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In hybrid sensor networks, information fusion from heterogeneous sensors is important, but quite often information such as image
is blurred. Single image deblurring is a highly ill-posed problem and usually regularized by alternating estimating point spread
function (PSF) and recovering blur image, which leads to high complexity and low efficiency. In this paper, we first propose
an efficient PSF estimation algorithm based on gradient cepstrum analysis (GCA). Then, to verify the accuracy of the strategy,
estimated PSFs are used for image deconvolution step, which exploits a novel total variation model coupling with a gradient fidelity
term. We also adopt an alternating direction method (ADM) numerical algorithm with rapid convergence and high robustness to
optimize the energy function. Both synthetic and real blur experiments show that our scheme can estimate PSF rapidly and produce
comparable results without involving long time consuming.

1. Introduction

In real world, information fusion in hybrid sensor network
(HSN) is necessary in different applications [1–3]. For exam-
ple, in an emergency natural disaster scenario, HSN-based
multimodal information integration for first responders is
critical for search and rescue.Dangermay appear anywhere at
any time; therefore, first respondersmustmonitor a large area
continuously in order to identify potential danger and take
actions. Due to the dynamic and complex nature of natural
disaster, some victims may not be found with a single type of
sensor modality; for example, image sensors can be used to
spot the victims based on optical images; UWB radar sensors
can be applied to penetrate the ground or sense-through-wall
[4, 5], and acoustic sensors are needed to collect the voice
from victims [6]. Overall, image sensors play important roles
in HSN. Unfortunately, single has long been a fundamental
research problem inmany science and engineering areas such
as computer vision, aerial imaging, and remote sensing, espe-
cially in many photographs capturing ephemeral moments
that cannot be recaptured under some certain conditions.
Assuming that the imaging system is linear space-invariant,

the image degraded process can be modeled as convolution
of a latent image with a blur kernel. The progress is described
as

𝑔 (𝑥, 𝑦) = 𝑓 (𝑥, 𝑦) ⊗ ℎ (𝑥, 𝑦) + 𝑛 (𝑥, 𝑦) , (1)

where (𝑥, 𝑦) denotes the pixel coordinate in spatial domain.
𝑔(𝑥, 𝑦), 𝑓(𝑥, 𝑦), and 𝑛(𝑥, 𝑦) represent the observed blur
image, the latent image, and the additive noise, respectively.
⊗ denotes the convolution operator, and ℎ(𝑥, 𝑦) is the blur
kernel, which is often described as a point spread function
(PSF). Because both latent image and the blur kernel are
unknown, single image deblurring reduces to blind image
deconvolution, which is significantly ill-posed. Therefore,
PSF estimation places an important part in resolving this
challenging problem.

Early approaches typically assume simple parametric
forms for PSF, such as a Gaussian filter in the frequency
domain [7], linear or harmonic motion [8], or a sum of
normal motion [9]. In practical cases, blur kernels are often
more complex and should be described bymore sophisticated
parametric models. Cai et al. [10] present an approach that
formulates the blind blurring as a new joint optimization
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Figure 1: Block diagram of the degrade model and the proposed single image deblurring process.

problem, which simultaneously maximizes the sparsity of
the blur kernel and the sparsity of the clear image under
certain suitable redundant tight frame systems. Krishnan
et al. [11] use a normalized sparsity measure scheme that
compensates for the attenuation of high frequencies, which
greatly stabilizes the PSF estimation process. Shi et al. [12]
propose a novel local prior that is called gradient fidelity
constraint on the global prior of heavy-tailed distribution for
single image deblurring.

Recent state-of-the-art PSF estimation algorithms tend to
deploy effective priors about the statistics of natural images
for single image deblurring. Fergus et al. [13] use a zero-
mean mixture-of-Gaussian model for natural image gradi-
ents distribution together with variational Bayes algorithm
to estimate PSF, and then Richardson-Lucy is employed for
deconvolution. The proposed method provides good results
just for the case of small PSF. Krishan and Fergus [14] model
the heavy-tailed distribution by hyper-Laplacian priors and
adopt an alternating minimization scheme, which is fast
optimized by a lookup table (LUT) algorithm. However,
there are significant staircase effects in the recovered image.
Levin et al. [15] also propose an efficient marginal likelihood
optimization method based on the maximum a posteriori
(MAP) that is MAPℎ principle and proved more robust than
the common MAP𝑓,ℎ. Yet it involves a challenging marginal-
ization over latent images and computational complexity.

