
Research Article
Digital Hardware Realization of Forward and Inverse
Kinematics for a Five-Axis Articulated Robot Arm

Bui Thi Hai Linh and Ying-Shieh Kung

Department of Electrical Engineering, Southern Taiwan University of Science and Technology, 1 Nan-Tai Street,
Yong-Kang District, Tainan City 710, Taiwan

Correspondence should be addressed to Ying-Shieh Kung; kung@mail.stust.edu.tw

Received 16 August 2014; Accepted 13 September 2014

Academic Editor: Stephen D. Prior

Copyright © 2015 B. T. Hai Linh and Y.-S. Kung.This is an open access article distributed under theCreative CommonsAttribution
License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the originalwork is properly cited.

When robot arm performs a motion control, it needs to calculate a complicated algorithm of forward and inverse kinematics
which consumes much CPU time and certainty slows down the motion speed of robot arm. Therefore, to solve this issue, the
development of a hardware realization of forward and inverse kinematics for an articulated robot arm is investigated. In this
paper, the formulation of the forward and inverse kinematics for a five-axis articulated robot arm is derived firstly. Then, the
computations algorithm and its hardware implementation are described. Further, very high speed integrated circuits hardware
description language (VHDL) is applied to describe the overall hardware behavior of forward and inverse kinematics. Additionally,
finite state machine (FSM) is applied for reducing the hardware resource usage. Finally, for verifying the correctness of forward
and inverse kinematics for the five-axis articulated robot arm, a cosimulation work is constructed by ModelSim and Simulink.
The hardware of the forward and inverse kinematics is run by ModelSim and a test bench which generates stimulus to ModelSim
and displays the output response is taken in Simulink. Under this design, the forward and inverse kinematics algorithms can be
completed within one microsecond.

1. Introduction

The kinematics problem is an important study in the robotic
motion control. The mapping from joint space to Cartesian
task space is referred to as direct kinematics and mapping
from Cartesian task space to joint space is referred to as
inverse kinematics [1]. Because of the complexity of inverse
kinematics, it is usually more difficult than forward kine-
matics to find the solutions [2–5]. In addition, when robot
manipulator executes a motion control, the complicated
inverse kinematics computation consumes much CPU time
and it certainty slows down the motion performance of robot
manipulator. Therefore, solving this problem becomes an
important issue.

For the progress of very large scale integration (VLSI)
technology, the field programmable gate arrays (FPGAs) have
been widely investigated due to their programmable hard-
wired feature, fast time to market, shorter design cycle,
embedding processor, low power consumption, and higher
density for the implementation of the digital system. FPGA

provides a compromise between the special-purpose appli-
cation specified integrated circuit (ASIC) hardware and
general-purpose processors. Hence, many practical appli-
cations in industrial control [6], multiaxis motion control
[7], and robotic control [8–10] have been studied. Therefore,
for speeding up the computational power, the forward and
inverse kinematics based on VHDL are studied in this paper.
And the VHDL is applied to describe the overall behavior of
the forward and inverse kinematics.

In recent years, an electronic design automation (EDA)
simulator link, which can provide a cosimulation inter-
face between MALTAB/Simulink [11] and HDL simulators-
ModelSim [12], has been developed and applied in the design
of the control system [13]. Using it, you can verify a VHDL,
Verilog, or mixed-language implementation against your
Simulink model or MATLAB algorithm. In MATLAB/Sim-
ulink environment, it can generate stimuli to ModelSim and
analyze the simulation’s responses [11]. In this paper, a cosim-
ulation by EDA simulator link is applied to the proposed

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2015, Article ID 906505, 10 pages
http://dx.doi.org/10.1155/2015/906505

2 Mathematical Problems in Engineering

𝜃2 𝜃3

𝜃1

𝜃4

𝜃5

x0

x1 x2 x3
x4

x5

y0

y1 y2
y3

y4

y5

z2z1 z3

z4

z5z0

d5

d1

a2 a3

Figure 1:The link coordinates system of a five-axis articulated robot
arm.

Table 1: Denavit-Hartenberg parameters for robot arm in Figure 1.

Link 𝑖 𝑑
𝑖
(mm) 𝑎

𝑖
(mm) 𝛼

𝑖
𝜃
𝑖

1 𝑑
1
= 275 0 𝛼

1
= −𝜋/2 𝜃

1

2 0 𝑎
2
= 275 0 𝜃

2

3 0 𝑎
3
= 255 0 𝜃

3

4 0 0 𝛼
4
= −𝜋/2 𝜃

4

5 𝑑
5
= 195 0 0 𝜃

5

forward kinematics and inverse kinematics hardware. Some
simulation results based on EDA simulator link will demon-
strate the correctness and effectiveness of the forward and
inverse kinematics.

2. Description of the Forward and
Inverse Kinematics

A typical five-axis articulated robot arm is studied in this
paper. Figure 1 shows its link coordinate system by Denavit-
Hartenberg convention. Table 1 illustrates the values of the
kinematics parameters. The forward kinematics of the artic-
ulated robot arm is the transformation of joint space 𝑅

5

(𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
) to Cartesian space 𝑅3 (𝑥, 𝑦, 𝑧). Conversely,

the inverse kinematics of the articulated robot armwill trans-
form the coordinates of robot manipulator from Cartesian
space 𝑅3 (𝑥, 𝑦, 𝑧) to the joint space 𝑅5 (𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
). The

computational procedure of forward and inverse kinematics
is shown in Figure 1 and Table 1.

