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This paper is devoted to the study of a nonlinear Carrier wave equation in an annular membrane associated with Robin-Dirichlet
conditions. Existence and uniqueness of a weak solution are proved by using the linearization method for nonlinear terms combined
with the Faedo-Galerkin method and the weak compact method. Furthermore, an asymptotic expansion of a weak solution of high

order in a small parameter is established.

1. Introduction

In this paper, we consider the following nonlinear Carrier
wave equation in the annular membrane:

1
Uy — U (llu (t)||(2)) <uxx + ;%) = f(xtuu,u,),

€))
p<x<1, 0<t<T,
associated with Robin-Dirichlet conditions
u(p,t) =u, (1,t) +{u(l,t) =0, (2)

and initial conditions

u(x,0) = gy (x),
(3)

u, (x,0) =1, (x),

where y, f, 1, 1, are given functions; p, { are given constants,
with 0 < p < 1. In (1), nonlinear term ‘u(llu(t)llé) depends on
integral ||u(t)||§ = J: xut(x, t)dx.

Equation (1) herein is the bidimensional nonlinear wave
equation describing nonlinear vibrations of annular mem-
brane O, = {(x, y) : p2 <xt+ y2 < 1}. In the vibration pro-
cessing, the area of the annular membrane and the tension
at various points change in time. The condition on boundary
I = {(x,y) : x>+ y* = 1}, that is, u,(1,£) + {u(1,t) = 0,
describes elastic constraints where { constant has a mechan-
ical signification. And with the boundary condition on I, =
{(x, y) : x*+y* = p*} requiring u(p, t) = 0, the annular mem-
brane is fixed.

In [1], Carrier established the equation which models
vibrations of an elastic string when changes in tension are not
small:

EA (t
Py — ( 1+ T, L u® (y,t) dy) Uy, =0, (4)



where u(x,t) is x-derivative of the deformation, T is the
tension in the rest position, E is the Young modulus, A is the
cross section of a string, L is the length of a string, and p is the
density of a material. Clearly, if properties of a material vary
with x and ¢, then there is a hyperbolic equation of the type
[2]:

1
u, —B <x, t, L u? (y,1) dy) Uy, =0. (5)

The Kirchhoff-Carrier equations of form (1) received
much attention. We refer the reader to, for example, Caval-
canti et al. [3, 4], Ebihara et al. [5], Miranda and Jutuca [6],
Lasiecka and Ong [7], Hosoya and Yamada [8], Larkin [2],
Medeiros [9], Menzala [10], Park et al. [11, 12], Rabello et al.
[13], and Santos et al. [14], for many interesting results and
further references.

The paper consists of four sections. Preliminaries are done
in Section 2, with the notations, definitions, list of appropriate
spaces, and required lemmas. The main results are presented
in Sections 3 and 4.

First, by combining the linearization method for nonlin-
ear terms, the Faedo-Galerkin method, and the weak compact
method, we prove that problem (1)-(3) has a unique weak
solution.

Next, by using Taylor’s expansion of given functions g, y,,
f,and f, up to high order N + 1, we establish an asymptotic
expansion of solution u = u, of order N+1 in small parameter
¢ for

= (e ) + e (1) ()

= f (o tuug,u,) +ef; (xtuu,u,),

p < x < 1,0 <t < T,associated with (1) and (2) with p €
CNY(R,), iy € CN(R,), u(z) = p, > 0, yy(2) = 0, for all
z € R,, f € CN*!([p, 1]1xR, xR?), f, € CV([p, 1]1xR, xR?).
Our results can be regarded as an extension and improvement
of the corresponding results of [15, 16].

2. Preliminaries

First, put Q = (p,1), Qr = Q x (0,T), T > 0. We omit the
definitions of the usual function spaces and denote them by
notations L? = LP(Q), H" = H™(Q). Let (-,-) be a scalar
product in L*. Notation | - || stands for the norm in L* and we
denote | - || x the norm in Banach space X. We call X " the dual
space of X. We denote LP(0,T; X), 1 < p < oo the Banach
space of real functions u : (0,T) — X to be measurable, such
that [[ul1p(o1;x) < +00, with

T 1/p
(], migd) " it1<p<oo
"u”LP(O,T;X) = 0

ess sup [lu ()| x>
0<t<T

7)
if p=o0.

With f € C([p, 1] x R, x R?), f = f(x,t, y1, Y2, ),
we put D, f = 9f/dx, D,f = 0f/dt, D,,f = 0f/dy; with
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i=1,...,3,andD*f =D --- DS f, a = (ety,..., ) € Z°,
lal =, + -+ a5 = k, D@0 f = f.
On H', H?, we shall use the following norms:
1/2
Wl = (01 + ) (8)
1/2
e = (WP + el + vel) ©)

respectively.
We remark that L2, H', H? are the Hilbert spaces with
respect to the corresponding scalar products:

1
(u, vy = J xu (x)v(x)dx, (10)
P

(U V) + (U V) s (U V) + (U Vi) + (s Viey) -
The norms in L?, H', and H* induced by the correspond-

ing scalar products (10) are denoted by || - [|o, || - I, and || - [I,.
Consider the following set:

V={veH :v(p)=0}. (1)

It is obviously that V is a closed subspace of H' and on
V two norms ||v|;p and ||v,| are equivalent norms. On the
other hand, V' is continuously and densely embedded in L*.
Identifying L* with (L*)' (the dual of L*), we have V < L* <
V'. We note more that the notation {-,-) is also used for the
pairing between V and V'

We then have the following lemmas.

Lemma 1. The following inequalities are fulfilled:

(i) vpIvl < Illy < Il for all v € L2,
(i) +/pPlvlig < vlly < Wl forallv e H'.

Proof of Lemma 1. Ttis easy to verify the above inequalities via
the following inequalities:

p Ll v (x) dx < Ll xV* (x)dx < Jl v’ (x) dx,

P
Vv e LZ,
1 1 1 (12)
pj vi (x)dx < J xvi (x)dx < J vi (x)dx,
P P P
Vv e H.
O

Lemma 2. EmbeddingV < C°(Q) is compact and for all v €
V, we have

@) IWleag < VT plvl,
(i) IVl < ((1 = p)/VD)lIv,l,
(iid) Ivly < (1 = P)/\2P)lIvlos
(i) Ivell2 +2(1) = VI,

() (D] < V3wl
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Proof of Lemma 2. Embedding V — H' is continuous and
embedding H' — C°(Q) is compact, so embedding V
C’(Q) is compact. In what follows, we prove (i)-(v).

