the corresponding minimum is
L,
S@lugmvioe = = (V] + 1) + 17 485 = Dy + 85, (35)

Since Az — Ag = 2V + u(f + ) — pu® = 2(vF + ) > 0, we can get the minimizer of
f(u) at u; = vf + u along the direction e;.

Case3:—u < vf <u.

(1) If u; > 0, since %—g =u;— vf‘ + i >0, f(u) increases along the direction e;:

1 2
Sf@)lu=0 = E(V,k) +3. (3.6)
(2) If u; < 0, since % =u; - fo — i1 <0, f(u) decreases along the direction e;:
1, 42
f(u)|u,'=0 = E(VL’) + 8, (3.7)

when u; = 0, the minimum of f () along the direction e; is f (1) = %(Vf)2 +34.
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In conclusion, we have the following soft shrinkage operator:

0, [ yr®
tu(§) = (3.8)
sgn(é)(1§1 - w),  1&]> .
The minimizer of the minimization problem is given by
: 1 k)2 n k n
u =argming u|u| + E(M_V ) ‘MGR VeR
V;( - WU, Vf >u>0,
= 0; - S Vf‘( S 122
vf‘ + U, fo <—u<0
T
= [t/L(wl)’ t;l, (wZ)r cees t/l. (Cl)n)]
- T, (). (3.9)
O
The unknown variable u is component-wise separable in the problem
. 1 2
yu=arg min |l + =|lu—v| (3.10)
uel2(N)NEL (N) 2

forany v € €2(N) N ¢! (N) and @ > 0. Then each of its components #; can be independently
obtained by the shrinkage operation, which is also referred as soft thresholding [32]:

u; = Ty, (vi) = shrink(v;, pew;), i=1,2,.... (3.11)
For v;, w; and u € R, we define u; € R

u; = shrink(v;, pw;) := sgn(vi)max{|vi| - ;m)i,O}

Vi— LW,  Vi> Ui,
=40, —pw; <V < pw;, (3.12)

Vit Uwi, Vi< —Uwj.

The generalized shrinkage operator leads to the sparse solution and removes noises.
Hence, the algorithm with the generalized shrinkage operator converges to a sparse so-
lution and is robust to noises.

4 The new reweighted /; minimization algorithm

The sequence {1} given by A" linearized Bregman iteration converges to an optimal so-
lution of the problem (1.3). The computation of generalized inverse A is time consuming;
to overcome this, a method called chaotic iterative algorithm is proposed combined with
(2.5). In this algorithm we just need matrix-vector multiplication, so the generalized in-
verse AT can be computed efficiently. In order to understand the algorithm better, we give
a brief description of this method as follows:

fk+1 :fk + (f—Auk),
Y = gk Vot _ Vo (4h),  k=0,1,2,..., (4.1)
uk+l = STM(ka),

Page6of 11
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where Y0 = V%, Vy =aA* and 0 < o < W. The corresponding sequence {#*} also con-
verges to an optimal solution of the problem (1.3).

Here we first study an iteratively reweighted least-squares (IRLS) method [33] for robust
statistical estimation. Considering a regression problem Ax = b where the observation ma-
trix A is underdetermined; it was noticed as regards a standard least-squares regression, in
which ||r||, is minimized where r = Ax — b is the residual vector. To overcome the problem

of lacking of robustness of the algorithm, IRLS was proposed as an iterative method to
min ) _ p(ri(x)), (4.2)

where p(-) is a penalty function such as the £; norm. This minimization can be accom-
plished by solving a sequence of weighted least-squares problems where the weights {w;}
depend on the previous residuals w; = p’(r;)/r;. The typical choice of p is inversely propor-
tional to the residual, so that the large residuals will be penalized less in the subsequent
iterations. Then an IRLS involving an iteratively reweighted £,-norm can be better approx-
imated by an ¢;-like criterion. Inspired by the above idea, in order to better approximate
an {y-like criterion [34], our algorithm involves the iteratively reweighted ¢;-norm.

Since that reweighted minimization can enhance the sparsity and the chaotic iterative
algorithm can reduce the computational complexity of the generalized inverse A", we it-
eratively solve the following weighted ¢; minimization problem:

muin{||u||w:Au =f}. (4.3)

We refine the chaotic iterative algorithm, and obtain a new reweighted |, minimization
algorithm as follows:

fk+1 :fk + (f—AMk);

Y =y Vol — Vo (Ayh),

Uk = 8T,k (Y1),

a)f.“l - 1/(|uf+1| +€), i=1...,n

k=0,1,2,..., (4.4)

where y° = Vof°, Vo = aA*, and 0 < < W.
5 Numerical experiments

In this section, we test the reweighted /; minimization algorithm for the problem (4.3). We
used Word image. Here Word is a 256 x 256 sparse image. In our experiments we tested
several kinds of blurring kernels including disk, Gaussian, and motion. We compare dif-
ferent algorithms through both visual effects and quality measurements. Here, the quality
of restoration is measured by the signal-to-noise ratio (SNR), defined by

Y S (u*(i,j) — mean(u*))?

SNR =10 x 1 ,
XIS ST (i, J) — 1403, ) — mean(u” — ud))?

(5.1)

where u*, 4°, and mean(-) are the restored image, original image, and average operator,
respectively.