A coordinate frame is assigned to each link based on
Denavit-Hartenberg notation.The transformation matrix for
each link from frame 𝑖 to 𝑖 − 1 is given by

𝑖−1
𝐴
𝑖
= 𝑇 (𝑍, 𝑑) 𝑇 (𝑍, 𝜃) 𝑇 (𝑋, 𝑎) 𝑇 (𝑋, 𝛼)

=

[
[
[
[

[

1 0 0 0

0 1 0 0

0 0 1 𝑑
𝑖

0 0 0 1

]
]
]
]

]

[
[
[
[

[

cos 𝜃
𝑖
− sin 𝜃

𝑖
0 0

sin 𝜃
𝑖

cos 𝜃
𝑖
0 0

0 0 1 0

0 0 0 1

]
]
]
]

]

×

[
[
[
[

[

1 0 0 𝑎
𝑖

0 1 0 0

0 0 1 0

0 0 0 1

]
]
]
]

]

[
[
[
[

[

1 0 0 0

0 cos𝛼
𝑖
− sin𝛼

𝑖
0

0 sin𝛼
𝑖

cos𝛼
𝑖
0

0 0 0 1

]
]
]
]

]

=

[
[
[
[

[

cos 𝜃
𝑖
− cos𝛼

𝑖
sin 𝜃
𝑖

sin𝛼
𝑖
sin 𝜃
𝑖

𝑎
𝑖
cos 𝜃
𝑖

sin 𝜃
𝑖

cos𝛼
𝑖
cos 𝜃
𝑖
− sin𝛼

𝑖
cos 𝜃
𝑖
𝑎
𝑖
sin 𝜃
𝑖

0 sin𝛼
𝑖

cos𝛼
𝑖

𝑑
𝑖

0 0 0 1

]
]
]
]

]

,

(1)

where 𝑇(𝑍, 𝜃) and 𝑇(𝑋, 𝛼) present rotation and the 𝑇(𝑍, 𝑑)
and 𝑇(𝑋, 𝛼) denote translation. Substituting the parameters
in Table 1 into (1), the coordinate five matrixes respected with
five axes of robot arm are shown as follows:

0
𝐴
1
= 𝑇 (𝑍, 𝑑

1
) 𝑇 (𝑍, 𝜃

1
) 𝑇 (𝑋, 0) 𝑇 (𝑋, −

𝜋

2
)

=

[
[
[
[

[

cos 𝜃
1

0 − sin 𝜃
1

0

sin 𝜃
1

0 cos 𝜃
1

0

0 −1 0 𝑑
1

0 0 0 1

]
]
]
]

]

,

1
𝐴
2
= 𝑇 (𝑍, 0) 𝑇 (𝑍, 𝜃2) 𝑇 (𝑋, 𝑎2) 𝑇 (𝑋, 0)

=

[
[
[
[

[

cos 𝜃
2
− sin 𝜃

2
0 𝑎
2
cos 𝜃
2

sin 𝜃
2

cos 𝜃
2

0 𝑎
2
sin 𝜃
2

0 0 1 0

0 0 0 1

]
]
]
]

]

,

2
𝐴
3
= 𝑇 (𝑍, 0) 𝑇 (𝑍, 𝜃3) 𝑇 (𝑋, 𝑎3) 𝑇 (𝑋, 0)

=

[
[
[
[

[

cos 𝜃
3
− sin 𝜃

3
0 𝑎
3
cos 𝜃
3

sin 𝜃
3

cos 𝜃
3

0 𝑎
3
sin 𝜃
3

0 0 1 0

0 0 0 1

]
]
]
]

]

,

3
𝐴
4
= 𝑇 (𝑍, 0) 𝑇 (𝑍, 𝜃4) 𝑇 (𝑋, 0) 𝑇 (𝑋, −

𝜋

2
)

=

[
[
[
[

[

cos 𝜃
4

0 − sin 𝜃
4
0

sin 𝜃
4

0 cos 𝜃
4

0

0 −1 0 0

0 0 0 1

]
]
]
]

]

,

4
𝐴
5
= 𝑇 (𝑍, 𝑑

5
) 𝑇 (𝑍, 𝜃

5
) 𝑇 (𝑋, 0) 𝑇 (𝑋, 0)

=

[
[
[
[

[

cos 𝜃
5
− sin 𝜃

5
0 0

sin 𝜃
5

cos 𝜃
5

0 0

0 0 1 𝑑
5

0 0 0 1

]
]
]
]

]

.

(2)

Mathematical Problems in Engineering 3

The forward kinematics of the end-effectorwith respect to the
base frame is determined by multiplying five matrices from
(2) as given above. An alternative representation of 0𝐴

5
can

be written as

𝑅
𝑇
𝐻
=
0
𝐴
5
=
0
𝐴
1
⋅
1
𝐴
2
⋅
2
𝐴
3
⋅
3
𝐴
4

⋅
4
𝐴
5
Δ

[
[
[
[

[

𝑛
𝑥
𝑜
𝑥
𝑎
𝑥
𝑝
𝑥

𝑛
𝑦
𝑜
𝑦
𝑎
𝑦
𝑝
𝑦

𝑛
𝑧
𝑜
𝑧
𝑎
𝑧
𝑝
𝑧

0 0 0 1

]
]
]
]

]

.