(i) Forallv e Vand x € [p, 1],

X 1
el = || 0| < [ Oy
p P (13)
<VT=plv.
(ii) Forall v € Vand x € [p, 1],
X 2 X
Ve =|[ 0D <@-p) [ o)y
P p (14)
<(x=p) vl
Integrating over x from p to 1, we obtain
S ) ! 2
IvlI* = J v (x)dx < J (x=p) v dx
P i P (15)
S
2 e
(iii) Forallv € V,
1-p 1-p
<l < —Z vl € —= .
vllo < lIvl NG “Vx" \/2_P ”Vx“o (16)
(iv) Using integration by part, it leads to
1
Wi = | @ dx
P
= 1 [xzvz (x)]1 - J-l X%y (x) v, (x) dx
2 Fol, *
1, ) 17)
= zv (1)—J xv(x)v, (x)dx
p

< SV )+ Wlo vl
1 1
< W+ (W5 + [nl5).

for any v € V, so we get (iv).

(v) By Ivllg = (1/2)v*(1) - jpl x*v(x)v, (x)dx, we have

V(1) =2v]5 +2 Jl x*v (x) v, (x)dx

p
<2 W+ 21wl vl < 212 + T2+ o ¥
<3P,

implying (v).

Lemma 2 is proved. O

Remark 3. On L?, two norms v ~ |v| and v ~ [v|, are
equivalent. So are two norms v — ||v||;p and v — |v||; on H',
and five norms v — V[, v = [V, v = vl v = vedllos
Vvl +v*(1) on V.

Now, we define the following bilinear form:

and v —

a(u,v)=Cu(l)v()+ Jl xu, (x) v, (x) dx, )
P

Yu,v eV,
where { > 0 is a constant.

Lemma 4. Symmetric bilinear form a(-,-) defined by (19) is
continuous on' V x V and coercive on V, that is,

(@) la(u, V)| < Cyllull, vl

(ii) a(v,v) = ColIvI,

forallu, v € V, where C;, = (1/2) min{1,2p/(1 — p)z} and
C,=1+3C

Proof of Lemma 4. (i) By /1= pllv,ll = Wllco gy = Iv(1)], and
VPRIVl < v,y for all v € V, we have

1
la (w,v)| < Clu (D] v ()] + J |, () v, (x)] dx
p
< 3¢ Nl vl + o vl

< 3+ 1) flully v, -

(20)

(ii) By inequality [[v, 12 = (2p/(1 = p)*)IVI[}, we get

1
a(v,v) =072 (1) + J xvi (x)dx =0/ (1) + ||vx||§
P
1 1
> ol = 2l 21l

2 (21)
LT

(1-p)°

2
min {1, —Pz} 2.
(1-p)

Lemma 4 is proved. O

1 2 1
SN

=

| =

Lemma5. There exists Hilbert orthonormal base {w;} of space

L? consisting of eigenfunctions w; corresponding to eigenvalues
A such that

+00,

(ii) a(wj,v) = /\j(wj,v)for allveV,j=12,...

S limy L oA =

Furthermore, sequence {wj/ \/A\j} is also the Hilbert

orthonormal base of V with respect to scalar product a(, ).



On the other hand, we also have w; satisfying the following
boundary value problem:

1 10
Aw; = - (w]-xx + ;wjx> = (ijx) =Ajw;,

in Q, (22)

w; (p) = wj, (1) +{w; (1) =0, w; € C¥([p,1]).

Proof. The proof of Lemma 5 can be found in [17, p. 87,
Theorem 7.7], with H = L2, and a(-, -) as defined by (19). O

We also note that operator A : V — V' in (22) is uniquely
defined by Lax-Milgram’s lemma; that is,

a(u,v) = (Au,v) VYu,veV. (23)

Lemma 6. OnV N H?, three norms v — Vi, v = lvll, =

\/IIVIIS + 1Vilg + 1V ll5 and v = Wil = A[llvill§ + I AVIG are
equivalent.

Proof of Lemma 6. (i) It is easy to see that, on V N H, two

norms v = [[Vllgz, v = [Ivll, = \/IIVII% + [V,lg + Vil are
equivalent, because

VP IV < IVl < VIl
(ii) Forall x € [p,1],and v € V' N H?, we have

Vv € H%. (24)

b} 2
xlAu G = x| 2 ()|

(25)
= xuix +2u,u,, + iui
(a) Proof |ull, < constull,.,.
It follows from (25) that
xul < x|Au (0] +2 [ugug,| + lui (26)
x
Hence,
2 2 2 1 2
letallo < NAull + = fleeelo leallo + = Neaclo
P P
1/2 2 P 2
<l + 5 (2 ol + £ ool
(27)
1 2
+ = o
2 2 1 2 1 2
A+ 2 i+ 3 ol + 5 ol
This implies
6
el = 2140l + 2 ol
3 5 2
<2(1+ 7 (lAullg + Jlully) (28)

3 2
£2<1+—>||u|| .
pr)
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By [vlly < (1 = p)/~+2p)lIvillg, for all v € V, we have
Nell2 = el + 2 + et

(1

<

2
-p)
2 leel + laelly + et

2
1- 3 (29)
s<1+( p) >||u||§*+2<1+—2)||uu§*
2p p
2

1- 6
=<—( P) +3+—2>||u||§*.

2p P

(b) Proof [lu]l,, < constl|ul,.
It follows from (25) that

x|Au (x)]* = XL [3 (xux)]z

2
x? | ox (30)
1
= xuix +2u,u,, + ;ui
Hence,
x |Au (x))* < xuix +2 |uxuxx| + lui (31)
x
Thus,
2 2 2 1 2
Iusly = oty + el Betallo + 5 el
2 1 2 2 1 2
< otells + = (hoeello + loasellg) + = Nl
P P
1 2 1 2
= (1 2) [l 5 bl &)
1\1 2 2
< (145) 5 Dol + i)
1\1
< <1 + —) = lull3.
P/ P
This implies
1\1
= Joaly + NAuly < full + (1 + —) = Jul
(33)
1 1 > 5
=(1+—+—|ul;.
< p P
Lemma 6 is proved. O

Remark 7. The weak formulation of initial-boundary value
problem (1)-(3) can be given in the following manner: find
ueW={uelLl®0,T;VnH)):u € L°0,T;V), u, €
L0, T; L*)}, such that u satisfies the following variational
equation:

(u 0,9y + u(lu@N3) a @ ), v)
= (f(ntuu,u),v),

(34)
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forall v € V,ae,t € (0,T), together with the initial
conditions:

u (0) =,
(35)
u, (0) = uy,

where a(:,-) is the symmetric bilinear form on V defined by
(19).

3. The Existence and Uniqueness Theorem

Now, we shall consider problem (1)-(3) with constant { > 0
and make the following assumptions:

(H,) iy e VNH, &I, € V3

(H,) u € C'(R,), with u(z) = u, >0, Vz € R,;

(Hy) f € C’(Q x R, x R?) such that f(p,1,0,9,,0) =
0, Y(t, y,) € R, xRand D;f € C°(QxR, xR?), i
1,3,4,5.

