
Research Article
Sectorization and Configuration Transition in Airspace Design

Xiang Zou, Peng Cheng, Bang An, and Jingyan Song

Department of Automation, Tsinghua University, Beijing 100084, China

Correspondence should be addressed to Peng Cheng; chengp@tsinghua.edu.cn

Received 20 February 2016; Accepted 24 May 2016

Academic Editor: Babak Shotorban

Copyright © 2016 Xiang Zou et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Current airspace is sectorized according to some predefined rules that are not flexible. To facilitate utilizing the airspace more
efficiently, methods to design sectors need to be promoted. In this paper, we propose an undirected graph cut-based approach
that employs a memetic local search-embedded constrained evolution algorithm, NSGA-II, to generate nondominated airspace
configurations. We also propose a new concave hull-based method to automatically depict sector boundaries. In addition, we also
study the configuration transition problem.We define the similarity of the two different configurations and calculate their similarity
with a bisection diagram and a minimum cost flow algorithm. We build a forward network to represent configuration transitions
across several consecutive time periods and use multiobjective dynamic programming to determine a series of nondominated
configuration links from the first period to the end. We test our approaches by simulation in high-altitude airspace controlled by
Beijing Area Control Center. The results show that our sectorization method outperforms the current configuration in practice,
providing a lower sector number, lower intersector flow, more balanced workload distribution among the different sectors, and no
constraint violations, so that the proposed approach shows its significant potential as practical applications for dynamic airspace
configuration.

1. Introduction and Literature Review

Airspace sectors are basic controlling units in Air Trans-
portation Systems (Figure 1). They were originally designed
according to some predefined rules such as historical or
geographic considerations or just according to experience.
Sectors have essentially remained unchanged in terms of
geometric shape and the total number of sectors inside a
specific airspace. However, along with rapidly increasing air
transportation, fixed sectors cannot accommodate varying
traffic flows anymore; several problems have arisen, such as
unbalanced workload distribution across different sectors,
with overload in some sectors and very sparse flow density in
others, and improper sector numbers, whichmeans toomany
open sectors in off-peak time periods and too few sectors
during busy times or too little flight time in a single sector
for some flights.

Original ideas to deal with the problem of fixed airspace
structure is the “Merge and Divide” operation, meaning
combining two or more adjacent sectors together when
the traffic flow is low and splitting one sector into several
during peak hours or choosing one airspace structure from

a predefined experienced structure set [1–4]. However, this
approach is not flexible enough because the boundaries
of these sectors remain unchanged across different time
periods. A more advanced concept, called Dynamic Airspace
Configuration (DAC), was therefore proposed [5]. In DAC,
both the boundaries of the sectors and the number of sectors
are allowed to change according to varying traffic situations.

One key issue in DAC is the sectorization problem, that
is, how to divide an airspace into several sectors.The solution
of a sectorization problem is always called the airspace
configuration.

To the best of our knowledge, the work by Delahaye et
al. [6] may be one of the earliest studies to systematically
research the sectorization problem, in which the author
utilized a genetic algorithm to generate an optimal airspace
configuration. Since then, many approaches have been devel-
oped. To summarize, relevant methods can be sorted into
three categories [7]:

(i) Methods based on geometric computation.
(ii) Methods by cells (grids) growth (gathering) or by

directly clustering trajectory points.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 6048326, 21 pages
http://dx.doi.org/10.1155/2016/6048326

2 Mathematical Problems in Engineering

Figure 1: Configuration of Beijing Area Control.

(iii) Methods based on undirected graph cuts.

In the geometric computation category [8–13], approach-
es combiningVoronoi diagramswith genetic algorithmswere
proposed in [8–10]. Tang et al. [11] used several kinds of
geometric cuts such as bisection cuts and kd trees to split the
airspace and compare different cutting methods.

In the cell-growth category [11, 14–20], Brinton directly
clustered trajectory points to form sectors [14]. Yousefi and
Donohue divided an airspace into three layers with different
altitude ranges [16, 17]. Each layer was discretized into
hexagonal cells, with information about the controller work-
load. The hexagonal cells were then gathered into sectors.
Based on [16], Drew utilized a boundary-smoothing method
to eliminating jagged boundary segments [18]. Klein also
divided an airspace into hexagonal cells [19], but, in his
approach, sectors grew up from a set of seeding cells.

The third category [20–24] is in fact another kind of
clustering approach, but it is based on a weighted undirected
graph and uses one subgraph to represent a sector. Li et al.
constructed a weighted graph model that accurately repre-
sents the air-route network [21]. The sectorization problem
was then formulated as a graph cut problem and solved by
iterative spectral bisection.Martinez et al. proposed amethod
based on a weighted graph and a grid [22] and also utilized
spectral bisection to cut the graph. Chen andZhang proposed
a spectral clustering-based approach to clustering vertices
[23]. The spectral clustering solution was further refined by
the ODLB algorithm and another heuristic algorithm to get
better performance in terms of workload balancing. Trandac
et al. proposed a method based on Constraint Programming
[24].

In [25], Zelinski gave a comprehensive comparison of
different approaches.The results showed completely different
sector shapes according to the different approaches. The per-
formance of these approaches was evaluated, which revealed
their strengths and weaknesses. To summarize, methods
using geometric computation are simple and straightforward,
but they are optimally inferior because the methods used
to cut the plane or space are limited. Although the second
category may be the best in terms of workload balancing,
it can hardly handle other objectives or constraints in sec-
torization problems. Approaches based on undirected graph
cuts show great potential in managing multiple objectives

and constraints. However, these approaches have to face two
critical issues. The first one is the validity of the graph cut
method, which must ensure conformance to all constraints
of the problem. The second one, which is much more chal-
lenging, is how to depict exact sector boundaries based on the
generated subgraphs. In this paper, we focus on high-altitude
airspace in en route areas. The top and bottom covers of this
kind of airspace match completely, so that horizontal and
vertical partitioning operations can be executed separately
[7]. Because the operations for vertical partitioning are always
much simpler than the horizontal ones [7, 10], in our work,
we only carry out sectorization in the horizontal plane, and
we call the sectorization problem solved here the 2D en route
sectorization problem (2D ERSP).

The 2D ERSP is a typical multiobjective optimization
problem (MOOP) with several objectives, such as balancing
the workload across different sectors and minimizing inter-
sector flow, and several constraints, such as no overload in
any sector and no reentry of any single sector for any flight.

The first main contribution of this paper is that we
propose an approach that comprehensively handles multiple
objectives and ensures no violations against any constraint.
This approach belongs to the undirected graph cut category,
and it is based on the reasonable airspace model and the
Constrained NSGA-II [26] accompanied by memetic local
search [27]. In addition, thanks to the evolution procedure,
we do not need to predefine desired sector numbers as many
previous studies have had to do.

Different from geometric computation-based and cell-
growth-based approaches, undirected graph cut-basedmeth-
ods cannot naturally generate sector boundaries after vertex
clustering.However,many studies of this type directly neglect
the boundary depiction problem, only giving vertex clus-
tering results. Among the very limited results in undirected
graph cut methods that seriously consider the boundary
depiction problem, Chen and Zhang used Voronoi polygons
of vertices to form sector boundaries [23]. Li et al. proposed
a method based on a shortest-path algorithm [21], and
Trandac et al. used constrained triangulation [24] to form
sector boundaries. These two studies both used manual
selection. In fact, to the best of our knowledge, except for
the methods employing Voronoi polygons, other bound-
ary depiction methods serving undirected graph cut-based
approaches generally require manual selection or manual
modification.

Hence, the second main contribution of this paper is its
proposal of a new concave hull-based approach to automati-
cally depict exact sector boundaries.

In the DAC, although airspace configuration should
remain fixed for a particular time period for practical reasons,
such as the demand of air traffic controllers [2–4], it can
and should be changed to match varying traffic situations.
Generally, the change of airspace configuration should be
carried out in conjunction with the change in air traffic
controllers [2]. Hence, another important issue in DAC is
how to avoid sharp changes in airspace configuration in
order to maintain steady air traffic. This problem is called
the configuration transition problem (CTP). Unfortunately,
like the boundary depiction problem, the CTP is also seldom

Mathematical Problems in Engineering 3

reported in the existing literatures. To our best knowledge,
only the results in [4, 28] presented several rules to minimize
the workload caused by the configuration transition.

The third main contribution of this paper is that it repre-
sents a serious study of the CTP.We first define the similarity
of the two configurations and calculate their similarity with a
bisection diagram and a minimum cost flow algorithm [29].
Next, we build a forward network to represent configuration
transitions across several consecutive time periods. Then, we
take advantage of multiobjective dynamic programming to
find a series of nondominated configuration links from the
first period to the end.

This paper is organized as follows. In Section 2, we give
a comprehensive description of the 2D ERSP, including its
objectives and constraints. In Section 3, we discuss how
to model the airspace network into an undirected graph
and how to integrate traffic information into the model. In
Section 4, approaches used to solve the 2DERSP and to depict
sector boundaries are presented. In Section 5, procedures to
solve the CTP are stated in detail. The performance of the
proposed approaches is tested and analyzed in Section 6.
Conclusions and future works are discussed in the last
section.

2. Description of the 2D ERSP

We describe the 2D ERSP by three objectives and five
constraints that are commonly mentioned in the majority of
the literatures working on the sectorization problem.

The three objectives are as follows.

Obj1. Balancing intrasector workload across different sectors.

Obj2.Minimizing aggregate intersector workload (coordina-
tion workload).

Obj3. Minimizing aggregate occurrences of the violations of
the minimum staying time constraint.

Obj1 and Obj2 are general objectives that are nearly
mentioned in all relevant literatures. Nevertheless, Obj1
always acts as the core objective, whileObj2 is sometimes not
really considered when solving the sectorization problem in
previous studies. Besides, Obj3 is sometimes considered as a
constraint in literatures like [20]. However, when it acts as
a constraint, it is always treated as “soft constraint”; that is,
it may not be strictly satisfied. Therefore, we model it as an
objective aiming at reducing its violations.

Along with these three objectives, the 2D ERSR has five
constraints as follows.

Con1. Con1 is the connectivity constraint; that is, any sector
must be connected, and no sector can consist of two or more
separate parts.This is the basic constraint which can never be
violated.

Con2. Con2 is the convexity constraint; that is, no flight can
enter one single sectormore than once. Practically, this is also
a strict constraint. However, it cannot be ensured in some
cases.

Con3. Con3 is the instantaneous flow constraints; that is, no
sector can be overload, and the number of flights in one
single sector at any moment cannot exceed a threshold. This
constraint is often neglected in some literatures.

Con4. Con4 is the minimum distance between fixes and
boundaries (MDFB) constraint; that is, the distance between
any fix and any segment of the sector boundary should not
be below a minimum threshold. Few literatures have had
proposed powerful methods for Con4.

Con5.The sector boundary should be as compact as possible.
Jagged boundary is unwanted.

3. Airspace Model

3.1. Initial Undirected Graph Construction. Basic elements in
airspace are waypoints, navaids, ordinary intersections, and
air routes connecting them. This natural network structure
makes it very convenient to represent airspace by a graph.

We model airspace into an undirected graph 𝐺(𝑉, 𝐸),
where 𝑉 = {V

1
, V
2
, . . . , V

𝑛
} is the set of vertices that a vertex

stands for awaypoint, or a navaid, or an ordinary intersection,
and 𝐸 = {𝑒

𝑖𝑗
| 𝑒
𝑖𝑗
= 1, V

𝑖
, V
𝑗
∈ 𝑉} is the set of edges. We set

𝑒
𝑖𝑗
= 1, if V

𝑖
is connected with V

𝑗
by a segment of air route or

if the Voronoi polygons of V
𝑖
and V
𝑗
have a common side.

It is an expansion to existing literatures considering
the situation of common side of Voronoi polygons when
constructing the graph, in which only air routes are treated
as edges of the undirected graph. One of the major reasons
of introducing these extra edges is to cover the shortcomings
in the connectivity check in the existing graph cut-based
methods. In Figure 2(a), we assume a regional airspace
consisting of three vertices and two route segments. If we
want to cluster V

𝑎
and V

𝑏
into one sector and split V

𝑐

alone into another sector, the connectivity constraint in
existing methods would be violated while it is satisfied in the
expanded graph (see Figure 2(b)) proposed here, because V

𝑎

and V
𝑏
are treated as connected to the common side of their

Voronoi polygons. This situation is possible in practice, such
as a regional hub-spoke structure in which all surrounding
fixes are connected to the hub fix with air routes while no
routes exist between these surrounding fixes. To relax the
burden of the controller in charge of the airspace near the hub
fix, one general choice is to divide the airspace intomore parts
so that some route-unconnected fixes may be included in one
sector. This dividing action could lead connectivity violation
based on existing type of graph, while it still functions well if
our expanded graph is employed.

3.2. Graph Simplification and Modification. We set four rules
to simplify and modify the initial undirected graph.

Rule 1. If any fix is only crossed by one air route and there is
no difference between the inbound course and the outbound
course, directly delete this fix. In this situation, the flow
density on both sides of the fix is nearly the same so that
it is not necessary to consider these two route segments
separately.