(3)

The (𝑛, 𝑜, 𝑎) are the orientation in the Cartesian coordinate
system which is attached to the end-effector. Using the
homogeneous transformation matrix to solve the kinematics
problems, its transformation specifies the location (position
and orientation) of the end-effector and the vector 𝑝 presents
the position of end-effector of robot arm. By multiplying five
matrices and substituting into (3) and then comparing all the
components of both sides after that we can solve the forward
kinematics of the five-axis articulated robot arm as follows:

𝑛
𝑥
= cos 𝜃

1
cos 𝜃
234

cos 𝜃
5
+ sin 𝜃

1
sin 𝜃
5
, (4)

𝑛
𝑦
= sin 𝜃

1
cos 𝜃
234

cos 𝜃
5
− cos 𝜃

1
sin 𝜃
5
, (5)

𝑛
𝑧
= − sin 𝜃

234
cos 𝜃
5
, (6)

𝑜
𝑥
= − cos 𝜃

1
cos 𝜃
234

sin 𝜃
5
+ sin 𝜃

1
cos 𝜃
5
, (7)

𝑜
𝑦
= − sin 𝜃

1
cos 𝜃
234

sin 𝜃
5
− cos 𝜃

1
cos 𝜃
5
, (8)

𝑜
𝑧
= sin 𝜃

234
sin 𝜃
5
, (9)

𝑎
𝑥
= − cos 𝜃

1
sin 𝜃
234
, (10)

𝑎
𝑦
= − sin 𝜃

1
sin 𝜃
234
, (11)

𝑎
𝑧
= − cos 𝜃

234
, (12)

𝑝
𝑥
= cos 𝜃

1
(𝑎
2
cos 𝜃
2
+ 𝑎
3
cos 𝜃
23
− 𝑑
5
sin 𝜃
234
) , (13)

𝑝
𝑦
= sin 𝜃

1
(𝑎
2
cos 𝜃
2
+ 𝑎
3
cos 𝜃
23
− 𝑑
5
sin 𝜃
234
) , (14)

𝑝
𝑧
=𝑑
1
− 𝑎
2
sin 𝜃
2
− 𝑎
3
sin 𝜃
23
− 𝑑
5
cos 𝜃
234
, (15)

where

𝜃
23
= 𝜃
2
+ 𝜃
3
, (16)

𝜃
234

= 𝜃
2
+ 𝜃
3
+ 𝜃
4
. (17)

The position vector 𝑝 directs the location of the origin
of the (𝑛, 𝑜, 𝑎) frame which is defined to let the end-effector

of robot arm by always gripping from a top down position.
Therefore, the matrix in (3) is set by the following form:

𝑅
𝑇
𝐻
=
[
[
[

[

1 0 0 𝑥

0 −1 0 𝑦

0 0 −1 𝑧

0 0 0 1

]
]
]

]

. (18)

Comparing the element (3,3) in (18) with (12), we obtained

cos 𝜃
234

= 1. (19)

Therefore, we can get

𝜃
234

= 0. (20)

Further, comparing the element (1,1) in (18) with (4), we
obtained

cos (𝜃
1
− 𝜃
5
) = 1. (21)

Therefore, we can get

𝜃
1
− 𝜃
5
= 0 or 𝜃

5
= 𝜃
1
. (22)

Let us assume that

𝑏 = 𝑎
2
cos 𝜃
2
+ 𝑎
3
cos 𝜃
23
; (23)

then substituting (19)∼(22) into (13)∼(15), we can get the
sequence for computations inverse kinematics as follows:

𝑥 = cos 𝜃
1
⋅ 𝑏 (24)

𝑦 = sin 𝜃
1
⋅ 𝑏 (25)

𝑧 = 𝑑
1
− 𝑎
2
sin 𝜃
2
− 𝑎
3
sin 𝜃
23
− 𝑑
5
. (26)

From (24) and (25), we can get

𝑏 = ±√(𝑥2 + 𝑦2),

𝜃
1
= 𝜃
5
= 𝑎 tan 2 (

𝑦

𝑥
) .

(27)

From (23) and (26), we can get

𝜃
3
= arccos(

𝑏
2
+ (𝑑
1
− 𝑑
5
− 𝑧)
2
− 𝑎
2

2
− 𝑎
2

3

2𝑎
2
𝑎
3

) . (28)

Once 𝜃
3
is obtained, substitute it to (23) and (26) to get

𝑏 = (𝑎
2
+ 𝑎
3
cos 𝜃
3
) cos 𝜃

2
+ 𝑎
3
sin 𝜃
3
sin 𝜃
2
,

𝑑
1
− 𝑑
5
− 𝑧 = (𝑎

2
+ 𝑎
3
cos 𝜃
3
) sin 𝜃

2
+ 𝑎
3
sin 𝜃
3
cos 𝜃
2
.

(29)

From (29), solve the linear equation in order to find the sin 𝜃
2

and cos 𝜃
2
as

sin 𝜃
2
=
(𝑎
2
+ 𝑎
3
cos 𝜃
3
) (𝑑
1
− 𝑑
5
− 𝑧) − 𝑎

3
𝑏 sin 𝜃

3

𝑏2 + (𝑑
1
− 𝑑
5
− 𝑧)
2

,

cos 𝜃
2
=
(𝑎
2
+ 𝑎
3
cos 𝜃
3
) 𝑏 + 𝑎

3
sin 𝜃
3
(𝑑
1
− 𝑑
5
− 𝑧)

𝑏2 + (𝑑
1
− 𝑑
5
− 𝑧)
2

.