Considering T* > 0 fixed and letting T € (0,T"] and
M > 0, we put

Ry ()= sup (u(2)+ |0 2)),

0<z<M?

Ky (f) = "f"CO(A*(M)) + ”le”cﬂ(A*(M))

+ D;f ,
3;5" i ”C"(A*(M)) (36)

1 lcsca. umy

= sup{|f (%, t, y1 y2 y3)| : (%1, y15 120 ¥3)
€A, (M)},

where

A, (M) = ‘[(x’t>)’1’J’2’)’3) € Qx[0,T]xR*: il
(37)

1-
< \/—PM, i= 1,2,3}.
P
Also foreach M > 0and T € (0, T"], we set
W (M, T) ={ueL®(0,T;V N H) : 1
€LY (0,T3V), uy € L (Qr), lullioorvee)
(38)
<M, ””t”Lw(o,T;V) M, ””tt"LZ(QT) < M}’
W, (M, T) = {u e W(M,T) :uy, € L (0,T; L)} .
We choose first term 1, = 0, suppose that

Mm71 € Wl (M) T) > (39)

and associate the following variational problem with problem
(1-(3): find u,, € W, (M, T) (m > 1), so that

(it (), ) + py,, () a (u,, ), v) = (F,, (t),v),

YvevV,
(40)
U, (0) = ao)
,, (0) = 4,
where
e () = 1 ([t O2) -
7 ¢ (s 1) "

F, () = f(x,t, 1,y (), Vii,_y (t) 50, (£)).
Then, we have the following result.

Theorem 8. Let assumptions (H,)-(H;) hold. Then, there
exist positive constants M, T such that the problem (40), (41)
has solution u,, € W, (M, T).

Proof of Theorem 8. 1t consists of three steps.

Step 1 (the Faedo-Galerkin approximation (introduced by
Lions [18])). Consider basis {wj} for V as in Lemma 5. Put

k
k k
uld (1) = Y w, (42)
j=1
(k)

where coeflicients ¢, satisfy the system of linear differential
equations:

(® (), w;) + p O a (1P (1), w,)

=(F,®),w;), j=1,...,k

(43)
k
”in) (0) = wop
- (k
”Sn) (0) = e
with
k
Ugk = Zoc;k)wj — i, strongly in V N H?,
=1
(44)
k
Uy = Z,B;k)wj — 7, strongly in V.
=1
The system of (43) can be rewritten in form
(K k ;
ESNE) + Ajtay, (£) ) () = i (1), 1< j<k,
Gy (0) = o, (45)

. (k 0 k

E,; () =(F,®),w;), 1<j<k (46)



Note that, by (39), it is not dlfﬁcult to prove that system
(45), (46) has a unique solution c (t) 1 < j < kon interval
[0, T], so let us omit the details.

Step 2 (a priori estimates). We put
t
SO = x® @) +v® @) + j iy (s)||§ ds, (47)
0

where

X9 1) = |a O]+ a2 (4 0),uP 1),

(48)
YO (1) = a (1 0),0% ) + () | 4ul 0]
Then, it follows from (43), (47), and (48) that
S () = Sy (0)
t 2
+ L t,, (s) [a (uif) (s),ul (S)) + ”Aui,lz) (S)HO] ds
t
2 L (E, (s),u (5)) ds (1)

+2Lta(Fm() 19 (s) ds+j iy (s)" ds

4
=500+ Y1,
=1

We shall estimate terms I; on the right-hand side of (49)
as follows.

First Term I,. By the following inequalities,
i O] = 2[6" (Ietns ON5) (o @23, ©))]
< 2| (ltes 1) ety Ol 5,0 O
<2M°K,; (1) (50)
S (0t ) [a () ), ) + 4y )]
> [a () 0. 0) + |4 O]
we have

1= [ 10 [l 8 )+ s O

(51)
< %M Ky (‘M)J’ S (s) ds.

*

Second Term I,. By the Cauchy-Schwartz inequality, it gives

IL| =2 Ut (F,(5),i (5)) ds
0

< jot £, O, [ )], ds
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a3 =Lk,

2
cLop
2

[ 19 ol

]2\/[ (f)+ JtSSﬁ) (s)ds.
0
(52)

Third Term I5. Similarly, we have

L|=2 " E, (s),u® (s))ds
=2 [ a (£, .

<2 Jt \a (Ey (5). Fyy () a (i (), 4l (5))ds
0

2 Jt \a(F, (s),E, (5)){S® (s)ds
0

< Jta(Fm(s),F (s))ds+j (k)( )ds.

0

IN

(53)
Note that
a(v) < Cy v} = C, (IWIE +|v.lle)
(1-p), 12 2
o (S bk )
1+
e P)uxuo eV,

SO

1+ p?
a(F, (s),F, <s>)scl( 2: )llme(s>||§. (55)

We also have
Eyp (8) = Dy f [ty ] + Ds f [t ] Vit (1)
+ D, f [ty_1] A,y (2) (56)
+ Ds f [tyq ] Vi, (),
where D, f[u,, ] = D, f(x,t, 1, ,(t), Vit,, 1 (), 4, (1)), i=

1,...,5.
It implies from (39), (56) that

2

+[Vis ©,

I O, = Ko (1) N

_ 2
s Ol + [Vt <t>||o} < (Jl £ @)

+3M>KM(f).
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Combining (53), (55), and (57), we obtain

(1+¢°)

2p

1+p° 1-p°
SC1( 2P )<\] 2P

t
+ J Siﬁ) (s)ds.
0

|| < C,

t t
J |E s (s)llﬁds+j s® (s) ds
0 0

2
+3M> TR (f)  ©8)

Fourth Term 1,. Equation (43), can be rewritten as follows:
(i) (£),w;) + p,, (1) (Auly (1), w;)

=(E,®),w;), j=1,...,k

(59)

Hence, it follows after replacing w; with it\y (¢), that
Ji? o,

=, (O (Aul) (1), i) ) + (B, 0,5 1))

< [ O s’ @+ 1E, Ol ] 5" <),

< [t @) |4 )], + 1B 0])° (60)

<22, 0 |4 @) +2|E, O

<24, ) S® (1) + 2|, )|

< 2Ry (W) S () + zl_TPZK& (f)-

Integrate into ¢ to get

t X 2
I, = j i )| ds
’ (61)

< (1) T (1) + 2R () [ S 91,
0
It follows from (49), (51), (52), (58), and (61) that
S® () < sW (0) + TD, (M) + D, (M) r S® (s)ds, (62)
0

where

D, (M) = %(1 —Pz)

(63)

D, (M) =2 [1 + (1 + iM2>I“<‘M(y)].