Although above algorithms obtain good results, they
are time consuming. Because optimizing the energy func-
tion usually requires quite sophisticated iterative numerical
algorithms, especially the optimizing scheme that alternates
between PSF estimation and image restoration. Moreover,
if the initialized kernel is not well set in the matched style
or proper size, it often fails to converge to the true global
minimum, such as the well-known case that the kernel
converges to a delta function but the recover image is still
blurred. In this paper, we propose a novel efficient gradient
cepstrum analysis (GCA) strategy into the single blurred
image for PSF estimation. For a given blurred image, we
first estimate its gradient cepstrum, which is proved to
represent the property of the blur kernel and provide the
magnitude information. The phase retrieval (PR) technique
is adopted to recover the phase given just the magnitude
of a two-dimension PSF Fourier transform. Then, the total
variation regularized model coupling with an image gradient
fidelity term is established to evaluate the accuracy of our
PSF estimation strategy and an alternating direction method

(ADM)with rapid and stable convergence is used to optimize
the energy function in order not to cover up the efficiency of
the proposed GCA strategy. Finally, both synthetic and real
blurred images are tested to verify the performance of our
method.

The rest of this paper is organized as follows. In Section 2,
we make a description of the proposed GCA strategy.
Section 3 describes our novel TV based image restoration
model and the ADM numerical algorithm. Experimental
results are shown in Section 4. Finally, a conclusion is made
in Section 5.

2. PSF Estimation by Gradient Cepstrum
Analysis Strategy

A block diagram of the degrade model and our proposed
single image deblurring scheme including the PSF estimation
and the fast image deconvolution is shown in Figure 1.

In this section, we focus on the PSF estimation process
and the details are described in the following subsections.

2.1. Definition and Property of the Image Cepstrum. The linear
space-invariant degrade process is described as (1). In the case
of ignoring the additive noise, it is formulated in frequency
domain as

𝐺 (𝑢, V) = 𝐹 (𝑢, V)𝐻 (𝑢, V) , (2)

where (𝑢, V) represents the index in frequency domain,
𝐺(𝑢, V), 𝐹(𝑢, V), and 𝐻(𝑢, V) denote the discrete Fourier
transform of the blurred image, PSF, and latent image,
respectively. In image restoration technology, cepstrumof the
image 𝑔(𝑥, 𝑦) is defined as

𝐶𝑔 (𝑝, 𝑞) = FFT−1 [log |𝐺 (𝑢, V)|
] , (3)

where (𝑝, 𝑞) and 𝐶𝑔(𝑝, 𝑞) indicate the index in cepstrum
domain and the cepstrum of image 𝑔(𝑥, 𝑦), respectively.
FFT−1 denotes the inverse Fourier transform. In practi-
cal applications, to avoid the ill-posed problem caused by
|𝐺(𝑢, V)| = 0, 𝐶𝑔(𝑝, 𝑞) is often defined as

𝐶𝑔 (𝑝, 𝑞) = FFT−1 {log [1+ |𝐺 (𝑢, V)|]} . (4)

The cepstrum of degrade progress is described as

𝐶𝑔 (𝑝, 𝑞) = 𝐶𝑓 (𝑝, 𝑞) +𝐶ℎ (𝑝, 𝑞) , (5)
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Figure 2: Natural image and its autocorrelation energy spectrum. (a) Original image. (b) Autocorrelation energy spectrum of (a).
(c) Autocorrelation energy spectrum of blurred image.

where 𝐶𝑓(𝑝, 𝑞) and 𝐶ℎ(𝑝, 𝑞) represent the cepstrum of the
latent image and the PSF. Obviously, the convolution in
spatial domain is translated into the additive form, which
is easy to separate the information of the PSF. Here the
autocorrelation function of the image is associated and
described as