4 Mathematical Problems in Engineering

Sector
boundary

Air route

�a

�c

�b

(a)

Sector
boundary

Air route

Edge between
Voronoi

neighborhood

�a

�c

�b

(b)

Figure 2: Edge between Voronoi neighborhood.

Rule 2. If several fixes are less than twice of the MDFB to
each other, merge them as a fix union. This rule is to avoid
any generated sector boundaries crossing the gap between
two fixes that are too near to each other. In other words,
it is to satisfy the MDFB constraint. For any fix union, we
represent it with a “union-point” at the geometric center of
the union and define the radius of the “union-point” as 𝑟 =

𝑚𝑎𝑥𝑑𝑖𝑠 +MDFB, where 𝑚𝑎𝑥𝑑𝑖𝑠 is the largest distance from
the “union-point” to anymember fixes in the fix union. Edges
completely inside one fix union are deleted; edges connecting
fixes belonging to different unions are represented by edges to
connect the corresponding “union-points.” After Rule 2, we
set each “union-point” as a vertex of the modified undirected
graph.

Rule 3. If any edge 𝑒
𝑖𝑗
is less than the distance of MDFB from

vertex V
𝑘
that is not one of its endpoints, we split 𝑒

𝑖𝑗
into two

segments, 𝑒
𝑖𝑘
and 𝑒
𝑘𝑗
.

Rule 4. If any edge 𝑒
𝑖𝑗
representing Voronoi neighborhood

intersects with any other edge representing air route, delete
𝑒
𝑖𝑗
. This action is to avoid generating unnecessary vertices.

3.3. Traffic Information Representation. Many previous stud-
ies only employ flow density information, such as the number
of flights or the number of trajectory points, to describe
the traffic situation. Although the flow density is indeed
the most important factor when evaluating the workload
of air traffic controllers, it is oversimplified in some extent.
In fact, several comprehensive metrics [30–32] evaluating
airspace complexity or air traffic controllers’ workload have
been proposed. These metrics can be identified into four
types: flow density, altitude change, speed change, and course
change [2, 31, 32]. Accurately calculating each metric is
very time-consuming, especially when solving the sector-
ization problem that needs iterative optimization. Hence,

simplification or approximation must be used if we want to
consider all these metrics simultaneously.There are examples
such as representing several metrics with one integrated
metric [2, 8], ignoring several metrics in the optimizing
objectives [14], limiting the size of the target airspace and
using much simpler airspace model [8], and precalculating
the metrics in some basic airspace cells and directly using
these values in the optimization process [15]. In the proposed
approach, we introduce ten matrices to store these four types
of information.

(1) Flow Density Matrix 𝐹𝐷
𝑁×𝑁

. This matrix stores the
number of flights flying through each edge of 𝐺, where 𝑁

is the number of vertices in 𝐺. If 𝑘 flights fly through 𝑒
𝑖𝑗
,

FD
𝑖𝑗
= 𝑘. Besides, if 𝑒

𝑖𝑗
= 1 and 𝑘 = 0, we still set FD

𝑖𝑗
= 𝜀,

where 𝜀 is a small positive value, to remain the connectivity
of V
𝑖
and V
𝑗
.

(2) Symmetric Altitude Change Matrix 𝑆𝐴𝐶
𝑁×𝑁

. SAC stores
the information about altitude changes. Suppose a set of
trajectory points of flight 𝑓 that are projected on 𝑒

𝑖𝑗
, denoted

as tp𝑓
𝑖𝑗
. We calculate the standard variance of the altitudes of

tp𝑓
𝑖𝑗
, denoted as ac𝑓

𝑖𝑗
. Define the set of flights flying through 𝑒

𝑖𝑗

as 𝐹
𝑖𝑗
, and we have

SAC
𝑖𝑗
= SAC

𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
ac𝑓
𝑖𝑗
, (1)

where |tp𝑓
𝑖𝑗
| is the count of trajectory points in tp𝑓

𝑖𝑗
. Other

elements in SAC with 𝑒
𝑖𝑗
= 0 or 𝑒

𝑖𝑗
= 1, and FD

𝑖𝑗
= 𝜀 are

all set to 0. As 𝐺 is an undirected graph, SAC is symmetric.

(3) Asymmetric Altitude Change Matrix 𝐴𝐴𝐶
𝑁×𝑁

. AAC also
stores the information about altitude changes. We divide
trajectory points that are projected on edge 𝑒

𝑖𝑗
into two parts,

Mathematical Problems in Engineering 5

tp𝑓
𝑖𝑗,𝑖

and tp𝑓
𝑖𝑗,𝑗
. The trajectory points nearer to V

𝑖
than V

𝑗
are

put into tp𝑓
𝑖𝑗,𝑖
, while the others are put into tp𝑓

𝑖𝑗,𝑗
. Then, we

calculate the standard variances of these two sets, denoted as
ac𝑓
𝑖𝑗,𝑖

and ac𝑓
𝑖𝑗,𝑗
. Hence,

AAC
𝑖𝑗
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
ac𝑓
𝑖𝑗,𝑖
,

AAC
𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
ac𝑓
𝑖𝑗,𝑗
.

(2)

(4) Symmetric Speed ChangeMatrix 𝑆𝑆𝐶
𝑁×𝑁

. Similar to those
notations in SAC, we define sc𝑓

𝑖𝑗
and thus

SSC
𝑖𝑗
= SSC

𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
sc𝑓
𝑖𝑗
. (3)

Other elements in SSC with 𝑒
𝑖𝑗
= 0 or 𝑒

𝑖𝑗
= 1 and FD

𝑖𝑗
=

𝜀 are all set to 0.

(5) Asymmetric Speed Change Matrix 𝐴𝑆𝐶
𝑁×𝑁

. Similar to
those notations in AAC,

ASC
𝑖𝑗
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
ASC𝑓
𝑖𝑗,𝑖
,

ASC
𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
ASC𝑓
𝑖𝑗,𝑗
.

(4)

(6) Symmetric Trajectory Point Count Matrix 𝑆𝑇𝑃
𝑁×𝑁

. STP
stores the count of trajectory points that are projected on each
edge:

STP
𝑖𝑗
= STP

𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
. (5)

(7) Asymmetric Trajectory Point Count Matrix 𝐴𝑇𝑃
𝑁×𝑁

.
Consider

ATP
𝑖𝑗
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
,

ATP
𝑗𝑖
= ∑

𝑓∈𝐹𝑖𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
tp𝑓
𝑖𝑗,𝑗

󵄨󵄨󵄨󵄨󵄨󵄨
.

(6)

(8) Flight Course Change Matrix 𝐹𝐶𝐶
𝐹×𝑁

. 𝐹 is the number of
flights considered in the sectorization problem and 𝑁 is the
number of vertices in𝐺. Recall the rules in Section 3.2. In fact,
any vertex in 𝐺 represents a fix union. Hence, for any flight-
vertex pair, such as 𝑓 and V

𝑖
, we set FCC

𝑓𝑖
as the aggregate

course change times when flight 𝑓 flies through V
𝑖
.

(9) Vertex Arrival Time Matrix 𝑉𝐴𝑇
𝐹×𝑁

. The element VAT
𝑓𝑖

is defined as the earliest arriving time of flight𝑓 at any fix that
belongs to V

𝑖
.

(10) Vertex Leaving TimeMatrix𝑉𝐿𝑇
𝐹×𝑁

. The element VLT
𝑓𝑖

is defined as the latest leaving time of flight 𝑓 from any fix
that belongs to V

𝑖
.

4. Solve the 2D ERSP

4.1.Mathematical Expression. As stated before, the airspace is
modeled as an undirected graph,𝐺. Solving the 2D ERSP is to
cut𝐺 into 𝑘 subgraphs,𝐺

𝑠
(𝑉
𝑠
, 𝐸
𝑠
), where 𝑠 ∈ 𝑆 = {1, 2, . . . , 𝑘},

𝐺 =

𝑘

⋃

𝑠=1

𝐺
𝑠
,

𝑉 =

𝑘

⋃

𝑠=1

𝑉
𝑠
,

𝑉
𝑖
∩ 𝑉
𝑗
= 0, 𝑖, 𝑗 ∈ 𝑆, 𝑖 ̸= 𝑗.

(7)

Each subgraph stands for one sector.

4.1.1. Objectives

(1) Balancing the Intrasector Workload. Consider

min√ 1

𝑘

𝑘

∑

𝑠=1

(WL (𝐺
𝑠
) −WL)

2

. (8)

WL(𝐺
𝑠
) is the intraworkload of sector 𝑠 and WL is the mean

value of WL(𝐺
𝑠
), 𝑠 ∈ 𝑆. WL(𝐺

𝑠
) is a weighted and scaled

summation of the values of four metrics of sector 𝑠, including
information about the flow density, the altitude change, the
speed change, and the course change:

WL (𝐺
𝑠
) = 𝑤FDF̃D𝑠 + 𝑤acÃC𝑠 + 𝑤scS̃C𝑠 + 𝑤ccC̃C𝑠, (9)

where 𝑤FD, 𝑤ac, 𝑤sc, and 𝑤cc are weights of these four parts.
We define 𝐸

󸀠

𝑠
as the set of intrasector edges of sector 𝑠,

where 𝐸󸀠
𝑠
= {𝑒
𝑖𝑗
| 𝑒
𝑖𝑗
= 1, V

𝑖
, V
𝑗
∈ 𝑉
𝑠
} and 𝐸

󸀠󸀠

𝑠
are the set of

intersector edges between 𝑠 and other sectors, where 𝐸󸀠󸀠
𝑠

=

{𝑒
𝑖𝑗
| 𝑒
𝑖𝑗
= 1, V
𝑖
∈ 𝑉
𝑠
, V
𝑗
∉ 𝑉
𝑠
}; then

FD
𝑠
= ∑

𝑒𝑖𝑗∈𝐸
󸀠

𝑠

STP
𝑖𝑗
+ ∑

𝑒𝑖𝑗∈𝐸
󸀠󸀠

𝑠

ATP
𝑖𝑗
,

AC
𝑠
=

(∑
𝑒𝑖𝑗∈𝐸
󸀠

𝑠

SAC
𝑖𝑗
+ ∑
𝑒𝑖𝑗∈𝐸
󸀠󸀠

𝑠

AAC
𝑖𝑗
)

FD
𝑠

,

SC
𝑠
=

(∑
𝑒𝑖𝑗∈𝐸
󸀠󸀠

𝑠

SSC
𝑖𝑗
+ ∑
𝑒𝑖𝑗∈𝐸
󸀠󸀠

𝑠

ASC
𝑖𝑗
)

FD
𝑠

,

CC
𝑠
=
𝑁𝑇
𝑠

𝑁𝐹
𝑠

,

(10)

where 𝑁𝑇
𝑠
is the total course change times of flights when

flying inside sector 𝑠 and 𝑁𝐹
𝑠
is the total number of flights

flying through 𝑠. Hence, CC
𝑠
stands for average course change

6 Mathematical Problems in Engineering

times of single flight in sector 𝑠. Suppose the flight set
considered in the sectorization problem as 𝐹, and we have

𝑁𝑇
𝑠
= ∑

𝑓∈𝐹

V𝑖∈𝑉𝑠

FCC
𝑓𝑖
.

(11)

Because of different ranges of the four parts in (9), and
a more meaningful understanding of the summation, we
normalize them to the range of [0, 1]. We set four standard
values, FD

𝑠𝑑
, AC
𝑠𝑑
, SC
𝑠𝑑
, and CC

𝑠𝑑
, that are large enough and

do not change during the optimization. Then, we define

F̃D
𝑠
=

FD
𝑠

FD
𝑠𝑑

,

ÃC
𝑠
=

AC
𝑠

AC
𝑠𝑑

,

S̃C
𝑠
=

SC
𝑠

SC
𝑠𝑑

,

C̃C
𝑠
=

CC
𝑠

CC
𝑠𝑑

.

(12)

(2) Minimizing the Aggregate Coordination Workload.We use
the density of intersector flow to stand for the coordination
workload. This objective can be expressed by

min ∑

𝑠 ̸=𝑟

𝑠,𝑟∈𝑆

WLco (𝐺𝑠, 𝐺𝑟) , (13)

where WLco(𝐺𝑠, 𝐺𝑟) is the intersector flow density between
𝐺
𝑠
and 𝐺

𝑟
. It is the number of flights flying across 𝐺

𝑠
and 𝐺

𝑟
:

WLco (𝐺𝑠, 𝐺𝑟) = ∑

V𝑝∈𝑉𝑠
V𝑞∈𝑉𝑟

FD
𝑝𝑞
.

(14)

(3) Minimizing the Occurrences of the Violations of the
Minimum Staying Time Constraint. If any flight stays in the
sector less than a minimum time threshold after it enters a
sector, the minimum staying time constraint is violated.Obj3
is to minimize the occurrences of these situations.

