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Infrared thermography has been widely used in various domains to measure the temperature distributions of objects and surfaces.
The methodology can be further extended to 3D applications if the spatial information of the temperature distribution is available.
This paper proposes a 3D infrared imaging approach based on silhouette volume intersection to reconstruct volumetric temperature
data of enclosed objects. 3D IR images are taken from various angles and integrated with 2D RGB images to effectively reconstruct
a 3D model of the object’s temperature distributions. Various automatic thresholding methods are also compared and evaluated
by reprojection scoring to systematically assess the effectiveness and accuracy of the different approaches. Experiment results have
demonstrated the ability of the system to provide an estimate to the 3D location of an internal heat source from images taken

externally.

1. Introduction

Technology improvements in infrared imaging have facili-
tated the use of thermal imaging in an increasing number
of fields. Most methods only employ 2D thermal images
since these are easily obtainable. However, although the
thermal images scans can provide the heat distributions as 2D
projections, they cannot provide depth or 3D information of
the heat source. For example, it is possible to deduce from a
2D thermal image that a heat source exists; however, the heat
source’s distance from the scanner cannot be readily deduced
from one single image.

The utilization of thermal imaging has been useful in
electrical systems, particularly with respect to monitoring
or warning applications, where there is often an increase in
temperature before catastrophic breakdowns. While temper-
ature increase may not be easily detectable by visuals systems
utilizing visible light, such as the human visual system or
cameras, such increase in temperature can be observed
using infrared thermography apparatus. However, infrared
thermography usually provides 2D images for temperature
measurement and from the images alone it may be difficult
to determine the distance or the relative position of the

temperature increase, which may be the location of the failed
components.

We propose a method to determining the 3D location
of a heat source via multiple 2D infrared thermography
(IRT) images acquired using a thermal imager. The proposed
method is useful in pinpointing the location of a failed
component within closed electrical systems and preventing
possible catastrophic breakdowns via early detection. In our
work, 2D IRT images are taken around a closed electrical sys-
tem which encloses a heat source. From the heat distribution
in the IRT images and the locations where the images are
acquired, we use volume intersection method to reconstruct
a 3D model of the system, integrated along with the observed
heat distributions. Based on the reconstructed 3D model
and the projected heat distribution map, we can determine
the location of the most intense region and thus deducing
the possible faulty component or reason for failure. In this
manner, early and quick detection is made possible solely
by external observations without having to take the system
apart. The proposed method can be effectively applied to the
examination of various power related systems to improve the
efficiency in failure detection and the safety of the overall
system.



The rest of this paper is organized as follows. Section 2
provides brief background on related work and the selected
methods and Section 3 describes the proposed approach.
Section 4 provides the experiment results and discussions,
and finally, the conclusions are given in Section 5.

2. Background

Infrared thermal images are acquired by thermographic
cameras which detect radiation in the infrared range of the
electromagnetic spectrum and produce images that visual-
ized the intensity of the radiation. Since all objects above the
absolute zero emit infrared radiations, thermography is quite
useful in acquiring informative images of the environment
with or without visible illumination. Recent works on the
acquisition of 3D surface temperature distribution have
included structured lighting as a method to acquire 3D
surface information [1, 2]. However, the approaches require
additional hardware, such as a light source projector, a laser
range finder, or other sensors to be used in conjunction
to the thermal cameras, thus increasing the complexity of
the hardware setup and reconstruction process, as well as
the cost in the required computation time. For example, in
[3], terrestrial laser scanning, close range photogrammetry,
and thermal imagery were used in conjunction to record
the 3D data for world heritage monuments. Also, in [4], the
authors proposed an approach to map terrestrial and airborne
infrared images onto existing building models. On the whole,
the integration of 3D and infrared thermal data is still a topic
with significant research potentials.

The thermographic device used in this work is equipped
with a colour camera which can be used to capture the shapes
and colours of objects within the scene. In the proposed
method, we intend to perform 3D reconstruction of the object
using the acquired colour images. After a preliminary inves-
tigation and survey, we eliminated methods which require
sophisticated setup and equipment, as well as methods which
are sensitive to environmental parameters, and decided to
use the shape from silhouette method, also known as shape
from contours, for this application. Shape from silhouette
was first proposed in the 70s [6], the method requires input
images of the object taken from different view angles, and the
contours of the object are then extracted from each image and
used to “carve out” the 3D shape of the object by intersection
with a virtual cube. The method is robust in the sense that
a 3D model of the object can be reconstructed as longs as
the contours of the object and the view angles of the images
are obtainable. The accuracy of the reconstructed 3D models
can be improved by providing more details of the extracted
contours, improving the accuracy of the estimated view angle,
and most importantly acquiring more images of the object
from different view angles, covering as much of the object as
possible. The shape from contours method does not require
sophisticated setup and equipment and can be readily applied
to our purposes. In our application, the thermal imager takes
regular 2D colour images and the thermal images of the
object simultaneously, making image acquisition a one-step
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FIGURE 1: Thermal imager FLUKE Ti32.