𝑅𝑔 (𝑝, 𝑞) = FFT−1 [|𝐺 (𝑢, V)|] . (6)

Thedifference between the cepstrum and the autocorrela-
tion function is the weighted logarithmic, which is adopted to
concentrate the energy of the transformed signal and expand
the range of dynamic analysis and improve the accuracy of the
transform. Essentially, image cepstrum has same properties
as its autocorrelation, as shown in Figure 2. Figure 2(a) is the
original image of a natural scene and its isotropic autocorre-
lation energy spectrum is shown in Figure 2(b). Figure 2(c)
is the autocorrelation energy spectrum of motion blurred
image; motion length and angle are 20 and 30, respectively.
It is obvious that motion blurred image has better correlation
in its blur direction.

The cepstrum has many important properties. We only
discuss the two-dimensional cepstrum properties related to
the field of image processing.

Property 1. Convert the two-dimensional convolution into an
addition operation in cepstrum domain.

Property 2 (isogonal rotation). That is, in polar coordinates
system, if

𝑔 (𝑟, 𝜃) = 𝐶𝑔 (𝑟, 𝛾) , (7)

one can get

𝑔 (𝑟, 𝜃 − 𝛼) = 𝐶𝑔 (𝑟, 𝛾 − 𝛼) . (8)

It indicates that if the original function rotates one angle
𝛼, its cepstrum rotates with the same direction and degree.

Property 3 (origin symmetry). If 𝑔(𝑥, 𝑦) is a real function,
then its cepstrum𝐶𝑔(𝑝, 𝑞) is symmetric about the origin.That
is,

𝐶𝑔 (𝑝, 𝑞) = 𝐶𝑔 (−𝑝, − 𝑞) . (9)

Property 4. Periodicity

𝐶𝑔 (𝑝 +𝑀, 𝑞 +𝑁) = 𝐶𝑔 (𝑝, 𝑞) , (10)

where 𝑀, 𝑁 represent the image size in 𝑝 and 𝑞 axis,
respectively.

These two-dimensional cepstrum properties provide a
reliable theoretical basis of our algorithm.

2.2. PSF Estimated from the Blurred ImageGradient Cepstrum.
PSF, that is, the blur kernel of the convolution operation, actu-
ally describes the path of camera shake. As the camera shake
path is random, the corresponding two-dimensional image
of shake path is sparse and random. Fortunately, cepstrum
is not sensitive to the effects of the random transfer path,
but also without being affected by other random components
in imaging progress. Take the random noise, for example;
it will produce some frequency components, which are not
periodic in frequency domain. There are not obvious peaks
corresponding to the random noise in cepstrum domain.
Therefore, PSF information can be extracted by cepstrum
analysis of the blurred image.

In PSF estimation, image gradient provides more useful
information than the image itself. Compared with the cep-
strum of the blurred image itself, its gradient cepstrum has
the advantage of isolating the information of the image itself
effectively and estimating the PSF accurately. Considering
that the Laplace operator is isotropic and rotation-invariant,
we choose it as gradient operator. It can reflect second-order
differential properties of the image, thus extracting points,
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Figure 3: (a) The synthetic blurred image. (b) The cepstrum of (a). (c) The cepstrum of the original image. (d) The cepstrum of the original
image gradient. (e) The cepstrum of the gradient of blur image (a). (f) The cepstrum of the PSF itself.

lines, and boundaries for the image. It is also known as a
boundary extraction operator and defined as

∇
2
=

𝜕
2

𝜕𝑥2
+
𝜕
2

𝜕𝑦2
. (11)

There is
∇
2
𝑔 (𝑥, 𝑦) = ∇

2
𝑓 (𝑥, 𝑦) ⊗ ℎ (𝑥, 𝑦) , (12)

and then
𝐶∇2𝑔 = 𝐶∇2𝑓 +𝐶ℎ. (13)

In this paper, 𝐶∇2𝑓 is proved to be approximate to a delta
function in the following experiment; then