As we do not depict exact sector boundaries during the
optimization process, it is impossible to accurately calculate
the staying time of any flight. We approximate the accurate
staying time as follows.

Still suppose the flight path of flight 𝑓 as 𝑓𝑝
𝑓
= (V
𝑓,1
, V
𝑓,2
,

. . . , V
𝑓,𝑘
), V
𝑓,1
, V
𝑓,2
, . . . , V

𝑓,𝑘
∈ 𝑉, where V

𝑓,𝑖
is the 𝑖th vertex

along the path.Then, we calculate the staying time of flight 𝑓
in sector 𝑠 as follows:

𝑑𝑡
𝑓𝑠
=
1

2
(VAT

𝑓,𝑎
− VLT

𝑓,𝑎−1
)

+
1

2
(VAT

𝑓,𝑒+1
− VLT

𝑓,𝑒
) + (VLT

𝑓,𝑒
− VAT

𝑓,𝑒
)

+ ∑

V𝑓,𝑚∈𝑉𝑠
V𝑓,𝑚+1∈𝑉𝑠

(VAT
𝑓,𝑚+1

− VAT
𝑓,𝑚

) ,

(15)

where V
𝑎
and V
𝑒
are the first and the last vertices inside sector

𝑠 along 𝑓𝑝
𝑓
. The first term of (15) stands for the time spent to

reach V
𝑎
after entering the sector. The second term stands for

the time spent to leave the sector after leaving V
𝑒
. The third

term stands for the time spent in V
𝑒
. The fourth term stands

for other times spent inside sector 𝑠.
We define the set of all considered flights as 𝐹 and set

𝑚𝑑𝑡V
𝑓𝑠
= 1, if any flight 𝑓 ∈ 𝐹 violates the minimum staying

time constraint in sector 𝑠. Hence, Obj3 can be expressed as

min ∑

𝑓∈𝐹

∑

𝑠∈𝑆

𝑚𝑑𝑡V
𝑓𝑠
. (16)

4.1.2. Constraints

(1) Connectivity Constraint. Each subgraph representing one
sector must be self-connected.

(2) Flight-Route-Based Convexity Constraint. For any flight 𝑓,
𝑓𝑝
𝑓
= (V
𝑓,1
, V
𝑓,2
, . . . , V

𝑓,𝑘
), V
𝑓,1
, V
𝑓,2
, . . . , V

𝑓,𝑘
∈ 𝑉. If V

𝑓,𝑖
, V
𝑓,𝑗

∈

𝑉
𝑠
, 𝑖 ≤ 𝑗, for ∀V

𝑓,𝑚
, 𝑖 ≤ 𝑚 ≤ 𝑗, V

𝑓,𝑚
∈ 𝑉
𝑠
.

(3) Instantaneous Flow Constraint. Similar to the expressions
above, we suppose V

𝑎
and V
𝑒
as the first and last vertex inside

sector 𝑠 along 𝑓𝑝
𝑓
. Hence, the entry time of sector 𝑠 can

be denoted as mid(VLT
𝑎−1

,VAT
𝑎
), which is the midtime of

the time leaving V
𝑎−1

and the time reaching V
𝑎
. Similarly, we

denote the departure time of sector 𝑠 as mid(VLT
𝑒
,VAT
𝑒+1

).
With the entry time and the departure time for every flight,
we can calculate the number of flights in any sector at any
moment. Suppose themaximum instantaneous flight number
in sector 𝑠 as Instflow

𝑠
and the instantaneous flow threshold

as Threinsflow, and Con3 can be expressed as

Instflow
𝑓,𝑠

≤ Threinsflow, ∀𝑠. (17)

Con4 and Con5 are not considered in the optimization
phase. But they are ensured by the airspace modeling in
Section 3 and the boundary depiction method in Section 4.3.

4.2. Constrained NSGA-II Based Evolution. Some objectives
and constraints of the 2D ERSP cannot be written in explicit
mathematical formulas [2, 24]. For example, consider the
constraint that no flights can enter any single sector more
than once. It is affected by the trajectory of flights and the
boundary of a sector, which is too complex to express this
constraint by an explicit inequality. Hence, it is impossible to
construct the 2D ERSP into a typical form of mathematical
programming below:

Min 𝑓 (𝑥)

𝐴𝑥 ≤ 𝑏

𝑥 ∈ 𝑋.

(18)

As evolution algorithms can still work even if the con-
straints can only be expressed by text descriptions, they
are good choices to solve the 2D ERSP. The Constrained
Nondominated Sorting Genetic Algorithm II (CNSGA-II)

Mathematical Problems in Engineering 7

Initial
generation

Reproduction

Crossover Mutation

Memetic
local search

Sort and
elitism

Termination
condition

End

Yes

No

Figure 3: Diagram of the evolution algorithm.

1 1 2
1st 2nd 3rd

5 3
50th Nth

· · ·· · ·

Figure 4: Chromosome.

[26] is a fast and elitist multiobjective genetic algorithm
that is very appropriate for the 2D ERSP, considering its
characteristics of multiobjectives and the strong capability
in handling nonclassic constraints. We utilize the CNSGA-II
accompanied with the memetic local search [27] to solve the
2D ERSP. The main flow diagram of the evolution algorithm
is shown in Figure 3.

4.2.1. Chromosome. Every chromosome has 𝑁 genes repre-
senting 𝑁 vertices in graph 𝐺. The value of each gene is the
index of the sector to which the related vertex belongs. For
example, in Figure 4, the third vertex is assigned to sector 2
and the 50th vertex is assigned to sector 5.

We set a common largest possible index of sectors for
every individual; that is, the possible maximum number of
sectors is fixed. On one hand, this number is large enough
so that it has no impact on the results. On the other hand,
because we only set the possible maximum number, indexes

of sectors in different individuals are totally independent,
whichmeans that two sectors with the same index in different
individuals may refer to different sectors.

4.2.2. Reproduction. Tournament selection is used to select
individuals in parent generation.

4.2.3. Crossover. Two individuals can crossover only when
they have large enoughhamming distance. In single crossover
operation, two randomly chosen genes are exchanged. To
avoid generating individuals that violates connectivity con-
straint as much as possible, the crossover can be granted
only when at least one of the vertices (genes) is moved to an
adjacent sector or stays in original sector after the crossover.

4.2.4. Mutation. In single mutation operation, one gene is
randomly selected.The value of the gene is randomly changed
and it is bounded by the value of the maximum sector
number. However, similar to the crossover operation, only
when the related vertex is changed to an adjacent sector, the
mutation operation can be granted.

4.2.5. Memetic Local Search. The memetic algorithm [27]
is a local search method embedded in one global search
iteration of evolution algorithms that can help improving the
individuals in one generation. In this paper, two heuristic
polices of memetic local search are applied.

Policy A. For any sector, if FD
𝑠
> FDup, where FDup is an

upper bound, we split the sector into two or more parts.
For the subgraph 𝐺

𝑠
corresponding to sector 𝑠, we build its

similarity matrix𝑊𝐺𝑠
𝑁𝑠×𝑁𝑠

, where𝑁
𝑠
is the number of vertices

that belong to 𝐺
𝑠
. For any element 𝑤𝐺𝑠

𝑖𝑗
, 1 ≤ 𝑖 ≤ 𝑁

𝑠
, 1 ≤

𝑗 ≤ 𝑁
𝑠
, suppose the indices of its two related vertices in

graph 𝐺 as 𝑝 and 𝑞, and then 𝑤
𝐺𝑠

𝑖𝑗
= FD

𝑝𝑞
. We add up all

elements of each row of 𝑊𝐺𝑠
𝑁𝑠×𝑁𝑠

to build a diagonal matrix
𝐷
𝐺𝑠 , where 𝑑𝐺𝑠

𝑖𝑖
= ∑
𝑁𝑠

𝑗=1
𝑤
𝐺𝑠

𝑖𝑗
. We define the Laplacian matrix

of 𝐺
𝑠
, 𝐿𝐺𝑠 = 𝐷

𝐺𝑠 −𝑊
𝐺𝑠 . Besides, we introduce three lemmas

in the Spectral GraphTheory [33].

Lemma 1. For a weighed undirected graph with nonnegative
edge weights, its Laplacian matrix has at least one eigenvalue
with value of 0.

Lemma 2. The number of isolated subgraphs of a weighed
undirected graph with nonnegative edge weights equals the
number of 0 eigenvalues of its Laplacian matrix.

Lemma 3. For a weighed undirected graph with nonnegative
edgeweights, denoted as𝐺, suppose the number of 0 eigenvalues
of its Laplacian matrix as 𝑘. Then, the dimension of the
eigenspace of 0 eigenvalues is 𝑘. This linear subspace is spanned
by such a group of base vectors: 1

𝑠1
, 1
𝑠2
, . . . , 1

𝑠𝑘
, where 1

𝑠𝑖
(1 ≤

𝑖 ≤ 𝑘) is the indicator vector of 𝑖th isolated subgraph, denoted
as 𝐺
𝑖
. If a vertex is in 𝐺

𝑖
, the corresponding element in 1

𝑠𝑖
is 1;

otherwise, it is 0.

8 Mathematical Problems in Engineering

With these three lemmas, we calculate the eigenvalues of
𝐿
𝐺𝑠 and the corresponding eigenvectors. If the multiplicity

of 0 eigenvalues, 𝑘, is larger than 1, we just divide 𝐺
𝑠

into 𝑘 parts according to the base vectors. If 𝑘 = 1, we
get the eigenvector corresponding to the second smallest
eigenvalue, called Fiedler Vector [34]. Then, the vertices of
𝐺
𝑠
are clustered into two groups. One is with the positive

elements of Fiedler Vector and the other is with the negative
ones. Vertices corresponding to the elements with value of
0 are randomly assigned to one of these two groups. Hence,
when 𝑘 = 1, we split 𝐺

𝑠
into two parts.

Policy B. Policy B is operated after the division by Policy A.
For any individual, if FD

𝑠
< FDlow for sector 𝑠, where FDlow

is a lower bound, we treat the flow density in this sector as too
low.Thus, wemerge 𝑠 into one of its adjacent sectors, assumed
as 𝑠󸀠. Values of genes (vertices) belonging to 𝑠 are changed to
the index of 𝑠󸀠.

To avoid loss of diversity and being trapped in regional
optima, the memetic local search is operated with gradually
changing intensity and frequency [35]. The frequency refers
to the gap of generations between two callings of the local
search, and the intensity refers to the proportion of individ-
uals in one single generation that are applied with the local
search. At the beginning of the evolution, the qualities of the
individuals are still low, and, in general, we set low frequency
and intensity. Along with the evolution, the searching space
approaches the optimal solutions, and thus we need more
accurate search.Therefore, the frequency and intensity of the
local search both increase.

4.2.6. Fitness Functions. Fitness functions correspond to the
expressions in formulas (8), (13), and (16).

4.2.7. Constraint Check

Connectivity. Similar to those stated in “Policy A” of the
memetic local search, for each subgraph 𝐺

𝑠
(sector 𝑠), we

calculate its Laplacian matrix 𝐿𝐺𝑠 and check the multiplicity
of 0 eigenvalues. If the number is larger than 1, we record
one more time of violation of the connectivity constraint for
current individual.

Flight-Route-Based-Convexity. Still suppose the flight path of
flight 𝑓 as (V

𝑓,1
, V
𝑓,2
, . . . , V

𝑓,𝑘
). If V
𝑓,𝑝

∈ 𝐺
𝑠
and V
𝑓,𝑝+1

∉ 𝐺
𝑠
, we

check if V
𝑓,𝑞

∈ 𝐺
𝑠
, 𝑞 > 𝑝 + 1. Once the condition V

𝑓,𝑞
∈ 𝐺
𝑠
,

𝑞 > 𝑝 + 1 is met, we record one more time of the violation of
the convexity constraint for current individual.

Instantaneous Flow Constraint. We check the validation of
inequality (17). If inequality (17) is unsatisfied, we record
one more time of the violation of the instantaneous flow
constraint for current individual.

4.2.8. Sort and Elitism. In the CNSGA-II, the elitism oper-
ation is executed for every generation. The dominating
relationship between two individuals (solutions), 𝑖 and 𝑗, is
defined below:

(1) 𝑖 ≺ 𝑗, if 𝑖 is feasible (no constraint violation) while 𝑗 is
not.

(2) When solutions 𝑖 and 𝑗 are both feasible, 𝑖 ≺ 𝑗 if the
values of all fitness functions of 𝑖 are not more than
that of 𝑗 and at least one of such values is smaller than
that of 𝑗.

(3) When solutions 𝑖 and 𝑗 are both infeasible, we
compare their times of constraint violations in the
following order of decreasing priority: connectivity >
convexity > instantaneous flow. That is, 𝑖 ≺ 𝑗, if the
connectivity constraint violating times of solution 𝑖

is less than that of solution 𝑗. Or, if the connectivity
constraint violating times are equal, we continue to
compare the violating times of the convexity con-
straint and so on.