Our code is written in MATLAB and run on a Windows PC with a Intel(R) Core(TM) 2
Duo CPU T8100 @ 2.10 GHz 2.10 GHz and 1.5 GB memory. The MATLAB version is 7.1.
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Reweighted /; minimization algorithm:
Step1.Setu® = 0,0 =0,5° = Vof %, Vo =aAT, 0 < < W, 0 <8 <1, u = parameter.
2
Step 2. The sequence {uf};cy generated by (4.4).

||uk+1—uk||

Step 3. Until AL <€

We demonstrate the performance of the reweighted /; minimization algorithm, the
chaotic iterative algorithm, the A7 Bregman iteration, and the A" Bregman iteration with
pinv(A) in MATLAB.

In the first experiment, the images we used were blurred with a ‘disk’ kernel of hsize = 15.
The blurry and restored images are presented in Figure 1. By comparing these three algo-
rithms, it is clear that the reweighted /; minimization algorithm performs better in terms
of SNR than the chaotic iterative algorithm, and the AT Bregman iteration lemma is a lit-
tle slower than the chaotic iterative algorithm and the A7 Bregman iteration, which is still
acceptable.

In the second experiment the images were blurred with a ‘Gaussian’ kernel of hsize = 7.
The results are shown in Figure 2. The comparison of the restored effect and the comput-
ing time is basically the same as the first one.

In the third experiment we used a part of the Word image blurred with a 3 x 5 ‘motion’
kernel to better show the local information of the recovered image. The restored small
sparse Word images after using the reweighted /; minimization algorithm, the chaotic
iterative algorithm, the A7 Bregman iteration, and the A" Bregman iteration are plotted
in Figure 3. Again we obtain a similar conclusion to the above experiments.

In fact, the complexity analysis also shows comparative results of several methods. Set
the same loop number is K. So, the workload of the AT algorithm (2.11) is two parts. They
are the workload of the A" and the loop of the (2.11). The workload is O(13) during the

True image Blurred image AT Bregman iteration

orrelation Used
ate A Known
‘Target in an lmage

‘I'ext Running
[n Another
Direction

Chaotic iteration

Reweighted algorithm

Cross- lation Used
To Locate A Known
Target in an Image

Cross-Correlation Used
To Locate A Known
Target in an Image

o
g
a
=
=
=
L
fat

Figure 1 Deblurring results of 256 x 256 sparse Word image convolved by a 15 x 15 disk kernel
generated by the MATLAB command fspecial(‘disk’, 7). Upper left: original image; upper middle: blurred
image. The other three are reconstructed images, respectively, by an A" Bregman iteration, a reweighted £;
minimization algorithm, and a chaotic iteration.
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Figure 2 Deblurring results of 256 x 256 sparse Word image convolved by a 7 x 7 Gaussian kernel
generated by the MATLAB command fspecial(‘Gaussian’, 7, 15). Upper left: original image; upper middle:
blurred image. The other three are reconstructed images, respectively, by the A” Bregman iteration, the
reweighted £; minimization algorithm, and the chaotic iteration.

True image blurred image AT Bregman iteration

C_ross

Cross

Reweighted algorithm A" Bregman iteration New Chaotic iteration

Cross

Cross

Figure 3 Deblurring results of 64 x 80 part of sparse Word image convolved by a 3 x 5 motion kernel
generated by the MATLAB command fspecial(‘motion’, 5,7). Upper left: original image; upper middle:
blurred image. The other four are reconstructed images, respectively, by the A’ Bregman iteration, the
reweighted £; minimization algorithm, the A" Bregman iteration, and the chaotic iteration.

computation of A = USV, A" = VISTUT, when m < n, because of the singular value de-
composition involving multiplication of the matrix and matrix and eigenvalue calculation.
The workload of the loop of the (2.11) is O(m * n x K), because the loop only contains mul-
tiplication of matrix and vector. Therefore, the total workload of the A" algorithm (2.11)
is O(n) + O(m * n * K). The workload of the chaotic iteration (4.1), the reweighted
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Table 1 The comparison of different algorithms

Algorithm Image scale  Blur kernel Time (s) SNR

AT Bregman iteration 256 x 256 15 x 15 disk’ 98.580627 2.285
AT Bregman iteration 116.845442 9.4495
Chaotic iteration 8.8303 114.648685
AT Bregman iteration 256 x 256 7 x 15 'Gaussian’ 51.934199 56389
AT Bregman iteration 63.003234 15.1254
Chaotic iteration 63.68804 13.2921
AT Bregman iteration 64 x 80 3 x 5 'motion’ 0.521046 26.5770
AT Bregman iteration 17.214257 47.7984
Chaotic iteration 0.617180 62.4899
Reweighted £; algorithm 0.631006 63.5906

minimization algorithm (4.4) and the AT Bregman iteration (2.8) are O(m * n * K), re-
spectively. Obviously, K < m < n, the workload of the A" algorithm (2.11) is bigger than
the other three algorithms.

All the experiment data are listed in Table 1. In summary, for the restored quality of the
three methods we have Reweighted > Chaotic > A" > AT, while for the computing time
the order of magnitude is about 1:1:102 : 1. The numerical examples illustrate that the
new reweighted /; minimization algorithm is fast and efficient for deblurring the image. It

is a very useful method.

6 Conclusion

In this paper, we propose the reweighted /; minimization algorithm for image deblurring.
Above all, we can see that the recovery of the image effect is obvious. Especially in the
case of a large degree of blurring and difficult to recover details, it is stable and effective.
In addition, we can improve the efficiency of this reweighted /; minimization algorithm
combining with the ‘kicking’ technology. Because of the scale factor and efficiency of the
algorithm AT, the new method proposed in this paper can be used in a parallel operation

to get a better algorithm.
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