(30)

4 Mathematical Problems in Engineering

Therefore, 𝜃
2
can be derived as follows:

𝜃
2
= 𝑎 tan 2 [

(𝑎
2
+ 𝑎
3
cos 𝜃
3
) (𝑑
1
− 𝑑
5
− 𝑧) − 𝑎

3
𝑏 sin 𝜃

3

(𝑎
2
+ 𝑎
3
cos 𝜃
3
) 𝑏 + 𝑎

3
sin 𝜃
3
(𝑑
1
− 𝑑
5
− 𝑧)

] .

(31)

Further, from (17) and (20), 𝜃
4
is obtained as

𝜃
4
= −𝜃
2
− 𝜃
3
. (32)

Finally, the forward kinematics and inverse kinematics of
the five-axis articulated robot arm, based on the assumption
in (18) in which the end-effector of the robot arm is always
toward the top downdirection, can be summarized as follows.

For computing the forward kinematics, consider the fol-
lowing steps.

Step 1. Consider

end𝑥 = cos 𝜃
1
(𝑎
2
cos 𝜃
2
+ 𝑎
3
cos 𝜃
23
− 𝑑
5
sin 𝜃
234
) . (33)

Step 2. Consider

end𝑦 = sin 𝜃
1
(𝑎
2
cos 𝜃
2
+ 𝑎
3
cos 𝜃
23
− 𝑑
5
sin 𝜃
234
) . (34)

Step 3. Consider

end 𝑧 = 𝑑
1
− 𝑎
2
sin 𝜃
2
− 𝑎
3
sin 𝜃
23
− 𝑑
5
cos 𝜃
234
. (35)

In the previous steps, end𝑥, end𝑦, and end 𝑧 are the position
of end point which are the same as 𝑥, 𝑦, and 𝑧 in (18).

For computing the inverse kinematics, consider the fol-
lowing steps.

Step 1. Consider

𝜃
1
= 𝜃
5
= 𝑎 tan 2 (end𝑦, end𝑥) . (36)

Step 2. Consider

𝑏 = ±√end𝑥2 + end𝑦2. (37)

Step 3. Consider

𝜃
3
= 𝑎 cos(

𝑏
2
+ (𝑑
1
− 𝑑
5
− end 𝑧)2 − 𝑎2

2
− 𝑎
2

3

2𝑎
2
𝑎
3

) . (38)

Step 4. Consider

𝑆
2
= (𝑎
2
+ 𝑎
3
cos 𝜃
3
) (𝑑
1
− 𝑑
5
− end 𝑧) − 𝑎

3
𝑏 sin 𝜃

3
. (39)

Step 5. Consider

𝐶
2
= (𝑎
2
+ 𝑎
3
cos 𝜃
3
) 𝑏 + 𝑎

3
sin 𝜃
3
(𝑑
1
− 𝑑
5
− end 𝑧) .

(40)

Step 6. Consider

𝜃
2
= 𝑎 tan 2 (𝑆

2
, 𝐶
2
) . (41)

Step 7. Consider

𝜃
4
= −𝜃
2
− 𝜃
3
. (42)

The parameters of robot arm 𝑎
2
, 𝑎
3
, 𝑑
1
, 𝑑
5
are shown in

Table 1.

3. Computations of Trigonometric Function
and Its Hardware Implementation

Before performing the computation of the forward and
inverse kinematics for five-axis articulated robot arm, some
key trigonometric functions need to be built up as a compo-
nent for being applied, and those are sine function, cosine
function, arctangent function, and arccosine function. To
increase the computing accuracy, LUT (look-up table) tech-
nique and Taylor series expanse technique are used to the
computational algorithm design of the arctangent function
and arccosine function. However, the computation algorithm
used in these two functions is very similar; therefore, the
detailed design methods, only sine/cosine function, and
arctangent function are described as follows.

3.1. Computation Algorithm and Hardware Realization of Sine
Function and Cosine Function. To compute sin(𝜃) and cos(𝜃)
functions, the 𝜃 = 𝜃

𝐼
+ 𝜃
𝐹
is firstly defined, in which 𝜃

𝐼
and

𝜃
𝐹
represented the integer part and fraction part of the 𝜃,

respectively. Then the formulation of these two functions is
expanded as follows:

sin (𝜃
𝐼
+ 𝜃
𝐹
) = sin (𝜃

𝐼
) cos (𝜃

𝐹
) + cos (𝜃

𝐼
) sin (𝜃

𝐹
)

cos (𝜃
𝐼
+ 𝜃
𝐹
) = cos (𝜃

𝐼
) cos (𝜃

𝐹
) − sin (𝜃

𝐼
) sin (𝜃

𝐹
) .

(43)

In the hardware design, 𝜃 is adopted as 16-bit Q7 format.
Therefore, if 𝜃 is 0000001001000000, it represents 4.5 degree.
In addition, four LUTs (look-up tables) are built up to store
the values of sin (𝜃

𝐼
), cos (𝜃

𝐼
), sin (𝜃

𝐹
), and cos (𝜃

𝐹
) functions.