𝐶∇2𝑔 ≈ 𝐶ℎ. (14)
It means that we can estimate the PSF by analyzing the
cepstrum of the gradient of the blur image, just as the above
mentioned strategy, gradient cepstrum analysis (GCA). Here,
we choose ∇2 to be a very compact gradient operator,

∇
2
=
[
[

[

1 1 1
1 −8 1
1 1 1

]
]

]

. (15)

To illustrate the property more clearly, we carry out
experiments on the synthetic blurred image; the result is
shown in Figure 3. In Figure 3(a), the synthetic blurred image
is degraded by a motion blur PSF with the blur length
20 pixels and the blur angle 30 degrees. Figures 3(b) and
3(c) show the cepstrum of the blur image and the original
image, respectively. It can be seen that the cepstrum of the
blurred image has rich information in the blur direction.This
phenomenon matches the property of image autocorrelation
that pixels of the blur image are more correlated in the
direction of the blurring trajectory of the PSF than other
directions [16]. The cepstrum of the original image gradient
is shown in Figure 3(d). It is approximate to a delta function
and matches the statistical property that gradients of the
natural images are approximately independent to each other
[13]. Figure 3(e) is the cepstrum of the gradient of the blur
image. Obviously, it isolates the cepstral information of the
original image effectively and preserves the information in
the blurred direction. Figure 3(f) is the cepstrum of the PSF
itself. It is centrosymmetric. The direction remains the same
and the length is twice than the true PSF. The reproduced
PSF information conforms to the physical meaning of the
cepstrum; that is, the cepstrum of the signal can reproduce
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Figure 4: Flow chart of the iterative Fourier transform algorithm.

the original signal information. It is evident that there are
great similarities between the cepstrum of the gradient of the
blur image and the cepstrum of the PSF itself, as shown in
Figures 3(e) and 3(f).Therefore, the cepstrum of the gradient
of the blur image is approximate to the cepstrum of the PSF
itself under the case that 𝐶∇2𝑓 is treated as a delta function
and its influences on the PSF estimation will be ignored. The
upper right or low left portion of the blur image gradient
cepstrum is chosen as the magnitude of the estimated PSF.
The phase information is recovered by the following phase
retrieval technology.

2.3. Phase Retrieval. Phase spectrum of the image plays an
important role in reflecting the image composition contents
even more important than the power spectrum. The esti-
mated PSF from the cepstrum of the blur image gradient only
remain the amplitude information but the phase information
is lost. The PR [17] technique is adopted here to derive the
phase of the PSF. It recovers the phase just from the mag-
nitude of a signal’s Fourier transform, which is the iterative
Fourier transform algorithm. The iterative process includes
three constraints, that is, positivity, compact support, and
module constraints. To be exact, positivity and compact
support constraints are spatial domain constraints and the
module belongs to the frequency domain constraints. The
flow chart for the algorithm is shown in Figure 4.

The PR algorithm can be expressed as follows.

Initialize 𝜑0(𝑢, V) = 0 and𝐻0(𝑢, V) = |𝐻(𝑢, V)|𝑒
𝑖⋅0.

While iteration 𝑘 < 100,Do

(1) Apply the module constraint in Fourier domain
𝐻


𝑘
(𝑢, V) = |𝐻0(𝑢, V)|𝑒

𝑖𝜑𝑘(𝑢,V).
(2) Transform to spatial domain. ℎ



𝑘
(𝑝, 𝑞) =

FFT−1[𝐻
𝑘
(𝑢, V)]

Apply the compact constraint and get
ℎ𝑘+1(𝑝, 𝑞) = {

ℎ


𝑘
(𝑝,𝑞) (𝑝,𝑞)∈𝜂

0 (𝑝,𝑞)∉𝜂

Apply the positivity constraint ℎ𝑘+1(𝑝, 𝑞) > 0.
(3) Transform to frequency domain 𝐻𝑘+1(𝑢, V) =

FFT[ℎ𝑘+1(𝑝, 𝑞)].