(4) When solution 𝑖 and 𝑗 are both infeasible and they are
equivalent in terms of the violating times of all three
constraints, 𝑖 ≺ 𝑗 if the values of all fitness functions
of 𝑖 are not more than that of 𝑗 and at least one such
value is smaller than that of 𝑗.

4.2.9. Initial Generation. Most previous studies using evo-
lutionary algorithms always concern about how to refine
the “genetic operations” (such as the crossover or mutation
rules) or try to propose heuristics to improve the evolution
procedure.However, for those problems that the gross optima
or a boundary of the gross optima cannot be preliminarily
determined (such as the 2D ERSP), no matter how excellent
a heuristic or an improved operation seems to be, we are
unable to determine whether the gross optima can be found
with the help of these heuristics. In these problems, we
cannot guarantee reaching the gross optima from any type
of initial generations. Hence, we have to realize that different
initial generations have different impact on final solutions.
However, discussions about the initial generation of evolution
algorithms and its impact to the final solutions are absent in
relevant literatures.

In this paper, we propose four types of initial generations
and compare them with the corresponding nondominated
solution sets produced by the CNSGA-II.

Thefirst type is themost general choice that just randomly
produces the initial generation. In following text, we call this
case Randomly Initialization, or RI.

The second type takes advantage of the current configura-
tion in practice. We represent the current configuration with
a chromosome and randomlymutate half of the genes several
times to produce the initial generation. In following text, we
call this case Current Initialization, or CI.

Thirdly, we employ a method based on the normalized
spectral clustering algorithm (NSCA) [36]. The NSCA is a
data clustering algorithm that shows its talent in the graph𝑁-
cut problem if each data point is represented by one vertex in a
weighted graph and the weights of edges stand for similarities
between two data points [37]. We choose the NSCA because
of two objectives of the 2D ERSP, balancing intrasector
workload and minimizing gross intersector workload, which
are very similar to the goals of the undirected graph 𝑁-cut

Mathematical Problems in Engineering 9

(1) Input𝐷
𝐺
,𝑊
𝐺
and desired cluster number, 𝑘.

(2) Prune𝐷
𝐺
and𝑊

𝐺
by deleting rows and columns where 𝑑𝐺

𝑖𝑖
= 0. Define the pruned matrices

as 𝑃𝐷
𝐺
and 𝑃𝑊

𝐺
. Define the set of deleted vertices as 𝑉𝐷 where |𝑉𝐷| = 𝑟 and the set of

remained vertices as 𝑅𝐷. Define the dimension of 𝑃𝐷
𝐺
and 𝑃𝑊

𝐺
as 𝑃𝑁 = 𝑁 − 𝑟.

(3) Calculate the Laplacianmatrix, 𝑃𝐿
𝐺
= 𝑃𝐷

𝐺
− 𝑃𝑊

𝐺
.

(4) Compute the normalized Laplacianmatrix, 𝑃𝐿nor = 𝐼
𝑃𝑁×𝑃𝑁

− 𝑃𝐷
−1/2

𝐺
𝑃𝑊
𝐺
𝑃𝐷
−1/2

𝐺
.

(5) Compute the eigenvector corresponding to the smallest 𝑘 eigenvalues of 𝑃𝐿nor.
(6) Construct a matrix 𝐸

𝑃𝑁×𝑘
, each of its column corresponds to the eigenvector of one of the

smallest 𝑘 eigenvalue.
(7) Normalize every row of 𝐸

𝑃𝑁×𝑘
, meaning normalizing 𝐸

𝑃𝑁×𝑘
into 𝐸̃

𝑃𝑁×𝑘
,

𝐸̃
𝑖
= 𝐸
𝑖
/(∑
𝑘
𝑒
2

𝑖𝑗
)
1/2, where 𝐸̃

𝑖
and 𝐸

𝑖
stand for the 𝑖th row of 𝐸̃ and 𝐸 respectively, 𝑒

𝑖𝑗

is the element at the 𝑖th row and 𝑗th column of 𝐸.
(8) For each row of 𝐸̃, set a corresponding vector 𝑦

𝑖
(𝑖 = 1, 2, . . . , 𝑃𝑁).

(9) Cluster vectors 𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑃𝑁
into 𝑘 clusters using k-means cluster. The index of the

cluster for each row is the index of the sector for the 𝑖th vertex of 𝐺.
(10) For any vertex in 𝑉𝐷, assign it to the sector to which its nearest vertex in 𝑅𝐷 belongs.

Procedure 1: Procedures of the method based on the NSCA.

problem. We first change the values of elements in matrix
FD with value of 𝜀 to 0 and call the modified density matrix
FD󸀠. Then, FD󸀠 is defined as the similarity matrix of 𝐺; that
is,𝑊
𝐺
= FD󸀠 and we construct a diagonal matrix 𝐷

𝐺
, where

𝑑
𝐺

𝑖𝑖
= ∑
𝑁

𝑗=1
𝑤
𝐺

𝑖𝑗
. Following steps of the method based on the

NSCA are listed in Procedure 1. Note that 𝑑𝐺
𝑖𝑖
may equal to

0 if no aircraft flies through any routes connecting to vertex
V
𝑖
. This may lead singularity of 𝐷

𝐺
and cause an error in the

4th step in Procedure 1. Hence, we must prune 𝑊
𝐺
and 𝐷

𝐺

firstly, deleting rows and columns where 𝑑𝐺
𝑖𝑖
= 0. The method

in Procedure 1 outputs one configuration of the airspace. We
also use a chromosome to represent this solution and produce
the initial generation by randomly mutating half genes of
this individual several times. In this method, we need to set
desired cluster number for the NSCA. However, this number
is not the final counts of sectors because of possible change in
the following evolution procedure. Hence, we directly set it
as the count of sectors in current configuration. In following
text, we call this case NSCA Initialization, or NI.

In the fourth type, half individuals in the initial genera-
tion are produced by CI and the other half is produced by NI.
In following text, we call this caseMix Initialization, or MI.

4.3. Sector Boundary Depiction. As stated in Section 1, the
boundary depiction is much more challenging in graph cut-
based approaches than that in geometric based and “cell
gathering” based approaches. The methods directly using
Voronoi polygons of vertices to form the boundaries are
simple and straightforward. But theymay not be very suitable
in the sectorization problem for two reasons. Firstly, the shape
of sectors is not strictly convex so that Voronoi polygons may
not fit the outline of concave vertex cluster very well for its
characteristic of convexity. Secondly, the MDFB constraint
cannot be ensured by Voronoi polygons.

We propose a concave hull-based method to depict the
sector boundaries in this section. We firstly construct the

concave hull for each vertex cluster (representing one sector)
in Procedure 2 with necessary explanations below.

4.3.1. Concave Hull Generation

Input Data. Input information of the concave hull generation
method is in three categories.

The first is the cut of 𝐺:

𝐺 =

𝑘

⋃

𝑠=1

𝐺
𝑠
,

𝑉 =

𝑘

⋃

𝑠=1

𝑉
𝑠
.

(19)

The second is the set of midpoints of edges connecting
two neighboring sectors,𝑀𝑃 = {𝑚𝑝

𝑖,𝑗
| 𝑒
𝑖𝑗
= 1, V
𝑖
∈ 𝑉
𝑠𝑚
, V
𝑗
∈

𝑉
𝑠𝑛
, 𝑠
𝑚

̸= 𝑠
𝑛
}. For any sector 𝑠, define the set of midpoints of

edges connecting it and other sectors as𝑀𝑃
𝑠
= {𝑚𝑝

𝑖,𝑗
| 𝑒
𝑖𝑗
=

1, V
𝑖
∈ 𝑉
𝑠
, V
𝑗
∉ 𝑉
𝑠
}. Hence, we get that 𝑀𝑃 = ⋃

𝑠∈𝑆
𝑀𝑃
𝑠
and

𝑀𝑃
𝑠1
∩𝑀𝑃

𝑠2
̸= 0 if 𝑠1 and 𝑠2 are neighboring sectors.

The third is a set of points located on the outerboundary
of the target airspace. We suppose points on the outerbound-
ary of the target airspace are distributed clockwise for the
purpose of unification and define the point set as𝑂𝑃 = {𝑜𝑝

𝑖
|

1 ≤ 𝑖 ≤ 𝑛}, 𝑂𝑃 = ⋃
𝑠
𝑂𝑃
𝑠
, 𝑠 ∈ 𝑆, and 𝑂𝑃

𝑠
= 0 if 𝑠 is not next

to the outerboundary.

Obtain 𝐵𝑀𝑃
𝑠
. For any sector 𝑠 (subgraph 𝐺

𝑠
) adjacent to the

outerboundary, we find out one or more couples of points in
𝑀𝑃
𝑠
, and denote the subset of 𝑀𝑃

𝑠
as 𝐵𝑀𝑃

𝑠
. For any point

𝑚𝑝
𝑖,𝑗

∈ 𝐵𝑀𝑃
𝑠
with corresponding edge 𝑒

𝑖𝑗
, the following

conditions must be satisfied:

(i) Both endpoints of 𝑒
𝑖𝑗
, denoted as V

𝑖
and V
𝑗
, are next to

the outerboundary.

10 Mathematical Problems in Engineering

(1) Initialize, input 𝐺 = ⋃
𝑠∈𝑆

𝐺
𝑠
, 𝑉 = ⋃

𝑠∈𝑆
𝑉
𝑠
,𝑀𝑃 = ⋃

𝑠∈𝑆
𝑀𝑃
𝑠
, and 𝑂𝑃 = ⋃

𝑠
𝑂𝑃
𝑠

(2) For 𝑠 ∈ 𝑆

(3) Set 𝐵
𝑠
= 0

(4) If 𝑠 is adjacent to the outer-boundary of the target airspace
(5) Obtain 𝐵𝑀𝑃

𝑠
(See explain in Section 4.3.1), and set𝑁𝐵𝑀

𝑠
= 0

(6) For each point 𝑝𝑡 ∈ 𝐵𝑀𝑃
𝑠

(7) Find point 𝑝𝑡𝑜, that 𝑝𝑡𝑜 ∈ 𝑂𝑃, and 𝑝𝑡𝑜 is nearest to 𝑝𝑡
(8) 𝑁𝐵𝑀

𝑠
= 𝑁𝐵𝑀

𝑠
∪ 𝑝𝑡𝑜

(9) End
(10) Obtain 𝑂𝑃

𝑠
(See explain in Section 4.3.1)

(11) 𝐵
𝑠
= 𝑂𝑃

𝑠
∪𝑀𝑃

𝑠

(12) End
(13) Else
(14) 𝐵

𝑠
= 𝑀𝑃

𝑠

(15) End
(16) Construct 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵

𝑠
) using 𝛼-shape algorithm (See explain in Section 4.3.1)

(17) End

Procedure 2: Procedures to construct 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵
𝑠
).

(ii) The Voronoi polygons of V
𝑖
and V
𝑗
have one common

side and this side intersects with the outerboundary.

Note that, as the shape of any sector is not strictly convex,
there may be more than one couple of points in 𝐵𝑀𝑃

𝑠
. In

Figure 5(a), we assume that 𝑉2 and 𝑉3 belong to sector 𝑠
and 𝑉1 and 𝑉4 belong to the other two different sectors,
respectively. In this situation, 𝐵𝑀𝑃

𝑠
is made up of 𝑀𝑃1 and

𝑀𝑃2. In Figure 5(b), we assume that sector 𝑠 consists of 𝑉2,
𝑉3, and 𝑉4, which surround 𝑉1. The shape of 𝑠 is concave,
but 𝑠 still conforms to the convexity constraint because no
air routes connect 𝑉3𝑉1 or 𝑉4𝑉1. In this situation, 𝑀𝑃1,
𝑀𝑃2, 𝑀𝑃3, and 𝑀𝑃4 are all elements of 𝐵𝑀𝑃

𝑠
. 𝐵𝑀𝑃

𝑠
with

more than two couples of points is also possible which is not
illustrated here. Note that 𝐵𝑀𝑃

𝑠1
∩ 𝐵𝑀𝑃

𝑠2
̸= 0, if 𝑠1 and 𝑠2

are neighboring sectors.

Obtain 𝑂𝑃
𝑠
. For any sector 𝑠 adjacent to the outerboundary,

sort 𝑁𝐵𝑀
𝑠
clockwise (as points in 𝑁𝐵𝑀

𝑠
all belong to 𝑂𝑃,

sorting clockwise means sorting with increasing index in
𝑂𝑃) as 𝑁𝐵𝑀

𝑠
= {𝑜𝑝

𝑠

1
, 𝑜𝑝
𝑠

2
, . . . , 𝑜𝑝

𝑠

2𝑘−1
, 𝑜𝑝
𝑠

2𝑘
}, where 𝑘 is the

number of couples 𝑛 𝐵𝑀𝑃
𝑠
. Then, we define

𝑂𝑃
𝑠
=

𝑘

⋃

𝑖=1

{𝑜𝑝
𝑠

2𝑖−1
, . . . , 𝑜𝑝

𝑠

2𝑖
} . (20)

We are aware that two neighboring points in𝑁𝐵𝑀
𝑠
may not

be consecutive in 𝑂𝑃. We define

{𝑜𝑝
𝑠

2𝑖−1
, . . . , 𝑜𝑝

𝑠

2𝑖
}

= {𝑜𝑝ind1, 𝑜𝑝ind1+1, . . . , 𝑜𝑝ind2−1, 𝑜𝑝ind2} ,
(21)

where ind1 is the index of 𝑜𝑝𝑠
2𝑖−1

in 𝑂𝑃 and ind2 is the index
of 𝑜𝑝𝑠
2𝑖
in 𝑂𝑃.