The LUT for sin (𝜃
𝐼
) and cos (𝜃

𝐼
) functions stores 360 pieces

of data with 24-bit Q23 format and that for sin (𝜃
𝐹
) and

cos (𝜃
𝐹
) functions stores 128 pieces of data with the same 24-

bit Q23 format. Therefore, according to (43), the results of
sine and cosine with 16-bit Q15 format can be computed after
looking up four tables. In the realization, finite state machine
(FSM) is adopted and the example to compute the cosine
function is shown in Figure 2. It presents four LUTs, two
multipliers, and one adder in hardware which manipulates 6
steps to complete the overall computation.Due to the fact that
the operation of each step is 20 ns (50MHz) in FPGA, a total
of 6 steps only need 120 ns operation time. In addition, the
FPGA (Altera Cyclone IV) resource usage for the realization
of the sine or cosine function needs 232 logic elements (LEs)
and 30,720 RAM bits.

3.2. Computation Algorithm and Hardware Realization of
Arctangent Function. The equation of arctangent function is
shown as follows:

𝜃 = 𝑎 tan 2 (
𝑦

𝑥
) , (44)

where the inputs are 𝑥 and𝑦 and the output is 𝜃. Herein, there
are two steps to evaluate the arctangent function.

(1) First Step. 𝜃
1
= 𝑓(𝑥) = tan−1(𝑥) is computed by using

Taylor series expansion and the input values are defined
within 1 ≤ 𝑥 ≤ 0 (or the output value: 45∘ ≤ 𝜃

1
≤ 0
∘).

Mathematical Problems in Engineering 5

𝜃(15· ·7)

𝜃(6· ·0)

S0 S1 S2 S3 S4 S5

LUT

LUT

LUT

LUT

(cos)

(sin)

(dcos)

(dsin)

Cos 16 =
addr1(23· ·8)

−

+

×

×

mult r1(46· ·23)

mult r2(46· ·23)

Figure 2: FSM for computing the cosine function.

The third-order polynomial is considered and the expression
within the vicinity of 𝑥

0
is shown as follows:

𝑓 (𝑥) ≅ 𝑎0 + 𝑎1 (𝑥 − 𝑥0) + 𝑎2 (𝑥 − 𝑥0)
2
+ 𝑎
3
(𝑥 − 𝑥

0
)
3
,

(45)

with
𝑎
0
=𝑓 (𝑥

0
) = tan−1 (𝑥

0
) ,

𝑎
1
=𝑓

(𝑥
0
) =

1

1 + 𝑥
2

0

,

𝑎
2
=𝑓

(𝑥
0
) =

−2𝑥
0

(1 + 𝑥
2

0
)
2
,

𝑎
3
=𝑓
(3)
(𝑥
0
) =

−2 + 6𝑥
2

0

(1 + 𝑥
2

0
)
3
.

(46)

Actually, in realization, only third-order expansion in (44)
is not enough to obtain an accuracy approximation due to
the reason that the large error will occur when the input 𝑥
is far from 𝑥

0
. To solve this problem, combining the LUT

technique and Taylor series expanse technique is considered.
To set up the LUT, several specific values for 𝑥

0
within the

range 1 ≤ 𝑥 ≤ 0 are firstly chosen; then the parameters
from 𝑎

0
to 𝑎
3
in (46) are computed. Those data included 𝑥

0

and 𝑎
0
to 𝑎
3
will be stored to LUT. Following that, when it

needs to compute tan−1(𝑥) in (45), the 𝑥
0
which is the most

approximate to input 𝑥 and its related 𝑎
0
to 𝑎
3
will be selected

from LUT and then perform the computing task.

(2) Second Step. After completing the computation of
tan−1(𝑥), we can evaluate 𝜃 = 𝑎 tan 2(𝑦/𝑥) further and let
the output suitable to the range be within −180∘ ≤ 𝜃 ≤ 180

∘.
The formulation for each region in 𝑋-𝑌 coordinate is shown
in Figure 3.

In hardware implementation, the inputs and output of
the arctangent function are designed with 32-bit Q15 and 16-
bit Q15 format, respectively. It consists of one main circuit
with FSM architecture and two components for computing
the divider and tan−1(𝑥) functions. However, the design and
implementation of the tan−1(𝑥) function is a major task. The
input and output values of component tan−1(𝑥) all belong

I

IIIII

IV

V

VI VII

VIII

y

x

𝜃 = 90∘ + tan−1(−x
y
) 𝜃 = 90∘ − tan−1(x

y
)

𝜃 = tan−1(y
x
)

𝜃 = −tan−1(−y
x
)

𝜃 = −90∘ + tan−1(x
−y
)𝜃 = −90∘ − tan−1(−x

−y
)

𝜃 = 180∘ − tan−1(−y
x
)

180∘𝜃 = − + tan−1(−y
−x
)

Figure 3: Compute 𝜃 = 𝑎 tan 2(𝑦/𝑥) of each region in 𝑋-𝑌 coordi-
nates.

S0 S1 S2 S3 S4 S5 S6

LUT

LUT

LUT

LUT

LUT

+

+

+

+

×

×

×

×

×

mult r1(30· · 15)

mult r1(30· · 15)

addr =
xx(14· · 11)

xx

dxx

dxx

dxx

dxx

saa1

saa2

dxx3
dxx2

−

sita

𝜃 = tan−1(x) ≅ a0 + a1(x − x0) + a2(x − x0)
2+ a3(x − x0)

3

(x0)

(a1)

(a0)

(a2)

(a3)

x0

a0

a0

a2

a2

a3 a3

a1

Figure 4: FSM to compute tan−1(𝑥) function.

to 16-bit Q15 format. The FSM is employed to model the
computation of tan−1(𝑥) and is shown in Figure 4 which uses
two multipliers and one adder in the design. The multiplier
and adder applyAltera LPM (library parameterizedmodules)
standard. In Figure 4, it manipulates 7-step machine to carry
out the overall computations of tan−1(𝑥). The steps 𝑠

0
∼ 𝑠
1

execute to look up 5 tables and 𝑠
2
∼ 𝑠
6
perform the compu-

tation of polynomial in (45). Further, according to the com-
putation logic shown in Figure 3, it uses 16 steps to complete
the 𝑎 tan 2(𝑦/𝑥) function. Due to the fact that the operation
of each step is 20 ns (50MHz) in FPGA, a total of 16 steps
only need 320 ns operation time. In addition, the FPGA
(Altera Cyclone IV) resource usage for the realization of the
arctangent function needs 4,143 LEs and 1,280 RAM bits.