End Do
Finally, 𝐻est(𝑢, V) = |𝐻0(𝑢, V)|𝑒

𝑗𝜑𝑘+1(𝑢,V) and ℎest =

|FFT−1[𝐻est(𝑢, V)]|.

Where𝐻
𝑘
(𝑢, V) and ℎ

𝑘
(𝑝, 𝑞) are temporary variables and

do not represent usual matrix operations. 𝜂 denotes the set
of points that meet the spatial domain constraint. 𝐻est(𝑢, V)
is the estimated frequency result at the end of the iteration
and ℎest represents the estimated PSF. In general case, iterative
Fourier transforms for the image PR technique will take a
long computing time, but in this paper, the PSF size is much
smaller than that of the image and constrained by themodule
and the compact support. Therefore, the weakness of long
time consuming is not exposed in our PSF estimation.

3. The Optimization Approach

In this section, we propose a total variation regularizedmodel
coupling with an image gradient fidelity term to evaluate the
accuracy of our PSF estimation strategy and an alternating
direction method (ADM) with rapid and stable convergence
is used to optimize the energy function.

3.1. The Proposed Model. It is well known that the error
between the estimated PSF and the true degrade PSF is
inevitable no matter how excellent the PSF estimation
method is, which will lead to undesirable ringing effects.
Total variation image restoration algorithm has become one
of the standard techniques with the advantage of suppress-
ing ringing effects and preserving sharp edges and object
boundaries [18]. However, it still has a potential shortcoming
that does not meet the morphological principle of image
processing, which is often referred to the staircase effect
in the recovered image [19]. Although the staircase effect
is reluctantly acceptable in the image features extraction
or target detection, it does not meet the human visual
requirement. In order to use the unique advantage of TV
regularization and avoid its disadvantage, we propose a novel
TV based regularized model coupling with a gradient fidelity
term to recover the latent image from the single blurred
image.

The model is defined as

minΦreg (𝑓) + 𝛽Φfid (𝑓, 𝑔) + 𝛾Φfid (∇𝑓, ∇𝑔) , (16)

where Φreg(𝑓) regularizes the solution by TV norm, and

TV (𝑓) = ∑

𝑖

𝐷𝑖𝑓
 , (17)
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𝑖 indexes pixels in the image. 𝐷 is the first-order finite
difference operator 𝐷𝑥 = [1, −1], 𝐷𝑦 = [1, −1]𝑇. Φfid(𝑓, 𝑔)
called the energy fidelity term is to measure the violation
of the relation between 𝑓 and the observation 𝑔. It is
constrained by the noise and based on the assumption that
noise random variables for all pixels are independent and
identically distributed and each of them follows a Gaussian
distribution. We define

Φfid (𝑓, 𝑔) =

𝑓 ⊗ ℎ − 𝑔

2

2
. (18)

Φfid(∇𝑓, ∇𝑔) is the gradient fidelity term that constrains
the gradient of the recovered image to be similar with the
gradient of the latent image. It plays an important part in
maintaining image smoothing and suppressing the staircase
effect. Then

Φfid (∇𝑓, ∇𝑔) =

∇𝑓 − ∇𝑔

2

2
. (19)

𝛽 and 𝛾 are constraint coefficients chosen as constants. Then
we obtain the energy function

𝐸 (𝑓)

= ∑

𝑖

[
𝐷𝑖𝑓

 +
𝛽

2
𝑓⊗ ℎ−𝑔


2
+
𝛾

2
∇𝑓−∇𝑔


2
] .

(20)