Construct Concave Hull of 𝐵𝑠. We use the concave hull of 𝐵𝑠,
denoted as𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠), to fit the outline of the vertex cluster
of sector 𝑠. 𝛼-shape algorithm [38] is applied here to generate

the concave hull. The basic idea of 𝛼-shape algorithm is to
iteratively search 𝛼-extreme points and 𝛼-neighbors and to
connect the found 𝛼-neighbors sequentially to generate 𝛼-
hull. As large amount of extra definitions and notations must
be introduced to formulate 𝛼-shape algorithm clearly, we do
not present the details here.

4.3.2. Concave Hull Amendment. 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠) is a promising
candidate to be the boundary of sector 𝑠 because all vertices
of 𝐺
𝑠
are inside it and it fits the shape of 𝑠 very well. How-

ever, two more considerations make it necessary to recheck
𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠). The first is the compactness of the boundary;
that is, fewer segments are preferred on the boundary. The
second is about the MDFB constraint; that is, the distance
between some segments of 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠) and some vertices
of 𝐺 may be less than the MDFB. Hence, we propose the
Concave Hull Amendment Method (CHAM) to deal with
these two considerations (Procedure 3).

There are two ideas in the CHAM. The first is to replace
the polygonal line connecting several vertices on the concave
hull with one line segment from the first vertex to the last
one. The second idea is to avoid obstacle circles centering
at the vertices of 𝐺 with radius of that vertex (refer to
Section 3.1 for the definition of the radius of a vertex).We call
modified concave hulls after the CHAM boundary polygons
and present two definitions about the concave hull and the
boundary polygon first.

Definition 4 (path(s) on the concave hull). One scans the
vertices of 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠) clockwise. If 𝑠 is adjacent to the
outerboundary of the target airspace, whenever we encounter
a sequence of vertices 𝑉𝑝

1
− 𝑉
𝑝

2
− ⋅ ⋅ ⋅ − 𝑉

𝑝

𝑟−1
, 𝑉
𝑝

𝑟
, where 𝑉𝑝

1
,

𝑉
𝑝

𝑟
∈ 𝑂𝑃 or others belonging to 𝑀𝑃, we define such a

sequence as a path on the concave hull. If 𝑠 is not adjacent to
the outerboundary, that is, it is surrounded by other sectors,
we simply define a path on𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠) as a clockwise closed
walk of all vertices of 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠).

Mathematical Problems in Engineering 11

V1

V2

V3

V4MP1 MP2

Outer boundary
Edge of Voronoi polygon
Edge of undirected graph

(a)

Outer boundary
Edge of Voronoi polygon
Edge of graph (not air route)
Edge of graph (air route)

V5
V3

V2

V1

V4 V6
MP1

MP2 MP3 MP4

(b)

Figure 5: Midpoints adjacent to the outerboundary.

(1) For 𝑠 ∈ 𝑆

(2) Get path(s) on 𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵
𝑠
), set as 𝑃𝑠

1
, 𝑃
𝑠

2
, . . . , 𝑃

𝑠

𝑘𝑠
(See Definition 4 in Section 4.3.2)

(3) For each path 𝑃
𝑠

𝑖
, 1 ≤ 𝑖 ≤ 𝑘

𝑠

(4) Define vertices along 𝑃𝑠
𝑖
as 𝑉𝑝
1
, 𝑉
𝑝

2
, . . . , 𝑉

𝑝

𝑁𝑖
and corresponding 𝐵𝐼𝑝

1
, 𝐵𝐼
𝑝

2
, . . . , 𝐵𝐼

𝑝

𝑁𝑖

(note that 𝐵𝐼𝑝
𝑗
= 𝑉
𝑝

𝑗
when corresponding cross-sector edge has not been designed)

(5) Set 𝑗 = 1, gap = 1.
(6) While 𝑗 < 𝑁

𝑖

(7) If cross-sector edges referred by 𝐵𝐼𝑝
𝑗
and 𝐵𝐼

𝑝

𝑗+1
are both designed

(8) If line segment 𝐵𝐼𝑝
𝑗
𝐵𝐼
𝑝

𝑗+1
is infeasible (See Definition 5 in Section 4.3.2)

(9) Execute the OABD to 𝐵𝐼𝑝
𝑗
𝐵𝐼
𝑝

𝑗+1
(See Explain in Section 4.3.2)

(10) End
(11) 𝑗 = 𝑗 + 1, go to line (6)
(12) End
(13) While line segment 𝐵𝐼𝑝

𝑗
𝐵𝐼
𝑝

𝑗+gap is feasible (See Definition 5 in Section 4.3.2)
(14) gap = gap + 1

(15) If cross-sector edges referred by 𝐵𝐼𝑝
𝑗+gap−1 and 𝐵𝐼

𝑝

𝑗+gap are both designed
(16) break
(17) End
(18) End
(19) If gap = 1

(20) Execute the OABD to 𝐵𝐼𝑝
𝑗
𝐵𝐼
𝑝

𝑗+1
(See Explain in Section 4.3.2).

(21) Set the cross-sector edge referred by 𝐵𝐼𝑝
𝑗+1

as designed, remain 𝐵𝐼
𝑝

𝑗+1
= 𝑉
𝑝

𝑗+1

(22) 𝑗 = 𝑗 + 1, go to line (6)
(23) End
(24) Else
(25) gap = gap − 1

(26) Draw line segment 𝐵𝐼𝑝
𝑗
𝐵𝐼
𝑝

𝑗+gap,
(27) Set cross-sector edges referred by 𝐵𝐼𝑝

𝑗+1
, 𝐵𝐼
𝑝

𝑗+2
, . . . , 𝐵𝐼

𝑝

𝑗+gap as designed
(28) Set 𝐵𝐼𝑝

𝑗+1
, 𝐵𝐼
𝑝

𝑗+2
, . . . , 𝐵𝐼

𝑝

𝑗+gap as the intersections of related cross-sector edges
and line segment 𝐵𝐼𝑝

𝑗
𝐵𝐼
𝑝

𝑗+gap
(29) 𝑗 = 𝑗 + gap, reset gap = 1, go to line (6)
(30) End
(31) End
(32) End
(33) End

Procedure 3: Procedures of the CHAM.

Definition 5. A line segment connecting any two vertices on
the boundary polygon of one sector is defined as feasible if
it does not intersect with any inner-edges of any sector and
it does not go through any obstacle circles centering at the
vertices of 𝐺.

Next, we present another definition to avoid redepiction
of common boundary between two neighboring sectors.

Definition 6. In the CHAM, once a segment on the boundary
polygon is depicted, set all cross-sector edges that intersect

12 Mathematical Problems in Engineering

Vs

Ob1

Ob2

Ve

(a)

Ob1

Ob2

Vs

Ve

V0

(b)

Ob1

Ob2

Vs

Ve

V0

V1

V2

(c)

Figure 6: Procedures of the OABD.

with this segment as designed. Define the intersection of
this segment and a cross-sector edge, 𝑒

𝑖𝑗
, as the boundary

crossing point of 𝑒
𝑖𝑗
, denoted as 𝐵𝐼

𝑖𝑗
. When one cross-sector

edge has not been designed, its default boundary crossing
point is set as its midpoint, that is, the intersection of this
edge and the concave hull. To ensure unification, when one
endpoint of a depicted segment lies on the outerboundary
of the target airspace, we also define a virtual cross-sector
edge corresponding to this endpoint as designed and set the
boundary crossing point as the endpoint itself.

We also give two properties about the concave hull.

Property 1. For any sector 𝑠, line segments on𝐶𝑜𝑛𝑐𝑎V𝑒(𝐵𝑠) do
not intersect with any inner-edges of any sector.This property
is obvious from the definition and the generating process of
𝛼-shape [38].

Property 2. The distance between any vertex on the concave
hull, representing the midpoint of a cross-sector edge, and
any vertex of 𝐺 is at least MDFB.

Proof. For any vertex on the concave hull, if the correspond-
ing cross-sector edge represents a real air-route segment, the
edge is at least MDFB away from any vertex of𝐺 according to
Rule 3 in Section 3.2 except its two endpoints. In addition,
as all edges of 𝐺 are at least twice as long as MDFB, their
midpoints are at least MDFB away from the two endpoints.
For one vertex on the concave hull that is the midpoint of
a sector-cross edge only standing for Voronoi neighboring
relationship, it locates on the Voronoi polygons of both
endpoints of this edge, which means that the nearest vertices
of 𝐺 to this midpoint are just the two endpoints of the edge.
Considering the possible distance between this midpoint and
the two endpoints is at least MDFB, if any other vertex of
𝐺 is less than MDFB from this midpoint, a contradictory
occurs.

These two properties show two pieces of important
information when we construct the boundary polygons:

(1) For any two consecutive vertices on the concave hull
of a sector, if we can find a line segment or a polygonal
line that does not go through any obstacle circles, this
line segment or polygonal line can be set as boundary
segment(s) of that sector.

(2) Theboundary polygons after theCHAM can cross any
vertices on the concave hulls.

We show the procedures of the CHAM in Table 1 with
necessary explanations below.

Obstacle Avoidance Boundary Design (OABD). We illustrate
the OABD with Figure 6. Firstly, we assume two consecutive
vertices on the concave hull as 𝑉

𝑠
and 𝑉

𝑒
. 𝑉
𝑠
𝑉
𝑒
is assumed

to intrude one or more obstacle circles (Figure 6(a)). The
OABD examines the first obstacle (such as 𝑂𝑏

1
in Figure 6)

intruded by 𝑉
𝑠
𝑉
𝑒
. Then, we draw two tangents from 𝑉

𝑠
and

𝑉
𝑒
to the obstacle circle, respectively. The intersection of

these two tangents is denoted as 𝑉
0
. Thus, the boundary

between 𝑉
𝑠
and 𝑉

𝑒
is now 𝑉

𝑠
𝑉
0
𝑉
𝑒
(Figure 6(b)). Next, we

examine if 𝑉
𝑠
𝑉
0
𝑉
𝑒
still intrudes any other obstacle (such

as 𝑂𝑏
2
in Figure 6). If it does, we truncate 𝑉

0
𝑉
𝑒
at the

boundary of the second obstacle (𝑉
1
in Figure 6(c)). Then,

we draw two tangents of 𝑂𝑏
2
originating from 𝑉

1
and 𝑉

𝑒
,

respectively, and get their intersection (𝑉
2
in Figure 6(c)).The

boundary between 𝑉
𝑠
and 𝑉

𝑒
is now changed to 𝑉

𝑠
𝑉
0
𝑉
1
𝑉
2
𝑉
𝑒
.

The OABD continues until the curve 𝑉
𝑠
𝑉
0
𝑉
𝑒
(1 iteration) or

𝑉
𝑠
𝑉
0
𝑉
1
⋅ ⋅ ⋅ 𝑉
𝑘+1

𝑉
𝑒
(𝑘 iterations, 𝑘 > 1) is free of all obstacles

(Figure 6(c)). If too many iterations are needed in theOABD,
the generated sector boundaries may be jagged, which is
prohibited. Throughout our simulation, such situations do
not appear. Relevant discussions will be in Section 6.5.

In the OABD, there are always two intersections when
we draw tangents, such as 𝐼

1
and 𝐼

2
, in Figure 7. As 𝐼

1

and 𝐼
2
always locate symmetrically on opposite sides of the

obstacle circle, one of the generated polygonal lines definitely
intersects with inner-edges of sectors while the other does
not. The one without intersections with inner-edges is our
choice (such as 𝑉

𝑠
𝐼
2
𝑉
𝑒
in Figure 7).

Mathematical Problems in Engineering 13

Table 1: Results of six sectorization methods.