TaBLE 1: FLUKE Ti32 specifications [5].

Temperature measurement range
(not calibrated below —10°C)

Temperature measurement

-20°C to +600°C

+2°C or 2% (at 25°C nominal)

accuracy

Image capture frequency 9Hz or 60 Hz

Detector type 320 x 240

Thermal sensitivity (NETD) <0.045 degrees C and 45 mK
Total pixels 76800

Infrared spectral band 75 ym to 14 ym

Minimum focus distance 46 cm

procedure. The rest of the processing can then be performed
offline.

3. Proposed Approach

We propose a method to determining the 3D location of a
heat source via multiple 2D infrared thermography images
acquired using a thermal imager as shown in Figure 1, with
the specifications of the device given in Table 1 [5].

The proposed method is useful in pinpointing the loca-
tion of a failed component within a closed electrical systems
and preventing possible catastrophic breakdowns via early
detection. In our work, 2D IRT images are taken around a
closed electrical system which encloses a heat source.

In this paper, we constructed several simulated envi-
ronments to test the proposed method. Figure 2 shows the
concept of the system for our experiment and the steps in the
proposed method. A thermal imager is used to capture ther-
mal images of a covered metallic container, which contains a
heating element to provide a heat source for detection. The
container and the heater are controlled by a control circuit.
2D IRT images captured by the thermal imager from different
directions are analyzed and used to reconstruct a 3D model
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FIGURE 2: (a) Concept of the experiment setup and (b) steps in the proposed method.

of the object. From the reconstructed 3D model, we can then
determine the location of the heat source in 3D space by
projecting the thermal distributions from the images. During
the entire experiment, the heat source is not visible from
outside the container; as a result, the location of the heat
source can only be determined by thermal image projections.

Although the heat source is not visible from outside the
metallic container, by heat conduction, the heat is able to
transfer to the surface of the container and radiated outwards
towards the sensors. The thermal imager has two sensors;
one for the reception of visible light and the other sensor is
for the reception of infrared radiation. The thermal imager is
able to pick up the radiation and measure the temperature.
The other sensor is able to capture colour images of the
object. Both the thermal and colour images of the object are

processed to remove excess components and to enhance the
more significant information. We propose the following steps
for processing the acquired images and determining the 3D
location of the heat source: automatic thresholding, camera
calibration, volume intersection by silhouette, temperature
mapping, and reprojection scoring.

Automatic segmentation is used to remove noisy signals
from the thermal images. In the thresholding techniques eval-
uated in [7], Otsu’s method [8] and entropy method [9] have
shown better performances. Therefore, in our work, these two
methods are selected to perform automatic thresholding of
the thermal images.

Camera calibration is used to determine the camera’s
locations when the images are acquired [10]. The parame-
ters obtained from calibration are used along with volume
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FIGURE 3: [llustration of the reprojection process.

intersection by silhouette [11] to obtain the 3D model of
the object. The temperature distributions are mapped onto
the 3D model also based on the parameters obtained from
calibration. Finally, the 3D model is examined to determine
the location of the heat source.

3.1. Automatic Segmentation. Reprojection is a common
method for evaluation in 3D reconstruction; it is used to
determine the accuracy of the reconstructed 3D model.
There are several issues for reprojection evaluation [12];
these include having a priori knowledge of the projected
depth and the use of iterative algorithms and there is no
guarantee of convergence in all cases. This paper adjusts
the uses reprojection evaluation and uses it to determine
reprojection scoring. Figure 3 provides an illustration of
reprojection scoring, where the projected image is segmented
into foreground and background via thresholding. There are
two steps: the first step is the projection transformation
between the different coordinate systems and the second step
is to determine whether the reprojected point successfully
intersects the foreground image for score calculation.

The proposed method uses automatic thresholding to
perform segmentation in the thermal images. In the thermal
images, regions with higher temperatures will be shown in
lighter colours, as shown in Figure 4, where the vertical scale
on the right hand side indicates the temperature correspond-
ing to the gradient of colours. As can be seen from Figure 4,
the highest temperature in the image is around 146.6°F,
indicated in yellow, and the cooler background regions have
temperature of 88.3°F, shown in dark blue.

3.1.1. Segmentation Using Otsu’s Method. There are many dif-
ferent approaches to image segmentation; they can roughly be
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FIGURE 4: An example of a thermal image with temperature scale.

categorized into threshold-based, region-based, and motion-
based [13]. Among these approaches, threshold-based seg-
mentation is better suited to our purposed method. In the
thresholding techniques evaluated in [7], Otsu’s method [8]
and entropy method [9] have shown better performances.
Therefore, in our work, these two methods are selected to
perform automatic segmentation of the thermal images.