By means of the convergences in (44), we can deduce the
existence of constant M > 0 independent of k and m such
that

sz) 0) = "”1k”§ +a (U )

([l [ (s ) + 4] 6

forall m, k € N.
Therefore, from (63) and (64), we can choose T € (0,T"],
such that

<%M2 +TD, (M)) exp (TD, (M)) < M?, (65)
kT = <1 + %) ﬁ
S
1 —
- exp [T<1 + #—MZKM (M))] (66)
) 211/2
{w%@@w@(ﬁ(u%)] <L

Finally, it follows from (62), (64), and (65) that
S (t) < M’ exp (-TD, (M))
t (67)
+D, (M)J S® (s) ds.
0
By using Gronwall’s Lemma, (67) yields

S (t) < M? exp (-TD, (M)) exp (tD, (M)) < M?, (68)

forall t € [0, T], for all m and k. Therefore, we have
u® ew (M, T), Vm,k. (69)

Step 3 (limiting process). From (69), there exists a subse-
quence of {uﬁf) }, still so denoted, such that

ugi) —u,, in L% (O, T;V N H2) weakly”,

- (k) I oo *
u’ —u,_ in L™ (0,T;V) weakly’,
m y (70)

in L* (Qp) weakly,
u,, € W(M,T).

Passing to limit in (43), we have u,, satistying (40), (41) in
L*(0,T). On the other hand, it follows from (40), and (70),
that u! = —p,,(t)Au,, + E,, € L°(0,T; L?), and hence u,, €
W, (M, T) and the proof of Theorem 8 is complete. O

We will use the result obtained in Theorem 8 and the
compact imbedding theorems to prove the existence and
uniqueness of a weak solution of problem (1)-(3). Hence, we
get the main result in this section.



Theorem 9. Let (H,)-(H;) hold. Then, there exist positive
constants M, T satisfying (64)-(66) such that problem (1)-(3)
has unique weak solution u € W;(M,T). Furthermore, the
linear recurrent sequence {u,,} defined by (40), (41) converges
to solution u strongly in space W,(T) = {v € L°(0, T; V) : v' €
L0, T; L)}, with estimate

M
ety = tally, oz < mk? Vm € N. (71)

Proof of Theorem 9.
(a) The Existence. First, we note that W, (T') is a Banach space
with respect to norm ||V||W1(T) = [Vllgeooyvy + IIV'IILm(O)T;Lz)
(see Lions [18]).

We shall prove that {u,,} is a Cauchy sequence in W, (T').
Let w,, = u,,; — u,. Then, w,, satisfies the variational
problem:

<w:rlt (t) 4 V> + #m+1 (t) a (wm (t) > V)
+ [A[/tm+1 (t) ~ Um (t)] <Aum (t) > V>
=<Fm+l(t)_Fm(t)’V>> Vv eV,

(72)

w,, (0) =w!, (0) = 0.
Taking v = w] in (72),, after integrating into ¢, we get

Zpy (1)

- [ i ©a 9w, ) ds

t
=2 bt ()= 1 9] (At 9], () s 73)

0
+2 Lt (Fps1 (5) = Fy, (), w), (5) ) ds
=h+L+75
where
Z, () = [, O] + s () (w0, (1) 0, )
> [l O} + e (w,, (1), w,, () (74)
> ), O + 1. Cow, 0]

All integrals on the right-hand side of (73) will be estimated
as below.

First Integral J,. By (50) and (74), we have

1= [ Bt 9 100, (9) s
(75)

t
< i2MZIA<JM (w) J Z,, (s)ds.
U 0
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Second Integral J,. By (H,), it is clear to see that

|t ) = s @] = [t (et ©)]5) = 8 (1 )|
< Koy () It )6 = 1ty O] (
< 2MKy, (1) "wm—l (t)Ho

< 2MK,, (1) lewmr lw, oz -

76)

Hence,

t
1] <2 lL (s (5) = by ()] (At (5),w), (5)) dls

< 4MEK (1) |wy_ "Wl(T)

t
. L |Aw,, ()], "w;n (s)"o ds < 4M°K,; (u) 77)
t
. ||wm_1||W1(T) L "w:n (s)"0 ds < 4TM4I?'§V[ ()

t
T L 2, (s)ds.
Second Integral J5. By (Hj;), it yields
[Ees @) = En Olly < Kng () (s O

[V, O + |whey ©),) < Kn ()

- (1‘—” 19y Ol + [V O

NeT;

twl <r>||o) <Kn () (1 ; 1@5) 78)

(19 Ol i 0),) £ Kur (1

1-p

2 o

Hence,

15| <2 UO (Fps1 (5) = Fyy (), w), (5) ) ds

<2 Lt |1 () = E, ()], "w:n (s)||0 ds

< 2Ky (f) (1 + 1_—\/2—5) llwm-lllwn (79)

; 2
.L "w,'n (s)”ods < TKi/I(f)(l + %)

t
) ||wm_1||évl(T) + Jo Z,, (s)ds.



Mathematical Problems in Engineering

Combining (73), (75), (77), and (79), we obtain

Z ()<T

mﬁmnmmbﬂ%ﬂ

1 e
Ny +2 (1 + LMy (y)) (80)

t
. J Z,, (s)ds.
0
Using Gronwall’s lemma, we deduce from (80) that
"wrrt"Wl(T) <k "wm—lllwl(T) Vm €N, (81)

which implies that

H”m - ”m+P||m(T) o A kp) ™k
(82)

< k' Ym,peN.
1—kp © P

It follows that {u,,} is a Cauchy sequence in W, (T'). Then,
there exists u € W, (T') such that
u,, — u strongly in W, (T). (83)
Note that u,, € W;(M,T), and then there exists
subsequence {umj} of {u,,} such that
—u in L% (0, T;Vn Hz) weakly”,

umj

! !
Mmj —u

in L (0,T;V) weakly”,
(84)

" "
Uy, — U

in L* (Qp) weakly,
ueW (M,T).
We also note that

“Fm ) - f (xtuu, ut)|lL°°(0,T;L2)
<K 1+ — = .
(152 Y s =
Hence, from (83) and (85), we obtain
E,(t) — f(xtuu,u,)
(86)
strongly in L™ (O,T; Lz) :
On the other hand, we have
|t (©) = 1 (I (1) ] < 2MK pg (1) 101 )]

< 2MK, () ””

(87)
m-1 " ””wl(T) .