Time period Sectorization method Obj1 Obj2 Obj3 Con1 Con2 Con3 Nos Density gap RT (s)

12:00–14:00

Current in practice 0.8145 674 238 0 1 0 16 4218 —
Only NSCA 1.0518 471 133 0 6 1 16 6027 —

RI 0.3158 404 84 1 0 0 9 2521 934
CI 0.3124 360 59 0 0 0 9 2232 940
NI 0.3404 375 58 0 0 0 8 2356 942
MI 0.4329 386 68 0 0 0 8 2512 964

16:00–18:00

Current in practice 1.1466 707 234 0 4 2 16 6705 —
Only NSCA 1.6230 428 86 0 0 3 16 6732 —

RI 0.3148 525 106 1 0 0 10 2409 926
CI 0.4508 608 130 0 0 0 10 3007 937
NI 0.4259 499 104 0 0 0 10 2521 924
MI 0.4502 511 91 0 0 0 10 2619 940

20:00–22:00

Current in practice 1.3666 710 247 0 3 2 16 7198 —
Only NSCA 2.0712 403 72 0 1 5 16 9150 —

RI 0.4514 684 206 2 0 0 12 2375 936
CI 0.3487 719 218 0 0 0 12 1902 934
NI 0.4142 592 134 0 0 0 12 2258 930
MI 0.3993 598 136 0 0 0 12 2017 915

2:00–24:00

Current in practice 1.3850 427 166 0 1 2 16 7604 —
Only NSCA 1.6230 428 86 1 2 3 16 9058 —

RI 0.4318 468 205 2 0 0 12 2635 944
CI 0.4100 335 79 0 0 0 12 2239 937
NI 0.3678 350 105 0 0 0 12 2159 924
MI 0.2982 351 118 0 0 0 12 2073 930

4.3.3. Vacuum Space Handle. After the CHAM, there still
remains several vacuum spaces at the intersecting areas
of three or more sectors, such as quadrilateral ABCD in
Figure 8(a). These vacuum spaces contain no vertices or
edges and are not assigned to any sector. In this section, we
propose a heuristic method to assign vacuum spaces. Firstly,
we represent a vacuum space with a polygon, calling the
vacuum polygon. The vacuum polygons can be sorted into
four categories according to types of their sides:

(I) Triangles with no side from the OABD.
(II) Polygons with more than three sides and no side that

is from the OABD.
(III) Quadrangles with two sides from the OABD.
(IV) Other types.
For vacuum polygons in Category (I), we propose two

choices, one is directly erasing the opposite side of the biggest
inner angle (Figure 9(a)), and the other is to find the “most
vertical” midline and erase those two sides on which the
midpoint does not locate (Figure 9(b)).

For vacuum polygons in Category (II), we first give the
following property.

Property 3. The vacuum polygon in Category (II) is convex.

Proof. Suppose there is a concave vacuum polygon in Cate-
gory (II) (such as the one in Figure 8(b)). We consider the

vertex causing the concavity (point 𝐶 in Figure 8(b)). As this
vertex is on a cross-sector edge, one of the endpoints of this
cross-sector edge locates inside the vacuum polygon because
of the concavity, obviously causing a contradictory against
the definition of the vacuum space. In another situation, it
locates outside the polygon while the cross-sector edge must
intersect with one extra side of the polygon. However, neither
of the two endpoints of this extra side is the vertex that causes
the concavity; that is, a cross-sector edge between two sectors
intersects with the boundary of an irrelevant sector. It is also
impossible. Hence, we show that the vacuum polygons in
Category (II) must be convex.

With Property 3, we can calculate the geometric center
of a polygon in Category (II), which must locate inside the
polygon because of its convexity (point 𝑂 in Figure 8(b)).
Then, we connect the center to every vertices of the polygon
and erase original sides of the polygon (Figure 8(c)).

For polygons in Category (III), which stand for an
intersecting area of three sectors, we find the vertex produced
by the OABD (point 𝐼 in Figure 9(c)), draw the diagonal from
it, and erase those two opposite sides of the vertex produced
by the OABD.

For polygons in Category (IV), situation of their sides
may be very complex. We directly assign the entire vacuum
space to one sector, whose boundary segments are sides of the
polygon after OABD.

14 Mathematical Problems in Engineering

Vertex on concave hull

Vertex of G

Obstacle circle

Inner-edges

Tangents

Ve

Vs

I1

I2

Figure 7: Selection when drawing tangents.

Cross-sector edge
Sector boundary

A

B

C

D

Vertex on concave hull

Vertex of G

(a)

A

B

C

D O

Cross-sector edge
Sector boundary

Vertex on concave hull

Vertex of G

(b)

A

B

C
D

Cross-sector edge
Sector boundary

Vertex on concave hull

Vertex of G

(c)

Figure 8: Vacuum polygon handle, Category (II).

Mathematical Problems in Engineering 15

(a) (b)

I I

(c)

Figure 9: Vacuum polygon handle, Categories (I) and (III).

5. Configuration Transition

Themethods presented from Sections 2–4 are for the sector-
ization problem in single time period. This section focuses
on solving the CTP. First of all, we present the definition of
the similarity of two different configurations followed by its
calculation method.

5.1. Similarity of Two Configurations. We still use graph-
based notations to denote configurations. We still model the
whole target airspace as 𝐺, and define 𝐶1 and 𝐶2 as two
different configurations:

𝐶1: 𝐺 =

𝑘1

⋃

𝑠=1

𝐺
1

𝑠
,

𝑉 =

𝑘1

⋃

𝑠=1

𝑉
1

𝑠
,

𝐶2: 𝐺 =

𝑘2

⋃

𝑠=1

𝐺
2

𝑠
,

𝑉 =

𝑘2

⋃

𝑠=1

𝑉
2

𝑠
.

(22)

We construct a bisection diagram (Figure 10(a)), where
nodes on each side stand for the sectors in each configuration.
Theweight of an edge connecting twonodes on opposite sides
is the similarity of two sectors, which is defined as the number
of same vertices of these two sectors:

Sim (𝐺
1

𝑠1
, 𝐺
2

𝑠2
) =

󵄩󵄩󵄩󵄩󵄩
𝑉
1

𝑠1
∩ 𝑉
2

𝑠2

󵄩󵄩󵄩󵄩󵄩

𝑠1 ∈ {1, 2, . . . , 𝑘
1
} , 𝑠2 ∈ {1, 2, . . . , 𝑘

2
} .

(23)

To calculate the similarity of 𝐶1 and 𝐶2, we need to get
the maximummatch of the bisection diagram, which ensures
a monoprojection for every node on the side with less nodes
while the aggregate weights of selected edges are maximized.
Without loss of generality, we suppose 𝑘

1
≤ 𝑘
2
(it is similar

when 𝑘
2
≤ 𝑘
1
), the similarity of 𝐶1 and 𝐶2 is defined as:

Sim (𝐶1, 𝐶2) = max
𝑘1

∑

𝑠1=1

𝑘2

∑

𝑠2=1

𝑥
𝑠1

𝑠2
𝜔
𝑠1

𝑠2
,

𝑘2

∑

𝑠2=1

𝑥
𝑠1

𝑠2
= 1, ∀𝑠1 ∈ {1, 2, . . . , 𝑘

1
} ,

𝑘1

∑

𝑠1=1

𝑥
𝑠1

𝑠2
≤ 1, ∀𝑠2 ∈ {1, 2, . . . , 𝑘

2
} ,

𝑥
𝑠1

𝑠2
∈ {0, 1} ,

(24)

where 𝜔𝑠1
𝑠2
= Sim(𝐺

1

𝑠1
, 𝐺
2

𝑠2
).

This is a typical 0-1 programming problem, which can
be solved with network flow algorithms. We modify the
bisection diagram (Figure 10(b)), adding one virtual source
node to the side with less nodes and connect the source node
with eachnode on the same side. Besides, we also add a virtual
sink node to the side with more nodes, connecting the sink
node with each node on the same side. The weights on all
newly added edges are 0 so that they have no impact on the
result. The weights on original edges are also changed. For an
edge connecting 𝐺

1

𝑠1
and 𝐺

2

𝑠2
, its weight is changed to 𝑀 −

Sim(𝐺
1

𝑠1
, 𝐺
2

𝑠2
) from Sim(𝐺

1

𝑠1
, 𝐺
2

𝑠2
), where 𝑀 is a constant. So

the objective function is changed to the form of 𝑘
1
𝑀−𝑓(𝑥).

Because 𝑘
1
is known, original maximization problem in (24)

is now transformed to a minimization problem. The supply
of the source node and the demand of the sink node are both
equal to 𝑘

1
and the supply/demand at other nodes are all 0.

Finally, the capacities on all edges are set as 1. Based on these
modifications, we build a typical network that applies to any
generic minimum cost flow algorithms [29]. We do not list
the procedures of theminimumcost flow algorithms in detail.
Readers can easily find them in [29] or any other textbooks
on network flow or Discrete Optimization.

5.2. Nondominated Configuration Links. If we want to make
a configuration plan for next several time periods, we should
consider the quality of selected configurations in terms of
the values in Obj1 to Obj3 and the similarities between
configurations of consecutive time periods. Hence, finding
an optimal configuration plan is another multiobjective
problem.

We build a forward network to represent the CTP
(Figure 10(c)). Each column of nodes represents one of
several nondominated configurations in one period. A node
in the network is denoted as 𝐶𝑖

𝑡
, 1 ≤ 𝑡 ≤ 𝑇, where 𝑇 is the

number of time periods and 1 ≤ 𝑖 ≤ 𝑘
𝑡
, where 𝑘

𝑡
is the

16 Mathematical Problems in Engineering

C1 C2

G
1
1

G
2
1

G
2
2

G
1
2

G
1
s1

G
2
s2

G
2
s2+1

G
1
k1

G
2
k2

...

...
...

...

Sim(G1
k1
G2
k2
)

Sim(G1
1
G
2
1
)

(a)

C1 C2

G
1
1

G
2
1

G
1
2

G
2
2

...

...

...

...

Virtual
source
node

Virtual
sink
node

(0, 1)
(0, 1)

(0, 1)
(0, 1)

G
1
s1

G
1
k1

G
2
k2

G
2
s2

G
2
s2+1

(M− Sim(G1
1
G
2
1
), 1)

(M− Sim(G1
k1
G2
k2
), 1)

(b)

· · ·

C
1
1

C
1
2

C
2
2

C
3
2

C
2
1

C
k1
1

C
k2
2

C
i
1

C
i
2

C
i
N−1

C
2
N−1

C
1
N−1

C
k𝑁−1

N−1

C
k𝑁−1−1

N−1

C
i+1
N

C
1
N

C
i
N

C
k𝑁
N

...

...

...

...

...

...
...

...

Period 1 Period 2 Period NPeriod N− 1

C
2
N

−Sim(C1
1 , C2

2)

(c)

Figure 10: Configuration similarity and transition.

number of nondominated configurations in period 𝑡. Each
edge in the network stands for a possible transition from
the previous period to the next period. Edges standing for
transitions with too low similarity are truncated.

We define two kinds of parameters in the network. The
first one is the weight of edge 𝑒𝑖𝑗

𝑡,𝑡+1
, denoted as 𝑤𝑖𝑗

𝑡,𝑡+1
, set as

the inverse of the similarity of configuration𝐶𝑖
𝑡
and𝐶𝑗

𝑡+1
. The

second one is the values of Obj1 to Obj3 of node 𝐶𝑖
𝑡
, denoted

as 𝑓𝑖
𝑡
= (𝑓
𝑖

𝑡,1
, 𝑓
𝑖

𝑡,2
, 𝑓
𝑖

𝑡,3
).

Definition 7. One defines a route in the forward network from
onenode to anynode in the last period as a configuration link.
A link without its starting node is called a path.

For node𝐶𝑖
𝑡
, one denotes the cost along a path 𝑝𝑝

𝑖,𝑡
from it

to any node in the last period as 𝑔𝑝
𝑝

𝑖,𝑡 = (𝑔
𝑝
𝑝

𝑖,𝑡

1
, 𝑔
𝑝
𝑝

𝑖,𝑡

2
, 𝑔
𝑝
𝑝

𝑖,𝑡

3
, 𝑔
𝑝
𝑝

𝑖,𝑡

4
),

where 𝑔𝑝
𝑝

𝑖,𝑡

1
is the sum of similarities along the path and the

other three items correspond to the sum of values of three

objective functions of nodes along the path. Hence, one can
define the dominating relationship between two paths.

Definition 8. Assuming two paths form the same time period
𝑡 to the last period as 𝑝𝑝

𝑖,𝑡
and 𝑝𝑞

𝑗,𝑡
, 𝑝𝑝
𝑖,𝑡
≺ 𝑝
𝑞

𝑗,𝑡
, if 𝑔𝑝

𝑝

𝑖,𝑡 ≤ 𝑔
𝑝
𝑞

𝑗,𝑡 and

∃𝑚, 1 ≤ 𝑚 ≤ 4, 𝑔𝑝
𝑝

𝑖,𝑡

𝑚 < 𝑔
𝑝
𝑞

𝑗,𝑡

𝑚 .