4. Design and Hardware Implementation
of Forward/Inverse Kinematics and Its
Simulation Results

The block diagram of kinematics for five-axis articulated
robot arm is shown in Figure 5. The inputs are the end-
point position by end𝑥, end𝑦, and end 𝑧 which is relative

6 Mathematical Problems in Engineering

𝜃1(15 : 0)

𝜃2(15 : 0)

𝜃3(15 : 0)

𝜃4(15 : 0)

𝜃5(15 : 0)

a2(31 : 0)

a3(31 : 0)

d1(31 : 0)

d5(31 : 0)

endx(31 : 0)

endy(31 : 0)

endz(31 : 0)

(a)

𝜃1(15 : 0)

𝜃2(15 : 0)

𝜃3(15 : 0)

𝜃4(15 : 0)

𝜃5(15 : 0)

a2(31 : 0)

a3(31 : 0)

d1(31 : 0)

d5(31 : 0)

endx(31 : 0)

endy(31 : 0)

endz(31 : 0)

(b)

Figure 5: Block diagram for (a) forward kinematics and (b) inverse kinematics.

𝜃3

𝜃4

𝜃23

𝜃234

𝜃234

𝜃234

𝜃2

COM

COM

A1 M1

M1

M1
M2

A2

A1

A2

M1

M1

M2

M2

A1

for sin
COM
for sin

COM
for sin

COM
for sin

for cos
COM
for cos

COM
for cos

COM
for cos

sin𝜃1

sin𝜃1

sin𝜃23

sin𝜃2

sin𝜃234

𝜃1

𝜃1

𝜃2

𝜃2

𝜃23

𝜃23

cos𝜃1 cos𝜃234

cos𝜃1

cos𝜃2

cos𝜃23

S0 S7 S21 S28 S29 S30 S31 S32 S33S1 S15∼ S22∼

−

−

−

×

×

×

×

×

×

×

×

+

+

+

+

+

+ +

S2∼ S8∼

a2

a3

a3

a2

var8
var6var16

var8

var89

var89

var9

var2 var3

var1

var4var34

var1

var6

d5

d5

d1

endx

endy

endz

Figure 6: FSM for computing the forward kinematics.

to (𝑥, 𝑦, 𝑧), as well as the mechanical parameters by 𝑎
2
, 𝑎
3
,

𝑑
1
, and 𝑑

5
. The outputs are mechanical angles 𝜃

1
∼ 𝜃
5
. In

Figure 5, the parameters of mechanical length and the end-
point position are designed with 32-bit Q15 data format and
the parameters of mechanical angle are designed with 16-bit
Q7data format. According to the formulations of forward and
inverse kinematics which are described in Section 2, the finite
state machine (FSM) method is applied to design the hard-
ware for reducing the usage of hardware resource. Herein, the
FSM designs to compute the forward kinematics and inverse
kinematics are, respectively, shown in Figures 6 and 7. The
FSM will generate sequential signals and will step-by-step
compute the forward kinematics and inverse kinematics.The
implementation of inverse kinematics is developed byVHDL.

In Figure 6, there are 34 steps to present the computations of
forward kinematics, and the circuit includes two multipliers,
two adders, one component for sine function, and one
component for cosine function. In Figure 7, there are 47 steps
to perform the inverse kinematics, and the circuit needs three
multipliers, two dividers, two adders, one square root func-
tion, one component for arctangent function, one component
for arccosine function, one component for sine function, and
one component for cosine function. The notation “COM” in
Figures 6∼7 is represented with “component.” For example,
the “COM for cos” is the component of cosine function.
The designs of the component regarded as trigonometric
function are described in previous section. Due to the fact
that the operation of each step is 20 ns (50MHz) in FPGA,

Mathematical Problems in Engineering 7

S0 S2

S2

S1 S3 S4 S6 S7 S16 S20 S23

S23 S24 S25 S26 S27 S28 S29 S44S40 S45 S46

S5∼ S8∼ S17∼

∼

d1 − d5
a22 + a232a2a3

𝜃4

𝜃3

𝜃2

A1

A1

A1

A1A1 A2

A1
S1

D1

D1

D2

M1

M1

M3

M1

M1

M2

M2

M2M3

+

+ + +

+

+

+

+

var1

var1 var1

var4

var5

var5

var2

var2

var2

var7

var7

var4

var3 var6 var5

−

−

−

−
÷

÷

÷

√

×

×
×

×

×

× ×

×

×

var12

var22

COM
for atan2

COM
for atan2

COM
for acos

COM
for sin

a2a3

a3

𝜃3 sin𝜃3

𝜃1, 𝜃5

C2

S2/C2

endx

endy

endz

endy2

endy/endx

endx2

Figure 7: FSM for computing the inverse kinematics.

the executing time for the computation of forward and
inverse kinematics is 680 ns and 940 ns, respectively. In
addition, the FPGA (Altera Cyclone IV) resource usage for
the realization of the forward kinematics IP and the inverse
kinematics IP is 1,575 LEs and 30,720 RAMbits and 9,400 LEs
and 84,224 RAM bits, respectively.