Hence, it follows from (83) and (87) that

o () — (||u (t)||§) strongly in L™ (0,T).  (88)

Finally, passing to limit in (40), (41) as m = m; — 00,
it implies from (83), (84), 3, (86), and (88) that there exists
u € W(M,T) satisfying

(e 0,9 +u (lu @15) a (w (t),v)

(89)
—(F (ottn i) ).
for all v € V and the initial conditions
u (0) = ﬁ(p
, (90)
u (0) =1u,.

Furthermore, from assumptions (H,), (H;) we obtain
from (84),, (86), (88), and (89), that

" = —p (I (0)15) Au () + f (%t 1 1)

eL® (O,T; LZ),

(o1

and thus we have u € W;(M,T). The existence of a weak
solution of problem (1)-(3) is proved.

(b) The Uniqueness. Let u,u, € W;(M,T) be two weak
solutions of problem (1)-(3). Then, u = u; — u, satisfies the
variational problem:

<u" ®, V> +u ) a(t),v)

+ [y (8) =y ()] (Auy (£), v)
=(F,(t) - F,(t),v), WveV,

(92)

u(0)=u'(0)=0,

where F(x,t) = f(xt,u, Vu,u)), g(t) = p(lu0ON3), i =
1,2.
We take w = u' in (92), and integrate in t to get

t
Z () = L w (s)a(u(s),u(s))ds
+2 L <F1 (s) - F, (s),u (s)> ds (93)

“2 [ [ ) ) (A, 9. 9) s,

with Z(t) = ||u'(t)||§ + py (B)a(u(t), u(?)).
Putting Ky, = 2[Ky()(1 + (1 = p)/~2p)(1 + 1//E,) +
(/p, +2(1- p)/\/Zy*p)MZEM(‘u)], it follows from (93) that

Z () <Ky, Lt Z(s)ds, Vtel0,T]. (94)

Using Gronwall’s lemma, it follows that Z(¢) = 0, that is,
Uy = U,.
Therefore, Theorem 9 is proved. O
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4. Asymptotic Expansion of the Solution
with respect to a Small Parameter

In this section, let (H;)-(H,) hold. We make more the
following assumptions:

(H)) py € C'(R,), with y;(2) > 0, Vz € R,.

(H)) f; € C°(Q x R, x R’) such that f,(p,£,0,y,,0) =
0, V(t, y,) € R, xRand D, f, € C°(QxR, xR%), i =
1,3,4,5.

Considering the following perturbed problem, where ¢ is
a small parameter and [e] < 1:

Uy + pe [u] Au = F, [u] (x,1),
p<x<1l, 0<t<T,
u(p,t) =u, (1,t) +{u(1,t) = 0, (P,)
u(x,0) =1, (x),

u, (x,0) =1, (x),

with
-10 1
Au = < 5m (xu,) = - <uxx + ;ux> ,
pe [u] = e (lu @)1)
= (Il Ollg) + e (lu (D) 95)

F, [u] (x,t) = f [u] (x,t) + f; [u] (x,1),
flul(xt) = f(xtuu,u,),

filu] (1) = f1 (%t u,u,uy).

First, we note that if functions y, y,, f, f; satisfy (H,),
(Hé), (H;), (H;), then a priori estimates of the Galerkin
approximation sequence {ufﬁ)} for problem (1)-(3) corre-
sponding to y = u,, f = F.fu], le] < 1, leads to
ugf) € W,(M,T), where constants M, T, independent of ,
are chosen as in (63)-(66), in which g, EM(y), Ky (f) are
replaced with u + p;, Ky (u) + Kp(py), Kpg(f) + Ky (f1)s
respectively. Hence, limit u, in suitable function spaces of
sequence {ugf)} as k — +00, after m — +00, is a unique weak
solution of problem (P,) satistying u, € W, (M, T).

We can prove in a manner similar to the proof of
Theorem 9 that limit u; in suitable function spaces of family
{u,} as € — 0 is a unique weak solution of problem (FP,)
(corresponding to ¢ = 0) satisfying u, € W; (M, T).

Next, we shall study the asymptotic expansion of solution
u, with respect to a small parameter . For multi-index o =
(ag,...,ap) € Zlf, and x = (x,,...,xy) € RN, we put

x| =a; + -+ oy, ol =gl ayl
aBezZV, a<fesa <P Vi=1,..,N, (9)
X% = xR

We need the following lemma.
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Lemma 10. Let m,N € N and = (x;,...,xy) € RY, e € R.

Then,
N \" mN
(Z xis’) = Z Plim) [N, x] &, (97)
i=1 k=m

where coefficients Plim)[N, x], m < k < mN, depending on
x = (xy,...,xy), are defined by the following formulas:

PV [N,x]=x, 1<k<N,

m!
2
‘x'

P [N,x] = >
acAP(N) (98)

N
A(km) (N) = <[oc eZY :lal =m, Zioci = k} .
i=1
Proof. The proof of Lemma 10 is easy; hence, we omit the
details. O
Now, we assume that

(HM)u € CNYR,), w, € CVR,), with u(z) > u, >
0, u(z) 20, Vz e R;

(HN) f e N @QxR, xR?), f, e CN@QxR, xR?) such
that f(P> t’ O) yz) 0) = fl(p) t) 07 yza 0) = 0> v(t’ )’2) €
R, xR.
Let u, be a unique weak solution of problem (P,); that is,
ug + p [uo) Aug = f [u] = F,
p<x<1, 0<t<T,
Uy (p,t) = tg, (1,8) + Cuy (1,1) = 0,

Uy (x,0) = 1y (x),

(F)

uy (x,0) = i, (x),
uy € Wy (M, T).

Let us consider the sequence of weak solutions u, 1 <
k < N, defined by the following problems:

w, +plug) Aug =F, p<x<1,0<t<T,
u (pot) = gy (1,8) + Quy (1,£) = 0, B
(Py)
U (x,0) = u,i (x,0)=0,
I/lk € Wl (M, T) N
where Fy, 1 < k < N, are defined by the following formulas:
F = £y [u] + @, [N, fuo, 8] - (.”1 (4]

+®, [N,y,uo,ﬁ])Auo, k=1,

(99a)

Fi = O [N, frug, ] + @y [N = 1, f1,up, 1]

- (P‘l [ug] + @, [N, i, uo,ﬁ]) Ay,
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i+j=k,
1<i<N+1,1<j<N-1

( j+1 [N, i, g, 4]

+§>j [N = 1,4, uy ])Au, L 2<k<N,
(99b)

1

with @ [N, f,ug, it], D[N, p,ug, ], 1 < k < N, are defined
by the following formulas:

— R 1 R
O [N, frugii] = ) —D'f[u] W [y, Nii], 1<k<N,
1<|yl<k I'*
¥, [y, N, ii] = Y P,ﬁlyl) [N, 7] P,gz) [N, & P,ﬁf) (N,VE], 1<k<NJy|,
(kl’kZ’k3)€Z(y)N);
ky+ky+k3=k
= (up,...,uy), (100)
i = (u;,...,u;\]),
Vii = (Vuy,..., Vuy),
A(y,N) = {(ky,ky,k;) € Z3, : y; < k; < Ny, Vi=1,2,3},
y=yeys) €25, 1<y <N,
& SO (m)
D [N, o ug,it] = Y %M’” (o] P [2N,3], 1<k<N,
m=1 :
G=(0y...,057)»
2 <M0 (t) )ul (t)> > k =1, (101)
2 (uy (0, u ) + Y (u; (), (B), 2<k<N,
j<k
D u; (), (1) N+1<k<2N.