From Definition 8, we can define a nondominated set
of paths from node 𝐶

𝑖

𝑡
, denoted as ND𝑖

𝑡
. Then, we assume

another path from one node in previous period, 𝐶𝑗
𝑡−1

, which
goes across 𝐶𝑖

𝑡
as 𝑝𝑟
𝑗,𝑡−1

, and the part after 𝐶𝑖
𝑡
along 𝑝

𝑟

𝑗,𝑡−1
is

𝑝
𝑝

𝑖,𝑡
. Then, we can get the following relationships:

𝑝
𝑟

𝑗,𝑡−1
= 𝑝
𝑝

𝑖,𝑡
∪ (𝑒
𝑗𝑖

𝑡−1,𝑡
, 𝐶
𝑖

𝑡
) , (25a)

𝑔
𝑝
𝑟

𝑗,𝑡−1

1
= 𝑔
𝑝
𝑝

𝑖,𝑡

1
+ 𝑤
𝑗𝑖

𝑡−1,𝑡
, (25b)

𝑔
𝑝
𝑟

𝑗,𝑡−1

𝑚 = 𝑔
𝑝
𝑝

𝑖,𝑡

𝑚 + 𝑓
𝑖

𝑡,𝑚−1
, 𝑚 = 2, 3, 4. (25c)

Hence, we obtain the following proposition.

Mathematical Problems in Engineering 17

Proposition 9. Assuming a nondominated set of paths orig-
inating from 𝐶

𝑗

𝑡−1
and paths in this set go across 𝐶𝑖

𝑡
, the part

after 𝐶𝑖
𝑡
along such path belongs to ND𝑖

𝑡
.

Proof. Assume two paths originating from 𝐶
𝑗

𝑡−1
and going

across 𝐶𝑖
𝑡
as 𝑝𝑝
𝑗,𝑡−1

and 𝑝
𝑞

𝑗,𝑡−1
. Also, assume their parts after

𝐶
𝑖

𝑡
as 𝑝𝑟
𝑖,𝑡
and 𝑝

𝑠

𝑖,𝑡
, respectively. Considering the calculations

in (25b) and (25c), if 𝑝𝑟
𝑖,𝑡
≺ 𝑝
𝑠

𝑖,𝑡
, then 𝑝

𝑝

𝑗,𝑡−1
≺ 𝑝
𝑞

𝑗,𝑡−1
.

Proposition 9 shows that the subpaths not being in ND𝑖
𝑡

can be discarded when we calculate ND𝑗
𝑡−1

. We consider all
nodes, 𝐶𝑖

𝑡
, 1 ≤ 𝑖 ≤ 𝑘

𝑡
, in period 𝑡, which can be transitioned

from 𝐶
𝑗

𝑡−1
. We denote the nondominated paths originating

from 𝐶
𝑗

𝑡−1
and going across 𝐶𝑖

𝑡
as ND𝑗𝑖

𝑡−1,𝑡
, and we get

S
ND
𝑗

𝑡−1
= ⋃

𝑖

ND𝑗𝑖
𝑡−1,𝑡

. (26)

We elite out nondominated paths in
S
ND
𝑗

𝑡−1
and get the

nondominated set of paths originating from 𝐶
𝑗

𝑡−1
, denoted as

ND𝑗
𝑡−1

.
We have presented the procedure to obtain ND𝑗

𝑡−1
so far

when ND𝑖
𝑡
is known. This is similar to one of the steps in

typical dynamic programming except multiple objectives. In
fact, the principle of optimality in monoobjective DP also
works in multiobjective cases [39] and Proposition 9 just acts
the same as the principle of optimality.

Hence, we apply a backwardmultiobjective DP algorithm
starting at stage 𝑇 − 1, getting the nondominated path set for
each node in period 𝑇 − 1. In stage 𝑛, 1 ≤ 𝑛 ≤ 𝑇 − 1, we deal
with edges from period 𝑡 to 𝑡+1 and the nodes in period 𝑡+1
to generate sets of nondominated paths from nodes in period
𝑡.

After the calculation in stage 1, we generate nondom-
inated path sets from each node in period 1, denoted as
ND1
1
,ND2
1
, . . . ,ND𝑘1

1
. However, values of objective functions

of configurations in period 1 are not involved yet. Next,
we integrate nodes in period 1 into the paths to get final
nondominated links.

For each configuration in period 1, 𝐶𝑖
1
, 1 ≤ 𝑖 ≤ 𝑘

1
and

corresponding ND𝑖
1
, suppose a path in ND𝑖

1
as 𝑝𝑝
𝑖,1

and the
link 𝑙𝑝
𝑖,1
that integrates 𝐶𝑖

1
with 𝑝

𝑝

𝑖,1
; then

𝑙
𝑝

𝑖,1
= 𝑝
𝑝

𝑖,1
∪ 𝐶
𝑖

1
, (27a)

𝑔
𝑙
𝑝

𝑖,1

𝑚 = 𝑔
𝑝
𝑝

𝑖,1

𝑚 + 𝑓
𝑖

1,𝑚−1
, 𝑚 = 2, 3, 4. (27b)

We take operations like (27a) and (27b) for all nondom-
inated paths in ND𝑖

1
, 1 ≤ 𝑖 ≤ 𝑘

1
. Then, we classify the

generated links into a set
S

FND. Finally, we select nondom-
inated individuals from

S
FND to obtain final nondominated

configuration link set FND.

Figure 11: The structure of the undirected graph.

6. Experiment and Result Analysis

6.1. Setting. We test our methods with practical navigation
database, recorded radar track, and practical flight plan
teletext on July 20th, 2014. The target airspace is the high-
altitude airspace controlled by Beijing Area Control Center
(as in Figure 1). Graph𝐺 representing the airspace is made up
of 117 vertices and 293 edges (239 edges represent air routes),
which is shown in Figure 11.

The MDFB is set as 15 nautical miles and the minimum
staying time in one sector is set as 7 minutes. The threshold
of instantaneous flow, Threinsflow, is set as 15. Other two
thresholds in the memetic local search are set as FDup =

5400 and FDlow = 2500. Weights in (9) are determined by
interviews with air traffic controllers, 𝑤FD = 5, 𝑤ac = 1,
𝑤sc = 1, 𝑤cc = 1. Besides, we divide one day into 10 time
periods, 0 a.m. to 6 a.m. is set as the first period considering
its sparse traffic. After that, every two hours are set as one
period such as 10 a.m. to 12 a.m. In the evolution algorithm,
we set 100 individuals in one generation and the maximum
times of iteration are set as 500. All simulations are executed
on a PC with Core-i3 2120 CPU and 4GB RAM.

6.2. Configuration Examples. To save space, we only demon-
strate examples in four periods, 12:00–14:00, 16:00–18:00,
20:00–22:00, and 22:00–24:00. The period between 20:00–
22:00 is the busiest period according to the recorded data.

We show the four nondominated configurations in the
nondominated configuration link with the largest gross
similarity (see Section 6.7) in Figure 12. The airspace is split
into 9, 10, and 12 sectors in 12:00–14:00, 16:00–18:00, and
20:00–22:00 along with the increasing flow density. Sector
number in the last period is also 12. However the traffic
flow in this period is not so dense. In fact, at the beginning
of period 22:00–24:00, the traffic continues the situation in
20:00–22:00, which is very dense and 12 sectors are necessary.
The density gradually decreases and becomes much sparser
near the midnight. However, as the configuration in one time

18 Mathematical Problems in Engineering

(a) (b)

(c) (d)

Figure 12: Configuration examples by the proposed approach.

period is fixed and it has to cover the busiest situation in
this period because of the instantaneous flow constraint, the
sector number during period 22:00–24:00 is also 12. If we can
identify the flow density change more accurately, the pattern
of time period division could be better.This is another critical
and important problem in the DAC but not the scope of this
paper.

In almost all periods except the period 20:00–22:00 with
huge high density, northeastern, northern, and northwestern
regions of the airspace are almost served by at most two
sectors. This corresponds to the fact that the economy in
northeast and northwest China is not so developed and
flights from these regions are limited. On the contrary, in
the southeastern and southern regions of the airspace, con-
figurations changes frequently between two adjacent periods
and much more sectors are needed during busy periods. In
some situations, small sectors that even contain only one
vertex are produced around the main stem of China’s north-
south air route, “A461.” The peak flow density along “A461”
occurs because flights from Guangzhou, Changsha, Wuhan,
Zhengzhou and other big cities to Beijing are all probable to
fly along “A461.” Hence, we have to limit the control area
of any single sector so as to limit the controllers’ workload
during high flow density periods.

6.3. Comparisons. In Table 1, we summarize the majority of
the metrics of configurations using six different methods,

respectively, including current configuration in practice, the
configuration generated only by the NSCA-based method
and four evolution-based methods, that is, RI, CI, NI, and
MI. We compare these results in terms of values of the three
objective functions (Obj1 to Obj3) and violating times of the
three constraints (Con1 to Con3). “Nos” in Table 1 stands
for the number of sectors. Density gap stands for the gap of
the maximum and the minimum count of trajectory points
in different sectors. For last four evolution-based methods,
the values from the third column to the values in the fifth
column are all averaged values of nondominated individuals
in the final generation; values from the sixth to the eighth
column and values in the column “density gap” are the biggest
related values in the nondominated set. Column “Nos” gives
the smallest sector number of single configuration in the
nondominated set. Column “RT” gives the running time of
evolution-based methods.

6.3.1. Comparison with Current Configuration in Practice.
In Table 1, we notice the reductions in values of all three
objective functions as well as the reduction of the density
gap from configuration in practice to those by our approach.
In addition, there are several occurrences of constraint
violations in current configuration while any kind of viola-
tions are absent in our approach. Furthermore, much less
sectors are needed in the proposed method comparing to the
configuration in practice.

Mathematical Problems in Engineering 19

130
120
110
100
90
80
70
60
50
40
30

460
420

380
340

300 0 0.1 0.2 0.3
0.4 0.5

0.6 0.7
0.8

CI
NI
MI

Figure 13: Nondominated sets of the period 12:00–14:00.

6.3.2. Approximation of the NSCA. The values in rows named
with “OnlyNSCA” show that theNSCA is just an approxima-
tion of the graph𝑁-cut. Even if we do not consider constraint
violations, the configuration obtained by only applying the
NSCA shows no superiority to the current configuration in
practice, especially from the aspect of balancing intrasector
workloads. However, “Only NSCA” often performs well in
terms of Obj2 or Obj3. Hence, we may expect “nice genes”
from the NSCA-based method and this is why we execute NI
and MI to produce the initial generation.

6.3.3. Comparison of Different Initial Generations. For every
period, we set four cases about the initial generation of the
CNSGA-II and list related results in last four rows of that
period in Table 1. Solutions obtained in RI are the worst
considering even no feasible individuals can be produced (We
have triedmuchmore iterations but no feasible individual can
be produced yet.). All individuals in the final generation inCI,
NI, and MI are feasible, but there is no obvious dominance
considering the averaged values of three objective functions.
Although in the period between 12:00–14:00, the averaged
value in CI dominates the averaged results in NI and MI,
and several individuals in NI and MI are still not dominated
by individuals in CI (see Figure 13). Similar situations occur
in other periods. That is, if we unite the nondominated sets
by CI, NI, and MI together and select once again, the final
approximate Pareto Front is always made up by solutions
from all these three cases.

6.4. Final Nondominated Set. From the discussion in Sec-
tion 6.3, we propose the idea of parallel computation with
CI, NI, and MI when executing the evolution algorithms.
Then we merge their final generation together and select
nondominated individuals from this merged set so as to get
the final solutions of the 2D ERSP in one time period.

6.5. Applicability of the Automatic Boundary Depiction
Method. The most important factor that affects the appli-
cability of the automatic boundary depiction method is the
conciseness of the depicted boundaries. If the boundaries

are composed of too much segments or even jagged, the
method is undesirable. We randomly select 10 optimal con-
figuration links (that correspond to 100 configurations and
8500 sectors in total) and draw the boundaries using the
proposed boundary depiction method. 59284 segments are
generated in total and the boundary of single sector is made
up by 6.97 segments in average. Among the 59284 segments,
only 34 are produced by the OABD. The OABD is called
17 times, which means that one segment in the concave
hull is almost replaced by a two-part polygonal line in the
OABD. This phenomenon may attribute to the advanced
graph structure proposed in this paper that involves edges
representing “Vonoroi neighborhood.” With these newly
added edges, the distance between two adjacent vertices on
the concave hull is limited so that the line segment connecting
them seldom walks through too much “obstacle circles.” In
all, the limited average number of segments consisting of
the boundary of single sector and the fact that no jagged
boundaries are produced by theOABD show the applicability
of our automatic boundary depiction method.

6.6. Running Time. Because the sectorization problem is
not a real-time decision problem and almost all solving
methods need iterative optimization, few previous studies
have reported the running time of their methods. However,
in ourmind, the running time is also important because short
running time is helpful in utilizing latest traffic information.

6.6.1. Time for Data Preparation. In Section 3.3, we propose
multiple data forms to store the traffic information. In our
simulation, time spent to obtain traffic information for single
time period ranges from 169 seconds to 324 seconds. The
heavier the traffic, the more the time needed to calculate the
metrics.

6.6.2. Time for Optimization. Thevalues in the last column of
Table 1 show that the evolution algorithm-based optimization
is around 15 minutes for any single time period.