3.2. Numerical Algorithm. Optimization of the above energy
function refers to the TV problem in 𝐿

2 norm. There are
many numerical methods to solve it. A well-known lin-
earized gradient method [20] is proposed to solve the Euler-
Lagrangian equation via fix-point iteration. However, it is not
efficient especially for large or severely ill-conditioned prob-
lem. Because each iteration is required to solve a linear system
that becomes more and more difficult as the kernel becomes
more ill-conditioned. Beck and Teboulle [21] present a fast
iterative shrinkage-thresholding algorithm that simplifies the
computation and has an optimal global rate of convergence.
But it is not able to take advantage of problem structures. To
further solve numerical difficulties, Goldstein andOsher [22]
apply the classical augmented Lagrangian method (ALM),
which updates the iterative scheme and guarantees the overall
convergence but still requires solving each unconstrained
subproblem almost exactly. Tao [23] adopts a variant of the
classical augmented Lagrangian method that is the alternat-
ing direction method (ADM) for total variation structured
optimization, which is proved to bemore stable, efficient, and
particularly faster than the ALM algorithm.The versatility of
the ADM [24] has demonstrated its efficiency and robustness
especially for large scale problems that are corresponding to
the size solvable by interior-point methods. In this paper, we
use the ADM to optimize the energy function and realize fast
image deconvolutionwith the purpose of not covering the fast
advantage of our PSF estimation strategy.

We introduce an auxiliary variable 𝑤 = (𝑤1, 𝑤2)
𝑇, where

𝑤1 = 𝐷𝑥𝑓, 𝑤2 = 𝐷𝑦𝑓 and the iterative parameter 𝜆. Let
∇𝑓 ≈ 𝐷𝑖𝑓 and the augmented Lagrangian function of (20)
is expressed as

𝐿𝐴 (𝑓, 𝑤, 𝜆) = ∑

𝑖

[
𝑤𝑖

 − 𝜆
𝑇

𝑖
(𝑤𝑖 −𝐷𝑖𝑓)

+
𝛼

2
𝑤𝑖 −𝐷𝑖𝑓


2
+
𝛾

2
𝑤𝑖 − (∇𝑔)𝑖


2
] +

𝛽

2
𝑓 ⊗ ℎ

−𝑔

2
.

(21)

Applying the ADM to optimize 𝐿𝐴, its iterative scheme is

𝑤
𝑘+1

← arg min
𝑤

𝐿𝐴 (𝑓
𝑘
, 𝑤, 𝜆
𝑘
)

𝑓
𝑘+1

← argmin
𝑤

𝐿𝐴 (𝑓, 𝑤
𝑘+1

, 𝜆
𝑘
)

𝜆
𝑘+1

← 𝜆
𝑘
−𝛼 (𝑤

𝑘+1
−𝐷𝑓
𝑘+1

) .

(22)

We fix 𝑓𝑘 and 𝜆
𝑘 and optimize 𝑤. Equation (21) is trans-

formed to minimizing

𝐿𝐴 (𝑓
𝑘
, 𝑤, 𝜆
𝑘
) =

𝑤𝑖


+
𝛼

2

𝑤𝑖 −(𝐷𝑖𝑓

𝑘
+
1
𝛼
(𝜆
𝑘
)
𝑖
)



2

+
𝛾

2
𝑤𝑖 −∇𝑔


2
.

(23)

By solving its Euler-Lagrange equation, we obtain the solu-
tion

𝑤
𝑘+1
𝑖

=


𝐷𝑖𝑓
𝑘
+
1
𝛼
(𝜆
𝑘
)
𝑖
+
𝛾

𝛼
(∇𝑔)
𝑖


−
1 + 𝛾
𝛼

𝑤
𝑘

𝑖

𝑤
𝑘

𝑖



, (24)

which is given explicitly by the two-dimensional shrinkage

𝑤
𝑘+1
𝑖

= shrink (𝐷𝑖𝑓
𝑘
+
1
𝛼
(𝜆
𝑘
)
𝑖
+
𝛾

𝛼
(∇𝑔)
𝑖
,
1 + 𝛾
𝛼

) . (25)

Then, fix 𝜆
𝑘 and 𝑤

𝑘+1 and optimize 𝑓. Equation (21) is
transformed to minimizing

𝐿𝐴 (𝑓, 𝑤
𝑘+1

, 𝜆
𝑘
)

= ∑

𝑖

(𝜆
𝑇

𝑖
𝐷𝑖𝑓+

𝛼

2
𝑤𝑖 −𝐷𝑖𝑓


2
)+

𝛽

2
𝑓⊗ ℎ−𝑔


2
.