<k

Then, we have the following theorem.

Theorem 11. Let (H,), (H;N)), and (H;N)) hold. Then, there
exist constants M > 0 and T > 0 such that, for every € €
[-1, 1], problem (P,) has unique weak solution u, € W;(M, T)
satisfying the asymptotic estimation up to order N+1 as follows:

< CT |£|N+1 ,

Wi(T)

(102)

N
k
U, — ) Ue
k=0

where functions u, 0 < k
problems (P,), (P), 1 < k
constant depending only on N
k<N.

< N are the weak solutions of
S N, respectively, and Cr is a
PG fo fio bt e 0 <

In order to prove Theorem 11, we need the following
lemmas.

Lemma 12. Let @, [N, f,u,, 1], 1 < k < N, be the functions
defined by the formulas (100). Puth = Zszo ue", then we have

Fh) = flupl + Y O [N, frup, ] &

1 (103)

Mz

k

+ gV Ry [ foug i1, €],

with | Ry f thg th €]l oo 2y < C. where C is a constant
depending only on N, T, f, u;, 0 < k < N.

Proof of Lemma 12. In the case of N = 1, the proof of (103)
is easy; hence, we omit the details, and we only prove with

N >2.Puth =u,+ Z,Ij:l ure® = ugy + hy. By using Taylor’s
expansion of function f[h] = flug+hy] = f(x,t,ug+hy, uy+
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hi,VuO + Vh,) around point [1;] = (x,t, uo,u('),Vuo) up to
order N + 1, we obtain

[h] = f (x,t,uy + by, up, + B, Vuy + Vh
0 1 0 1 0 1

= flul+ Y. —Dyf[uo]h“ (H)™ (Vh)" (104

1<lylsN

+ Ry [frughy] s

where

N
Ry [frug, 1] = Z )/le 1-0)"

[yl=N+1

105
- D' f (x,t,uy + Ohy, uy + O, Vi + OVh, ) (105)

R (B) (VR d6 = 16N RY [ frug el

Y=y vs) € Zi, Yl =y + 9, +y5 Y = 1!y L DY f =
DY DYDY f, DY flug) = DY f (x, £, tg, g, Vitg).
By formula (97), we get

N "1 Ny,
h? = (Z ukek) = Z P,Eyl) [N, ] &,
k=1

k=y,

(106)

where 1 = (uy,...,uy).
Similarly, with (})", (Vh,;)", we also have

N 2 Ny,
( u,’csk> = Z PIEVZ) [N, ﬁ’] sk,
k=1

k=y,

()"

(107)

(Vhy)"

N V3 Ny3
(Z Vuksk> =y P [N, Vi) €,
k=1 k=y;

where &t = (u;,...,u;\]), Vit = (Vuy, ..., Vuy).
Hence, we deduce from (106)-(107) that

N
Z ¥ [y, N, @] &
k=lyl

i ()" (o) =

(108)
Nyl

+ Z ¥ [y, N, ii] e,
k=N+1

where W [y, N, ], 1 <k < Nly|, are defined by (100).
We deduce from (104), (108) that

(K] :f[“o]
+ 0y —DYf[uo]h%( ) (Vh))"

1<|yIsN
+ 1™ RY [ fug, by €]

= f [uo]
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N
) l,Dyf [uo] Y [y, N.ii] &
k=lyl

1<iy<n YV
Nlyl
+ Z D"f U] Z ¥ [y, N, ii] €
1<iy<n Y k=N+1

+ |8|N+1 R§\11) [f) ”o’hl’f]
= f [uo]
) < Y D' f ] %Iy N, a1>sk
1<lyl<k
+ eV Ry [ f ugo i €]

N
+ Y B [N, foup, ] e*

k=1

+1eN" Ry [ f ug, s €]

(109)
where @ [N, f,u, ], 1 <k < N, are defined by (100) and
6™ Ry [ fy o ]

=2

1<lyl<NY*

Nlyl

D7) Y WlpNald o)
k=N+1

+ el RO [ £ ug, by €]

By the boundedness of functions u, u;, Vi, 1 < k <
N in the function space L*(0, T; H 1), we obtain from (100),
(105), (110) that IIEN[f, U, Uy €]l oo,y < C, where C is a
constant depending only on N, T, f, u;, 0 < k < N. Thus,
Lemma 12 is proved. O

Lemma 13. Let O, [N, u, uy, 1], 1 < k < N, be the functions
defined by formulas (101). Puth = ZkN:O ue", and then we have

N
U [h [uO Z N U, uO)
k=1 (111)
+1el™™ Ry [ ugr i €] »

with II§N[y, tg, s €]l o002y < C, where C is a constant
depending only on N, T, u, uy, 0 <k < N.

Proof of Lemma 13. In the case of N = 1, the proof of (111)
is easy; hence we omit the details, and we only prove with
N=>2.
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Puté = IIh(t)IIg - ||u0(t)||(2). By using Taylor’s expansion of
function ulh] = ‘u(llh(t)llg) = ‘u(lluo(t)llg + &) around point
||140(t)||3 up to order N + 1, we obtain

wlhl = u (I O12) = 1 (Juo O +2)

N
1 o N
=u(Juo ®f5) + > — " [ug) € (112)

m=1
+ Ry [, 40, €],
where
Ry [t 10, €]
1 1
=— | @-0Nu™" (Ju, @5 +6) &V do
N! Jo
113)
= [el™" RY [t 10, €]
dar dr
(m) U “ 2
w™ [ug] = e [to] = T (o O15) -
On the other hand, we also get
= luto ®+ 1y g = o O
(114)
=2(u O @)+ I Oy = Y o
1<k<2N
where 03, 1 <k < 2N, are defined by (101).
Using formula (97) again, it follows from (114) that
m o 2mN
{”‘:( Z aksk> = Z Plim) [2N, 5] &
1<k<2N k=m
(115)
N 2mN
=Y B"™[2N,5]é+ Y P™[2N,5],
k=m k=N+1

where 6 = (07, ...,0,5)
We deduce from (112), (115) that

ulh) = plup) + Y ,H(m)[ o] &

m= 1
+ 16 RY (g, & €]
N S ) k
m m -
=il + Y L™ ] 3 B [2N,6]e
m=1 : k=m
i o) [14,] ZiN P [2N, 5] &*
,P‘ 0
m=1 M k=N+1
+ el RY [ g, €]
= pt o]
S < L (m) ]P(m) [2N —»] k
NG 5] )e
k=1 \m=1
+ 1™ Ry [ o, s €]