6.6.3. Time for Boundary Depiction. The time spent to draw
the sector boundaries for single configuration is about 1.5
minutes. The most time-consuming part is judging whether
segments on boundary polygons intersect with inner-edges
of sectors or whether they intrude obstacle circles. Besides,
as we do not need to depict the boundaries during the
optimization process and the depiction is only needed once
after the evolution, the 1.5min running time is acceptable and
it is expected to have advantages over methods with manual
operations.

In all, in our simulation, it takes about 20 minutes from
the data preparation to the sector boundary depiction for
single configuration during a single time period.This implies
if we want to get a configuration for next 2 hours, we can
start just about 20 minutes before the starting moment of the
period, which will benefit our approach with latest air traffic
information so that to minimize the impact of uncertainty.
In addition, as the approaches are all executed on a PC with

20 Mathematical Problems in Engineering

Core-i3 CPU, we can expect much shorter running time if we
use a computer with more computing power.

6.7. Results of the Nondominated Configuration Links. We
randomly select 20 nondominated solutions (configurations)
for each time period; that is, the number of links of configu-
rations in the forward network is about 2010. Among them,
we get 5284 nondominated links. One of the links with the
largest gross similarity is 𝐶13

1
→ 𝐶

22

2
→ 𝐶

7

3
→ 𝐶

97

4
→

𝐶
56

5
→ 𝐶
143

6
→ 𝐶
215

7
→ 𝐶
97

8
→ 𝐶
112

9
→ 𝐶
9

10
. In fact, we

have demonstrated the results of 𝐶56
5
, 𝐶215
7

, 𝐶112
9

, and 𝐶
9

10
in

Figure 12.
We must point out that these planned links can serve as

candidates and they however may not be employed definitely.
Air traffic management officers can choose one such link
at the beginning of a day in order to start some necessary
preparations for subsequent periods, such as determining the
schedule of controllers and previewing the sectors. Although
exact configurations applied may change because of uncer-
tainties in the air traffic system, such changes should not be
too serious if no emergency occurs.

7. Conclusion and Future Work

This study solves the 2D ERSP with approaches based on
weighted undirected graph cuts.We comprehensively consid-
ered the multiple objectives and constraints of the 2D ERSP.
We employed memetic local search-embedded CNSGA-II to
evolve the initial clusters and proposed several methods to
produce initial generation. We also proposed a concave hull-
based method to draw exact sector boundaries. In addition
to the sectorization problem, we also solved the CTP, which
generated a series of nondominated links of configurations
for several consecutive time periods.

The simulation results showed significant improvement
from the configuration applied in practice in almost all
important aspects of the sectorization problem. Along with
the results in depicting boundaries and in the CTP, we can
claim that the proposed approaches are promising practical
decision support tools forDACconsidering their comprehen-
siveness, practicality, automatization, and efficiency.

However, there are still several important issues we
should address in the future:

(1) Other Automatic Boundary-Depicting Algorithms. As we
stated in Section 1, powerful boundary-depicting algorithms
for undirected graph cut-based approaches are very limited.
Searching for more efficient depicting algorithms is very
important.

(2) Interaction between Traffic Flow Management (TFM) and
DAC. Both TFM and DAC are key problems in air traffic
management, and their outputs seem to act as inputs to each
other. Can we find a logic to deal with them simultaneously?
Research in this direction is already underway, but no general
architecture or principle has been proposed.

(3) Local Adjustment of Airspace Configuration. We
mentioned in Section 6.7 that we can plan a configuration

link at the beginning of a day and follow the link if no
emergency occurs. However, when an emergency occurs
that sharply changes the traffic flow pattern, we must adjust
the configuration temporarily. This local adjustment must be
fulfilled very soon after the emergency; therefore, algorithms
dealing with local adjustment must be very efficient.

Competing Interests

The authors declare that they have no competing interests.

Acknowledgments

This research is supported in part by the National Natural
Science Foundation of China Grant 61179052, in part by
the 973 National Basic Research Program of China Grants
2010CB731805 and 2010CB731806, and in part by Aviation
Science Fund ofChina (20128058005).The authors appreciate
the corporation and precious data offered by Beijing Area
Control Center of Civil Aviation Administration of China
and Air China.

References

[1] D. Gianazza, J. M. Alliot, and G. Granger, “Optimal combina-
tions of air traffic control sectors using classical and stochastic
methods,” inProceedings of the 2002 International Conference on
Artificial Intelligence, Las Vegas, Nev, USA, June 2002.

[2] R. Geng, Research on the dynamic airspace management and
collaborative air traffic flow optimization [Ph.D. thesis], Tsinghua
University, Beijing, China, 2009.

[3] C. Verlhac and S. Manchon, “Optimization of opening
schemes,” in Proceedings of the 4th USA/Europe Air Traffic
Management R & D Seminar, Santa Fe, NM, USA, December
2001.

[4] M. Bloem and P. Gupta, “Configuring airspace sectors with
approximate dynamic programming,” in Proceedings of the 27th
Congress of the International Council of the Aeronautical Sciences
(ICAS ’10), pp. 4085–4097, Nice, France, September 2010.

[5] P. Kopardekar, K. Bilimoria, and B. Sridhar, “Initial concepts for
dynamic airspace configuration,” in Proceedings of the 7th AIAA
Aviation Technology, Integration, andOperations Conference, pp.
695–706, Belfast, Northern Ireland, September 2007.

[6] D. Delahaye, J. M. Alliot, M. Schoenauer, and J. L. Farges,
“Genetic algorithms for partitioning air space,” in Proceedings
of the 10th Conference on Artificial Intelligence for Applications,
pp. 291–297, San Antonia, Tex, USA, March 1994.

[7] K. Leiden, P. Steve, and S. Quesada, “Flight level-based dynamic
airspace configuration,” in Proceedings of the 8th AIAA Aviation
Technology, Integration and Operation Conference (ATIO ’09),
Hilton Head, SC, USA, September 2009.

[8] S. C. Han and M. Zhang, “The optimization method of the
sector partition based on metamorphic voronoi polygon,”
Chinese Journal of Aeronautics, vol. 17, no. 1, pp. 7–12, 2004.

[9] M. Xue, “Airspace sector redesign based on Voronoi diagrams,”
Journal of Aerospace Computing, Information, and Communica-
tion, vol. 6, no. 12, pp. 624–634, 2009.

[10] M. Xue, “Three-dimensional sector design with optimal num-
ber of sectors,” Journal of Guidance, Control, and Dynamics, vol.
35, no. 2, pp. 609–618, 2012.

Mathematical Problems in Engineering 21

[11] J. J. Tang, S. Alam, C. Lokan, and H. A. Abbass, “A multi-
objective approach for Dynamic Airspace Sectorization using
agent based and geometric models,” Transportation Research
Part C: Emerging Technologies, vol. 21, no. 1, pp. 89–121, 2012.

[12] A. Basu, J. S. B. Mitchell, and G. K. Sabhnani, “Geometric
algorithms for optimal airspace design and air traffic controller
workload balancing,” Journal of Experimental Algorithmics, vol.
14, article 3, 2009.

[13] R. Kicinger and A. Yousefi, “Heuristic method for 3D airspace
partitioning genetic: algorithms and agent-based approach,” in
Proceedings of the 9th AIAA Aviation Technology, Integration,
and Operations Conference (ATIO ’09), Hilton Head Island, SC,
USA, September 2009.

[14] C. R. Brinton and S. Pledgie, “Airspace partitioning using flight
clustering and computational geometry,” in Proceedings of the
IEEE/AIAA 27th Digital Avionics Systems Conference (DASC
’08), pp. B31–B310, St. Paul, Minn, USA, October 2008.

[15] G. Yang, M. H. Hu, and Y. J. Wang, “Airspace sector structure
optimization design based on nonlinear programming,” Journal
of Transportation Engineering and Information, vol. 6, no. 4, pp.
82–86, 2008.

[16] A. Yousefi and L. G. Donohue, “Temporal and spatial distribu-
tion of airspace complexity for air traffic controller workload-
based sectorization,” in Proceedings of the AIAA 4th Aviation
Technology, Integration and Operations Forum (ATIO ’04),
Chicago, Ill, USA, September 2004.

[17] A. Yousefi, Optimal airspace design with air traffic controller
workload-based partitioning [Ph.D. thesis], George Mason Uni-
versity, Fairfax, Va, USA, 2005.

[18] M. Drew, “Analysis of an optimal sector design method,” in
Proceedings of the IEEE/AIAA 27th Digital Avionics Systems
Conference (DASC ’08), pp. 3.B.4-1–3.B.4-10, IEEE, St. Paul,
Minn, USA, October 2008.

[19] A. Klein, “An efficient method for airspace analysis and par-
titioning based on Equalized Traffic Mass,” in Proceedings of
the 6th USA/Europe Air Traffic Management Research and
Development Seminar (ATM ’05), pp. 2–11, Baltimore,Md, USA,
June 2005.

[20] P. Jagare, P. Flener, and J. Pearson, “Airspace sectorisation
using constraint-based local search,” in Proceedings of the 10th
USA/Europe Air TrafficManagement Research and Development
Seminar (ATM ’13), Chicago, Ill, USA, June 2013.

[21] J. H. Li, T. Wang, M. Savai, and I. Hwang, “Graph-based algo-
rithm for dynamic airspace configuration,” Journal of Guidance,
Control, and Dynamics, vol. 33, no. 4, pp. 1082–1094, 2010.

[22] S. A.Martinez, G. B. Chatterji, S. Dengfeng, andA.M. Bayen, “A
weighted-graph approach for dynamic airspace configuration,”
in Proceedings of the AIAA Conference on Guidance, Navigation,
and Control, pp. 1476–1491, Hilton Head Island, SC, USA,
August 2007.

[23] Y. Chen and D. Zhang, “Dynamic airspace configuration
method based on a weighted graph model,” Chinese Journal of
Aeronautics, vol. 27, no. 4, pp. 903–912, 2014.

[24] H. Trandac, P. Baptiste, and V. Duong, “Airspace sectorization
with constraints,” RAIROOperations Research, vol. 39, no. 2, pp.
105–122, 2005.

[25] S. Zelinski, “A comparison of algorithm generated sectoriza-
tions,” Air Traffic Control Quarterly, vol. 18, no. 3, pp. 279–289,
2010.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast
and elitist multiobjective genetic algorithm: NSGA-II,” IEEE

Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, 2002.

[27] P. Moscato, “On evolution, search, optimization, genetic
algorithms and martial arts: towards memetic algorithms,”
Tech. Rep. 826,C, Caltech Concurrent Computation Program,
Pasadena, Calif, USA, 1989.

[28] M. P. Savai, H. Li, T. Wang, and I. Hwang, “An algorithm for
adaptable dynamic airspace configuration,” in Proceedings of
the 10th AIAA Aviation Technology, Integration, and Operations
Conference (ATIO ’10), Fort Worth, Tex, USA, September 2010.

[29] R. K. Ahuja, T. L. Magnanti, and B. J. Orlin, Network Flows:
Theory, Algorithms, and Applications, Prentice Hall, Englewood
Cliffs, NJ, USA, 1993.

[30] F. Netjasov, M. Janić, and V. Tošić, “Developing a generic metric
of terminal airspace traffic complexity,” Transportmetrica, vol. 7,
no. 5, pp. 369–394, 2011.

[31] P. Kopardekar and S. Magyarits, “Measurement and prediction
of dynamic density,” Tech. Rep., NASA Ames Research Center,
Moffett Field, Calif, USA, 2003.

[32] D. Gianazza, “Evaluation of air traffic complexity metrics using
neural networks and sector status,” in Proceedings of the 2nd
International Conference on Research in Air Transportation,
Belgrade, Serbia, 2006.

[33] F. Chung, Lectures on Spectral GraphTheory, American Mathe-
matical Society, Washington, DC, USA, 1997.

[34] M. Fiedler, “Algebraic connectivity of graphs,” Czechoslovak
Mathematical Journal, vol. 23, pp. 298–305, 1973.

[35] A. Cook and G. Tanner, “European airline delay cost reference
values,” Tech. Rep., Eurocontrol PerformanceUnit, Department
of Transport Studies, University of Westminster, London, UK,
2011.

[36] A. Ng,M. Jordan, and Y.Weiss, “On spectral clustering: analysis
and an algorithm,” inAdvances in Neural Information Processing
Systems, T. Dietterich, T. Becker, and Z. Ghahramani, Eds., vol.
14, pp. 849–856, MIT Press, Cambridge, UK, 2002.

[37] U.VonLuxburg, “A tutorial on spectral clustering,” Statistics and
Computing, vol. 17, no. 4, pp. 395–416, 2007.

[38] H. Edelsbrunner,D.G.Kirkpatrick, andR. Seidel, “On the shape
of a set of points in the plane,” IEEE Transactions on Information
Theory, vol. 29, no. 4, pp. 551–559, 1983.

[39] D. P. Bertsekas, Dynamic Programming and Optimal Control,
vol. 1, Athena Scientific, Nashua, NH, USA, 3rd edition, 2005.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