Otsu’s method was proposed in 1979 and assumes that
the image is composed of two classes (e.g., a foreground and
a background). The optimum threshold for segmentation is
calculated by minimizing the intraclass variance [8]. In Otsu’s
method, the intensity variance of the image is represented by
o’ asin

o’ =0+, ey

where o” is the intensity variance, o7, is the with-in class

w
. 2. . .
variance, and o}, is the between-class variance. The variance
0> needs to be minimized with respect to the weighted sum

of the variances of the two classes as shown in
2 2 2
0, = W,0] + w,05, (2)

where af and (7; are the variances and w; and w, are the
weights of the two classes, respectively. The two classes are
defined based on a threshold, ¢, such that pixels with values
smaller than ¢ are considered to be in class 1, and values equal
to or larger than t are considered to be in class 2.

On the other hand, minimizing o7, implies maximizing
o7, which is given by

2 2
013 =@ (ph — 1) + w0y — 1) 3)

where y is the overall mean intensity and g, and u, are the
mean intensities for the two classes. These parameters can
be optimized by iteratively calculating the class means and
variances for a given image to determine the best threshold
for segmentation.

3.1.2. Segmentation by Entropy. Entropy has often been used
as a measurement across multiple disciplines such as thermo-
dynamics, cosmology, and information theory. Suppose, for
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TABLE 2: Reprojection measures for the light bulb.
View 1 2 3 4 5 6 7 8 9 10 11 12 Average
Skntropy (%) 93.24 93.98 93.27 93.41 93.80 93.91 93.05 93.18 93.78 93.37 93.88 93.79 93.55
Sotsu (%) 93.92 91.81 93.18 91.81 93.49 91.38 93.06 91.47 93.37 91.49 93.63 91.40 92.50
TABLE 3: Reprojection measures for the computer case.
View 1 2 3 4 5 6 7 8 9 10 11 12 Average
Skntropy (%) 87.00 91.63 98.60 98.52 99.94 99.75 94.16 89.29 78.62 83.77 84.69 86.17 91.01
Sotsu (%) 7820 8521  92.66  98.00 9958 9647 9185 8527 8215 7977  79.65 8154 87.53

an image with intensity values of 0 to 255, the probability of
intensity i occurring in an image is given by P; the entropy
measures for the two classes are given by

P.
E, =-) X xlog,—*,
1 Zw x log,
i=0 "1
255 @
P.
E,=-) —+ xlog,—+,
;“’2 2“’2

where t represents the threshold used to segment the two
classes as described in Section 3.1 and E, and E, are the
entropies for the two classes. The goal is to iteratively adjust
the threshold such that the entropies can be maximized.

3.2. Reprojection Measure. In 3D reconstruction, reprojec-
tion error is a common method for evaluation, used in
determining the accuracy of the reconstructed model. The
reprojection process has been described with respect to
Figure 3 in the previous section. In this section, we present
the calculation for the scoring.

After the segmentation process, the thermal image is
separated into foreground and background. The foreground
is used to reconstruct the thermal distribution on the 3D
model of the object from multiple viewing angles. After the
reconstruction has been completed, surface points on the 3D
model are reprojected back into the input image to determine
the accuracy of reconstruction. The numbers of pixels that are
reprojected correctly into the foreground regions of the input
images are counted as the reprojection score. In (5), Sgp is the
intersection between the reprojection of the surface voxels in
the 3D model, S and the foreground of the input image,
Spixel- Consider

voxel>

SRP = Svoxel n Spixel’ (5)
|Sre|

S= . (6)
|Svoxel|

The overall score is the ratio between Syp and S . If
the reprojections from the surface voxels in the 3D model
are correct and match every foreground pixels in the image,
a score of 100% would be obtained.

4. Experiment Results

We used three different setups with heat sources to test our
approach: a light bulb, a computer case with an internal heat
source, and a metal container with an internal heat source.
Both the computer case and the metal container’s heat sources
are not visible from the outside.

Therefore, we have to rely entirely on the thermal images
to determine the locations of the heat sources within the
containers. Image of the setup and the reconstructed 3D
models are shown in Figures 5 to 7.

In Figure 5, the top left subfigure shows the heat dis-
tribution within the 3D model. From the thermal mapped
3D model, the location of the highest temperature can be
estimated. The bottom left subfigure shows an extracted
subregion of the 3D model to observe the heat distribution
more closely without the irrelevant voxels. The right subfigure
shows the 3D model being projected onto the 2D image.
From the projected image, it can be observed that the highest
temperature occurs near the top of the light bulb.

The reconstructed images shown in Figure 6 were not as
successful. The reason might be that the computer case is
too thick for the internal heat source to be detected from the
outside by the thermal imager. Nevertheless, from the top left
subfigure which shows the reconstructed 3D model with the
thermal mappings, we can still roughly estimate the location
of the highest temperature within the case.