(26)

The minimization of (26) with respect to 𝑓 is a least squares
problem and its corresponding normal equation is

(𝐷
𝑇
𝐷+

𝛽

𝛼
ℎ
𝑇
ℎ)𝑓 = 𝐷

𝑇
(𝑤
𝑘+1

−
1
𝛼
𝜆
𝑘
)+

𝛽

𝛼
ℎ
𝑇
𝑔. (27)

In order to ensure the nonsingularity of the coefficient
matrix in (27), it shall obey the standard assumption; that
is, 𝑁(ℎ) ∩ 𝑁(𝐷) = 0, where 𝑁(⋅) represents the null
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(a) (b) (c) (d)

Figure 5: The GAC of the blur image. (a) The cepstrum of the PSF itself. (b) The cepstrum of the gradient of blur image. (c) The true PSF.
(d) Our estimated PSF.

space of a matrix. Both 𝐷
𝑇
𝐷 and ℎ

𝑇
ℎ are block circulant

matrix when 𝑓 is under the periodic boundary condition.
Therefore,𝐷𝑇𝐷+(𝛽/𝛼)ℎ𝑇ℎ can be diagonalizable by the two-
dimension discrete Fourier transform and thereby obtain
its decomposed eigenvalues, which requires being computed
only once. We compute the right-hand side of (27) and apply
a forward Fourier transform to get FFT(𝑓𝑘+1). Then, the two
dimensional inverse discrete Fourier transform is applied to
get the new iterated𝑓𝑘+1.Therefore, each iteration only needs
two FFTs (including once inverse FFT), which greatly reduces
the computing time. The ADM numerical algorithm can be
described as follows.

Initialization: 𝑓 = 𝑔, 𝜆 = 𝜆0, 𝛼 > 0, 𝛽 > 0, 𝛾 > 0;
Iteration:

(1) Compute 𝑤
𝑘+1 according to (22) for given

(𝑓
𝑘
, 𝜆
𝑘
).

(2) Compute 𝑤𝑘+1 via (27).
(3) Update 𝜆𝑘+1 via (22).

Stop: Until ‖𝑓𝑘+1 − 𝑓𝑘‖/max{‖𝑓𝑘‖, 1} ≤ tol. Here tol
is set to 10−3.

4. Experimental Results

In order to evaluate the performance of our scheme, we carry
out a series of experiments on both synthetic and real blurred
images and compare with some state-of-the-art algorithms.

Firstly, we carry out the experiment on the synthetic
blurred image from [15] and their corresponding PSFs.
The size of the tested kernel is 27 × 27 and results are shown
in Figure 5. Figures 5(a) and 5(b) are the cepstrum of the
PSF itself and the cepstrum of the gradient of blur image.
Figure 5(c) is the real PSF and Figure 5(d) is the estimated
PSF by our scheme. It can be seen that our estimated PSF is
extremely similar to the true PSF.

It should be noted that original result might be amirrored
or shifted version of the true PSF, because all of them have
the same cepstrum function. However, it is easy to validate
and correct since wrong PSFs give very different deblurred

result. Experimental results on other tested PSFs are shown
in Figure 6. From left to right, their sizes are 13 × 13, 17 ×
17, 21 × 21, 23 × 23, and 27 × 27, respectively. Figures 6(a)
and 6(b) are a series of true PSFs and responding estimated
results from [15]. Figure 6(c) shows estimated PSFs by Hu
et al. in [16] and our results are displayed in Figure 6(d).
Clearly, our results match well with true PSFs in visual
effects.

We take the estimated PSFs to image deconvolution and
adopt signal to noise (SNR) of restored images to evaluate the
accuracy of our proposed PSF estimatedmethod, as shown in
the bottom-right of images in Figure 7. Figure 7(a) is a clear
image and degraded by convolving with the mentioned 13 ×
13 PSF shown in the bottom-right in Figure 7(b). Figures
7(c) and 7(d) are results by Fergus and Levin’s methods,
respectively. Figure 7(e) provides the result by Hu et al.’s
method that uses gradient domain correlation based on a
patch-based image degradationmodel. Figure 7(f) shows our
result. Compared with other three state-of-art algorithms, it
is evident that our scheme can also get the ideal restoration
in visual although the SNR is slightly lower.