13

< k
Z [N, p,ug, o] €

+ e Ry [ ug» b €]
(116)

where 6k[N, ts g, 1], 1 < k < N, are defined by (101) and

eV Ry [ g, 1, €]

N 1 2mN
=Y —u" ] Y P™[2N,5] 117)
k=N+1

MURY [ Eoe]-

By the boundedness of functions u, u;, Vi, 1 <k < N
in function space L°(0,T; H'), we obtain from (101), (113),
(117) that IIEN[y, U, U, €]|l o (,112) < C, where C is a constant
depending only on N, T, y, 14y, 0 < k < N. Thus, Lemma 13
is proved. O

Remark 14. Lemmas 12 and 13 are a generalization of the
formula contained in [19, p. 262, formula (4.38)] and it is
useful to obtain Lemma 15 below. These lemmas are the key
to establish the asymptotic expansion of weak solution u, of
order N + 1 in small parameter &.

Letu = u, € W;(M,T) be the unique weak solution of

problem (P,). Then, v = u, — ZkN:O ue® = u, — h satisfies the

problem:
V! +u,[v+h]Av=F,[v+h] - F, [h]
- (“s [v+h] - He [h])Ah
+E,(x,1),
(118)
p<x<1, 0<t<T,
v(p,t) = v, (1,£) +{v(1,t) =0,
v(x,0) =7 (x,0) =0,
where
E, (x.8) = f [h] - f [ug] + fy [B]
(119)

N
— u[ug] + epy ) AR =Y Fre".
k=1

~(u[H]

Lemma 15. Let (H,), (HY), and (H{') hold. Then, there
exists constant C,, such that

N+1
bl

||E€||L°°(O,T;L2) <C, ¢ (120)

where C, is a constant depending only on N, T, f, f1, t th>
U, 0<k<N.
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Proof of Lemma 15. We only prove with N > 2.
By using formula (103) for function f,[h], we obtain

N-

filh] = f1 ”0 Z _1’][1’”07’7‘]5](

P (121)
+ |£|N§N—1 [f1>”0>a’ 5] >

where [Ry_; [ f1> tg> s ellpor2y < C, with constant C
depending onlyon N, T, fi, gy, t44, 0 < k < N.
By (121), we rewrite ef; [h] as follows

N
efy [h] = ef; [uo] + Z Dp_y [N = 1, f1, up, 1] "
k=2 (122)
+é |£|N§N—1 [f1> v, Thr €] .

Hence, we deduce from (103) and (122) that

fIhl = flup] +efy [h] = (f1 [140]
+ @, [N,f,uo,ﬁ])e

N - (123)
+ Z (q>k [N, foug, 6t] + @ [N - l)fl’”ma])

k=2
&+ e R Ry [fs frougsibe] s

where Rylf, fi,ugih,e]l = Rylfiugthe]l + (e/lel)Ry,
[f,» Ug» €] is bounded in function space L (0, T; L?) by a
constant depending only on N, T, f, f;, 14,0 < k < N.

On the other hand, we put 17, = u; [ug] + @, [N, p, g, ],
e = Op [N, p, g, 1] + Dy, [N — 1, 4y, 14y, 1], 2 < k < N, and
we deduce from (111) that

— (u[h] — u[ug] + ep, [h]) Ah = —Ah (#1 [140]

+®, [N,y,uo,i’t])s
N

+Z((Dk [N, u,ug, 1 ]+®k [N 1>.”1’”0:’7‘])
k=2

- Ah (|s|NJrl N Lt tigo b €] + £ |eN

'RN—I [Hl’uo’a’ 5]) =-Ah (.“1 [“0]

+®, [N,y,uo,ﬁ]) €
N —_ —_

+ Z (q)k [N, p, 1, 81] + Dy [N - 1»#1)”0’17])
k=2

[ 1N Ry [ g g s €] ——(ZAus)

i=0
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N
: <’715 + Z’h"g]> + &M Ryy [ty o1 gy i €]

=2

N . N . N .
_ <Z(;Auis’> ne— (E)Auiel”) <Z;’7j8]1>
1= 1= Jj=

+ 16l Ry [t phrs thg s €] (ZAu, £ );71

i=1

M Nl N+1A ; N-1 j
—mAaune - Z Ui, € Z i€
i=1 =1

+ 16N Ry [ty the s €] (ZAuk 1€ > m

N+1 N-1

B Z Z’LHA” HI g AueN [N

i=1 j=1

N
= - k
Ry [1 by, ugs i, €] = 1y Auge — (ZAuk—ls )
k=2

2N

k

M~ Z Z N Aty | €
k=2 i+j=k,

1<i<N+1,1<j<N-1

N+1 N+l 5 N
~mAuye" " + el Ry [ phy, v, 1 €]

N
= -1 Auge - (Z’hA”k—lsk)

k=2

N
- Z Z Njr1 Aty &
k=2

i+j=k,
1<i<N+1,1<j<N-1

2N

k=N+1 i+j=k,
1<i<N+1,1<j<N-1

Nin Aty | €

N+1

- ’11A”N8NJrl + el Ry [t g tho Ty €]

N
=~ Auge — Z AU,
k=2
k N+1
+ z NimAuiy | e + le|

i+j=k,
1<i<N+1,1<j<N-1

‘Ry [ 1> 1o, T €]

(124)
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where
|5|NJrl EN [14’ > g, U, 3]
=-Ah (|s|NJrl Ry [ ugs 11, €]

+elel™ Ry, (41> tho, T, 5]) >

N+1 51 -
lel ™ Ry [phs phr thg s €] (125)
2N
- _ A k
= i Al | €
k=N+1 i+j=k,
1<i<N+,1<j<N-1
N+1 N+1 =
— 1 Aune™ " + e Ry [ty Uy 1 €] -

Combining (99a)-(99b), (119), (123), and (125) leads to

E, (x,t) = f[h] = f [uo] +efy [A] = (u[h] = pt [wo]

+ &gy [h]) Ah — Zerk = (fl [140]

k=1
— N —
+®, [N, fiug,ii]) e+ Y (@ [N, foup, 1]
k=2

+ @y [N =1, fru0,8]) € + el Ry [ £ frs oo

N

i, €] — 1 Auge — Z
k=2

mAU_,

k N+1 (1)
+ Z N Auiy | € +el™ Ry (4
i+j=k,
1<i<N+1,1<j<N-1

(126)