In Figure 7, the top left subfigure has been trimmed to
show the location of the heat source, since the container is
rather large and the heat source is not easily visible without
removal of the external voxels. From the 3D models, we can
once again estimate the location of the highest temperature
within the metal container, even if the heat source is not
visible from outside the container.

Tables 2 to 4 show the reprojections measure when auto-
matic segmentations are performed using entropy and Otsu’s
methods. The first column of the table provides the index for
the different number of views. During the experiments, the
objects are placed on a turntable and rotated as images are
taken. A total of 12 images are taken for 360° of rotation, with
30° between the acquisitions of successive images. The second
and third columns are the reprojection measures when 3D
models are constructed using images segmented with the
entropy and Otsu’s methods, respectively. Table 2 shows the
result for the light bulb experiment; from the value we can
see that the entropy method provides better reprojection than
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TABLE 4: Reprojection measures for the metal container.

View 1 2 3 4 5 6 7 8 9 10 11 12 Average
Stnropy (%) 9835 9672 9845 9750  99.03 9859 9715 9703 9818 9837 9927  99.65 98.19
Sotsu (%) 94.42 9420 9412  96.69 9500 9718 9710  96.08 9796 9787 9738  96.87 96.24

FIGURE 6: A computer case and the reconstructed 3D model with thermal mappings.

Otsu’s method, implying that the entropy segmentation leads
to a more accurate 3D model.

Table 3 shows the result for the computer case experi-
ment. As can be seen from the values, the average repro-
jection measures for this experiment are lower than the
values in Table 3. This phenomenon has also been observed

previously with respect to Figure 6, where it was men-
tioned that the resultant models are not as successful. As
a result, the reconstructed 3D model is not as accurate,
leading to lower reprojection measures. Nevertheless, in this
experiment, entropy also provides better reprojection than
Otsu’s method. Table 4 shows the reprojections measures
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FIGURE 7: A metal container and the reconstructed 3D model with thermal mappings.
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FIGURE 8: Comparison of reconstructed and measured tempera-
tures.

for the metal container. This experiment has been quite
successful and the reprojection measures are better than in
the previous two experiments. It can also be observed that,
like in the previous two experiments, the model constructed
from entropy segmentation provides better reprojection than
Otsu’s segmentation.

To determine the accuracy of the reconstructed temper-
ature distribution, we measured the temperatures at different
locations using thermometers and compare the measured
temperatures with the reconstructed temperatures. Figure 8
shows the results of the comparison, where the red and blue
dots, respectively, represent the reconstructed and measured
temperatures measured at different points on the object.
From the figure, it can be seen that there are some locations
with larger differences. The reason is that the thermometers
are placed in direct contact with the object, where the

surface temperatures are often higher than detected by
the thermal imager. As a result, the values measured by
the thermometer are often higher than the reconstructed
values at corresponding locations. Nevertheless, despite the
temperature differences, the reconstructed 3D thermal model
is still capable of showing locations with higher temperatures
within a closed system and provides a general idea of the
temperature distribution from external sensors alone.

From the experiments results, we can see that the pro-
posed system is able to reconstruct reasonable 3D models
from the images acquired by the thermal imager. Moreover,
we can integrate thermal images with the 3D model to
estimate the location of the heat source even if it is not visible
from the outside of the container. From the reprojection
measures, it can also be seen that the entropy approach pro-
vides better segmentation results, leading to more accurate
3D models. Therefore, in future experiment we may consider
the usage of the entropy approach for segmentation.

5. Conclusions

In this paper a 3D infrared imaging system based on silhou-
ette volume intersection has been proposed to reconstruct
the volumetric temperature data. The system uses silhouette
volume intersection to reconstruct 3D model of the objects
in the thermal images. We compared the entropy and Otsu’s
methods for automatic segmentation and use reprojection
scoring to determine the accuracy of the reconstructed
3D models. For evaluation, reprojection scoring is used to
systematically determine the effectiveness and accuracy of the
different approaches. In all three experiments, segmentations
using entropy have provided better results than Otsu’s meth-
ods.



From the experiment result, we have shown that the
system is able to integrate 3D and thermal data to produce
a 3D model which has thermal data overlaid upon it, thus
providing approximations to the locations of the heat sources.
This kind of model is useful when one needs to determine
the location of the heat source, which may not be visible,
from outside the container; such as in various power related
systems, to improve the efficiency in failure detection and the
safety of the overall system.

Currently, the proposed method assumes uniform heat
distribution between the heat source and the external casing,
which may also account for the differences in the measured
and reconstructed temperatures. In the future, the method
can be modified to cater for cases with different media and
include multiple heat transfer functions, such that more
accurate reconstructed results can be obtained.
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