The cosimulation architecture by ModelSim/SimuLink
for the proposed forward kinematics is shown in Figure 8 and
that for the inverse kinematics is shown in Figure 9,
whose works in ModelSim execute the function of the
computing the forward and inverse kinematics. The input
values toModelSim are provided fromSimulink and, through
the computation working in ModelSim, output responses
are displayed to Simulink. To confirm the correctness, an
embedded Matlab function for computing the forward and
inverse kinematics is considered. Under the cosimulation of
ModelSim and Simulink architecture, the simulation results
are presented as follows.

Mechanical parameters of the five-axis articulated robot
arm are chosen by

𝑎
2
= 275, 𝑎

3
= 255,

𝑑
1
= 275, 𝑑

5
= 195 (mm) .

(47)

Simulation results of inverse kinematics with the following
two cases are listed in Table 2. The inputs of inverse kine-
matics are the end-effectors of robot arm presented by end𝑥,
end𝑦, and end 𝑧 (mm) and the outputs are five joint angles
presented by 𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
(degree).

In the first case, the inputs end𝑥, end𝑦, and end 𝑧 are
chosen as

end𝑥 = 300, end𝑦 = 299,

end 𝑧 = −150.
(48)

In the second case, the inputs end𝑥, end𝑦, and end 𝑧 are
chosen as

end𝑥 = 60, end𝑦 = 180,

end 𝑧 = 450.
(49)

Simulation results of forward kinematics with the following
two cases are listed in Table 3.The inputs of forward kinemat-
ics are five joint angles presented by 𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
(degree)

and the outputs are end-effectors presented by end 𝑥, end𝑦,
and end 𝑧 (mm).

In the first case, the inputs 𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, and 𝜃

5
are chosen

as
𝜃
1
= 44.9043477, 𝜃

2
= 4.8948685,

𝜃
3
= 49.1952721, 𝜃

4
= −54.0901472,

𝜃
5
= 44.9043477.

(50)

In the second case, the inputs 𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, and 𝜃

5
are chosen

as
𝜃
1
= 71.5650511, 𝜃

2
= −99.4939347,

𝜃
3
= 76.703125, 𝜃

4
= 22.7812500,

𝜃
5
= 71.5650511.

(51)

From these two cases, the absolute difference of end-effectors
end𝑥, end𝑦, and end 𝑧 which are calculated fromModelSim
and from Matlab is less than 0.05mm, and 𝜃

1
to 𝜃
5
are less

than 0.01∘. It shows that the proposed forward and inverse
kinematics for the five-axis articulated robot arm are correct
and effective.

8 Mathematical Problems in Engineering

71.5650511

−99.4939347

76.7060765

22.7878581

71.5650511

275

255

275

195

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

Convert

ModelSim

a2

a2

a3

a3

𝜃1
𝜃1

𝜃2
𝜃2

𝜃3

𝜃3

𝜃4
𝜃4

𝜃5

𝜃5

d1

d1

d5

d5

a2

a3

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

d1

d5

fcn

Embedded
Matlab function

Forward kinematics

1965798

5897963

14746840

K−

K−

K−

Erorr of X

Erorr of Y

Erorr of Z

Gain3

Gain1

Gain2

Q15 of x

Q15 of y

Q15 of z

59.991394042969

0.0086063533472114

179.99154663086

0.0084537509296467

450.03784179688

−0.037841604891696

60.000000396316

180.00000038179

450.00000019198

−
+

−
+

−
+

endx

endy

endz

endx
endx

endx

endy
endy

endy

endz
endz

endz

Figure 8: Cosimulation architecture of forward kinematics using ModelSim and SimuLink.

Table 2: Two cases’ simulation results of inverse kinematics fromModelSim and Matlab.

Output
Input

The 1st case (end𝑥, end𝑦, end 𝑧)(1) The 2nd case (end𝑥, end𝑦, end 𝑧)(2)

ModelSim Matlab Error ModelSim Matlab Error
𝜃
1

44.8984375 44.9043477 0.0059702 71.5703125 71.5650511 −0.0052613
𝜃
2

4.8906250 4.8948685 0.0042435 −99.4843750 −99.4939347 0.0095597
𝜃
3

49.1953125 49.1952721 −0.0000400 76.7060765 76.7031250 0.0029515
𝜃
4

−54.0859375 −54.0901472 0.0042032 22.7878581 22.7812500 0.0066081
𝜃
5

44.8984375 44.9043477 0.0059102 71.5703125 71.5650511 0.0052613
(1) denotes the case 1 shown in (48).
(2) denotes the case 2 shown in (49).

Table 3: Two cases’ simulation results of forward kinematics fromModelSim and Matlab.

Output
Input

The 1st case (𝜃
1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
)
(1) The 2nd case (𝜃

1
, 𝜃
2
, 𝜃
3
, 𝜃
4
, 𝜃
5
)
(2)

ModelSim Matlab Error ModelSim Matlab Error
end𝑥 300.0321650 300.0000160 −0.0321490 59.9913940 60.0000000 0.0086063
end𝑦 299.0496215 299.0000160 −0.0496054 179.9915466 180.0000000 0.0084537
end 𝑧 −149.9700920 −149.9999999 −0.0299906 450.0378417 450.0000000 −0.0378416
(1) denotes the case 1 shown in (50).
(2) denotes the case 2 shown in (51).