N
oy, U, T €] = Zerk = (f1 [to] + @y [N, f,up, 1]
k=1

N
_’71A“0_Fl)5+ Z Dy [N, foup, ]

k=2

+6k—1 [N =1, fi, ug, 0] — 1y Argy_,

k N+1
- Z e+ le Nt
i+j=k,
1<i<N+1,1<j<N-1

Njn1 Ay — Fe

> - =1 -
(R L, frouo o] + Ry [ 1, ]
= [e[M*! (EN [f, fi uop 1, €]

=(1) N
+Ry [w, Hv”o»”’s])-
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By the boundedness of functions u, u;, Vi, 1 < k < N in
function space L*(0, T; H 1), we obtain from (125), (123), and
(126) that

, <C, lefM, (127)

|Eclioo,rire

where C, is a constant depending onlyon N, T, p,{, f, f, 4,
[/ll,uk,o SkSN
The proof of Lemma 15 is complete. O

Proof of Theorem 11. Consider sequence {v,,} defined by
vy =0,
Vil':z T He [vm—l + h] Avm

=F,

&

[V + h] = F, [h]

= (te [Viper + B] = p [h]) AR + E, (x,1), (128)
p<x<1,0<t<T,

Vi (P 1) = Ve (1,1) + $v, (1,8) = 0,

v, (x,0) = v:n(x,O) =0, mz>1.

By multiplying two sides of (128); with v/ and after
integrating in ¢, we have

Zy (t)

) L i (5) @ (Vy (5), vy, (5)) ds

+2 L <Es (s), v, (s)) ds (129)

+2 jt (Fe [Vpuy +h] = . [H], v, (5)) ds
0

=2 [ (e + ] = g [A]) (AR, ) s,

0

where

nl_’tm (t) = Me [Vm—l + h] (t)
= (Vs O + R D7)
(130)
+epty ([ O+ D)

Zyy (1) = |V, O+ By (1)@ (10 (8), v, (1)
Note that
[, ] = 2[[6 (I © + R O])
4 6] ([P O+ RO)] (s )
+h(t), v, &) +h ()] 2[Ry, () (131)
+ Rag, ()] Vs @) + RO [V )+ H 0]

< 2[Ry, () + Ky, ()] M2 = 0, (M),
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where M, = (N + 2)M, and

Z, (0) 2 |, @) + 0 (v, (0), v, ()
(132)

> vl 0+ .Co v O

Using Lemma 15, (129) gives

Z, (t) < TC? |e]N*™? + J v (s)" ds+ —a,, (M)
. Jth (s)ds
0

+2 Lt 1f [Vies + 1] = £ (1] v (90, s + 2 el

N

t
2 [ ot s + ] = s 0 1 |, 9],

Viuor + 0] = f1 (A, "V:w (S)"o ds

t
<TC |V + (1 + Miaz (M)) J Z, (s)ds
% 0

2 1r1

2 [ VA s 11 = £ 001, 9] s

+2(N+1)

Vs + 1] = £ 1o [vh, )], s (133)

t
M JO |¢t [Vinr + B] = [H]| "v,'ﬂ (s)"o ds+2|e|

-(N+1)
t
M Jo |ty [Vin +h] = py [h]] ”V:n (S)”O ds

t
=TC |V + (1 + #ioz (M)) L Z,,(s)ds

We estimate the integrals on the right-hand side of (133)
as follows.

Estimating J,. We note that

FInll, < K (f)(l . %)

’ ["VVm—l (t)no + “V:n—l (t)“o] < Ky, (f)

1
1 _
(1535 ) P

with M, = (N + 2)M.

“f  +h] -

(134)

Mathematical Problems in Engineering

It follows from (134) that

=21 Do 1= £ L o ]

1 2
<1, (01022 ) bl 099

7
te )
+ j I, )] s
Estimating J,. Similarly,

t
T=2 J 1y s + 1= £ W1l [, 9] s

(fl) (1 + E)z ” Vin- IHW(T)
; j [+, @) ds.

Estimating 5.
|[" [Vm 1 + h h]|
< Ky, (1) [V O + O]y = N @)1

< (2N +3) MEM (1) "Vm—l GIR

(136)
We have

(137)

< (2N +3) MK, (1)

\/— " V- 1||W](T

Hence,

73=2(N+1)

t
MJ“‘ 1 +h]-
0

<2(N+1) (2N +3) M’K,, (n)

h]|“v (s)" ds

-p

1
T

[ Lt [, @] ds < v+ (138)

- (2N +3)* M*TR,, (1)

t , P
¥ j v, @[] ds.

Estimating J,. Similarly,

(T)

(1-p)
p

74=2(N+1)

M L |t Ve + h] =y [R]] v, )], ds

3
< (N +1)* (2N +3)* 1V14T17<d1\42 (1) )

) (1 _pp) + JZ "v;n (s)”z ds.

"Vm—l "m (T)
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Combining (133), (135), (136), (138), (139), it leads to

Z,, (t) < Tpy "Vm—l"ivl(T) +TC e

1 t (140)
+ <5 + —0, (M)) J Z,, (s)ds,

Ha 0
where py; = [waz(f)+1<§42(fl)](1+(1-p)/\/$)2+[Ei@(yﬂ

—2
oy ()N + 17CN +37M((1 - p)*/p).
By using Gronwall’s lemma, we deduce from (140) that

||vm||W1(T) <orp “Vm—IHWI(T) +6r(e), Vm=>1, (141)
where o = nppap Op(e) = npClel™ = (1 +
1/ Co)NT exp[T(5 + (1/p,)0,(M))].

We can assume that
or < 1, with the suitable constant T' > 0. (142)

We require the following lemma, and its proof is imme-
diate, so we omit the details.

Lemma 16. Let sequence {(,,} satisfy

(p,<0C, 1+6 VYm=>1, (=0, (143)
where 0 < 0 < 1,8 > 0 are the given constants. Then,
( < 9 Vm > 1 (144)
"7 (1-0) -

Applying Lemma 16 with {,, = vl ¢y, 0 = o7 < 1,
8 = 8;(e) = C,nplelN™!, it follows from (144) that

Or (&) -C |£|N+1
oy T ’

“Vm“Wl(T) < 1_— (145)

where Cr = 77C../(1 = p+/Pag)-
On the other hand, linear recurrent sequence {v,,} defined

by (128) converges strongly in space W;(T') to solution v of
problem (118). Hence, letting m — +00 in (145), we get

N+1

IVllw, () < Crlel™. (146)

This implies (102). The proof of Theorem 11 is complete.
O
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