We also test other PSFs in Figure 6. SNR between original
image and recovered images using different estimated PSFs
and computation time are listed in Tables 1 and 2, respectively.
As can be seen from the result data, our scheme cannot only
obtain a good recovery result but also shorten the compute
time remarkably.

Figure 8 shows a real blur image deblurring result using
above algorithms. It is a large scale image obtained from [13]
with size 1000 × 1256, as shown in Figure 8(a). Figure 8(b)
shows Fergus’s result, whose PSF is estimated by varying
image resolution in a coarse-to-fine manner, and then the
estimated PSF is used to recover the image by the standard
Richardson-Lucy algorithm. Figure 8(c) shows Levin’s result
by alternating between estimating the PSF and solving for the
image. Both of their methods obtain good results but are still
time consuming, especially for the large scale image, which
will cost several minutes. Our result is shown in Figure 8(d);
extracted and zoomed color squares are shown in Figure 8(e).
It can be seen that our method gets comparable result and
only costs ten seconds.
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(a)

(b)

(c)

(d)

Figure 6: Estimated PSFs by different algorithms. (a) True PSFs. (b) Estimated PSFs by Fergus et al. [13]. (c) Estimated PSFs by Krishan and
Fergus [14]. (d) Our results.

Table 1: SNR using different estimated PSFs in each size in Figure 5.

PSF size SNR of degrade images (dB) SNR using different estimated PSFs (dB)
Fergus et al. [13] Levin et al. [15] Hu et al. [16] Ours

17 × 17 8.32 12.83 13.06 12.20 12.78
21 × 21 8.90 9.32 9.47 9.17 9.35
23 × 23 5.34 6.20 5.79 5.86 6.23
27 × 27 4.16 5.06 4.90 4.87 5.11
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(a)

SNR = 10.47

(b)

SNR = 15.76

(c)

SNR = 18.90

(d)

SNR = 16.04

(e)

SNR = 17.58

(f)

Figure 7: Estimated PSFs and corresponding restored images by different algorithms. (a)The clear image. (b) Blurred image and the degrade
PSF. (c) The result of Fergus et al.’s method in [13]. (d) The result of Levin et al.’s method in [15]. (e) The result of Hu et al.’s method in [16].
(f) Our result.

Table 2: Processing time using different algorithms for PSFs in each size in Figure 5.

PSF size Processing time of references (s) Processing time of our scheme (s)
Fergus et al. [13] Levin et al. [15] Hu et al. [16] Kernel estimation Image deconvolution Total

13 × 13 30.52 127.80 6.32 1.45 2.57 4.02
17 × 17 33.93 138.57 7.69 1.57 3.76 5.33
21 × 21 44.03 146.95 8.73 1.69 4.41 6.10
23 × 23 53.47 154.20 8.91 1.78 4.45 6.23
27 × 27 56.20 155.79 9.48 1.89 5.38 7.27

5. Conclusion

Traditional single image deblurring algorithms require pre-
setting or estimating the size of PSF according to the iteration
stopping criterion, which is time consuming. In this paper, an
efficient PSF estimated strategy has been proposed based on
image gradient cepstrum analysis. PSF power information is
obtained from cepstrumproperties of the blur image gradient
and its phase information is retrieved by PR technique. To

verify the accuracy of the strategy, the estimated PSF is
used for recovering image with a novel total variation image
restoration model that is coupling with a gradient fidelity
term. An alternating direction method (ADM) numerical
algorithm with rapid convergence and high robustness is
adopted to optimize the energy function. Both synthetic and
real blur experiments show that our scheme can rapidly
produce comparable results with some state-of-the-art algo-
rithms and greatly shorten the computing time.
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(a) (b)

(c) (d)

(e)

Figure 8: Experiment on the real blur image. (a)The blurred image; (b) Fergus et al. [13] result, 𝑡 = 129 s; (c) Levin et al. [15] result, 𝑡 = 407 s;
(d) our result, 𝑡 = 12 s; (e) color squares from results are zoomed.
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