Mathematical Problems in Engineering 9

60

180

450

275

255

275

195

x

y

z

a2

a3

d1

d5

Convert

Convert

Convert

Convert

Convert

Convert

Convert

a2

a3

d1

d5

ModelSim
𝜃1

𝜃1

𝜃2
𝜃2

𝜃3

𝜃3

𝜃4
𝜃4

𝜃5
𝜃5

a2

a3

d1

d5

𝜃1

𝜃2

𝜃3

𝜃4

𝜃5

fcn

Embedded
Matlab function

Inverse kinematics

K−

K−

K−

K−

K−

Gain3

Gain4

Gain5

Gain1

Gain2

+
−

+
−

+
−

+
−

+
−

Erorr of 𝜃1

Erorr of 𝜃2

Erorr of 𝜃3

Erorr of 𝜃4

Erorr of 𝜃5

𝜃1 m

𝜃2 m

𝜃3 m

𝜃4 m

𝜃5 m

71.5703125

−99.484375

76.703125

22.78125

71.5703125

−0.00526132292201

−0.0095597449695077

0.0029515830817672

0.0066081618877369

−0.00526132292201

71.565051177078

−99.49393474497

76.706076583082

22.787858161888

71.565051177078

endx

endx

endy

endy

endz

endz

Figure 9: Cosimulation architecture of inverse kinematics using ModelSim and SimuLink.

5. Conclusions

The forward kinematics and inverse kinematics of five-axis
articulated robot arm, in which the end-effector of the
robot arm is always toward the top down direction, have
been successfully demonstrated in this paper. Through the
cosimulation of ModelSim and Simulink, the accuracy under
two examples of forward and inverse kinematics with the
results of error of the end-effectors end𝑥, end𝑦, and end 𝑧
is less than 0.05mm and the error for 𝜃

1
∼ 𝜃
5
is less than

0.01∘. Further, the executing times for the computations of
forward and inverse kinematics in FPGA are only 680 ns
and 940 ns, respectively.Thehigh speed computational power
and reasonable accuracy apparently increase the motion
performance of the five-axis articulated robot arm.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

This work was supported by National Science Council of the
R.O.C. under Grant no. NSC 100-2632-E-218 -001-MY3.

References

[1] J. J. Craig, Introduction to Robotics, Mechanics & Control,
Addison-Wesley, New York, NY, USA, 1986.

10 Mathematical Problems in Engineering

[2] W. Shen, J. Gu, and E. E. Milios, “Self-configuration fuzzy sys-
tem for inverse kinematics of robot manipulators,” in Pro-
ceedings of the Annual Meeting of the North American Fuzzy
Information Processing Society (NAFIPS ’06), pp. 41–45, June
2006.

[3] P. Falco and C. Natale, “On the stability of closed-loop inverse
kinematics algorithms for redundant robots,” IEEETransactions
on Robotics, vol. 27, no. 4, pp. 780–784, 2011.

[4] S.-W. Park and J.-H. Oh, “Hardware realization of inverse kine-
matics for robot manipulators,” IEEE Transactions on Industrial
Electronics, vol. 41, no. 1, pp. 45–50, 1994.

[5] G.-S. Huang, C.-K. Tung, H.-C. Lin, and S.-H. Hsiao, “Inverse
kinematics analysis trajectory planning for a robot arm,” in
Proceedings of the 8th Asian Control Conference (ASCC ’11), pp.
965–970, twn, May 2011.

[6] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan,
and M. W. Naouar, “FPGAs in industrial control applications,”
IEEE Transactions on Industrial Informatics, vol. 7, no. 2, pp.
224–243, 2011.

[7] J. U. Cho, Q. N. Le, and J. W. Jeon, “An FPGA-based multiple-
axis motion control chip,” IEEE Transactions on Industrial
Electronics, vol. 56, no. 3, pp. 856–870, 2009.

[8] Y.-S. Kung, K.-H. Tseng, C.-S. Chen, H.-Z. Sze, and A.-P.
Wang, “FPGA-implementation of inverse kinematics and servo
controller for robot manipulator,” in Proceedings of the IEEE
International Conference on Robotics and Biomimetics (ROBIO
’06), pp. 1163–1168, December 2006.

[9] S. Sánchez-Solano, A. J. Cabrera, I. Baturone, F. J. Moreno-
Velo, and M. Brox, “FPGA implementation of embedded fuzzy
controllers for robotic applications,” IEEE Transactions on
Industrial Electronics, vol. 54, no. 4, pp. 1937–1945, 2007.

[10] C. C. Wong and C. C. Liu, “FPGA realisation of inverse kine-
matics for biped robot based on CORDIC,” Electronics Letters,
vol. 49, no. 5, pp. 332–334, 2013.

[11] The Mathworks, Matlab/Simulink Users Guide, Application
Program Interface Guide, 2004.

[12] Modeltech,ModelSim Reference Manual, 2004.
[13] Y.-S. Kung, N. V. Quynh, C.-C. Huang, and L.-C. Huang,

“Simulink/ModelSim co-simulation of sensorless PMSM speed
controller,” in Proceedings of the IEEE Symposium on Industrial
Electronics and Applications (ISIEA ’11), pp. 24–29, September
2011.

Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International
Journal of
Mathematics and
Mathematical
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of

