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We consider a class of absolute-value linear complementarity problems.We propose a new approximation reformulation of absolute
value linear complementarity problems by using a nonlinear penalized equation. Based on this approximation reformulation, a
penalized-equation-based generalized Newton method is proposed for solving the absolute value linear complementary problem.
We show that the proposed method is globally and superlinearly convergent when the matrix of complementarity problems is
positive definite and its singular values exceed 1. Numerical results show that our proposed method is very effective and efficient.

1. Introduction

Let 𝐹 : R𝑛 → R𝑛 be a given function. The complementarity
problems, CP(𝐹) for short, is to find a solution of the system

𝑥 ≤ 0, 𝐹 (𝑥) ≤ 0, 𝐹(𝑥)
𝑇

𝑥 = 0. (1)

The CP(𝐹) is called the linear complementarity problems
(for short LCP) if 𝐹 is an affine mapping of the form

𝐹 (𝑥) = 𝐴𝑥 − 𝑏, (2)

where 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛. Otherwise, the CP(𝐹) is called
the nonlinear complementarity problems (NCP(𝐹)).

The systematic study of the finite-dimensional CP(𝐹)
began in the mid-1960s; in a span of five decades, the subject
has developed into a very fruitful discipline in the field
of mathematical programming. The developments include a
rich mathematical theory, a host of effective solution algo-
rithms, a multitude of interesting connections to numerous
disciplines, and a wide range of important applications in
engineering and economics (see, e.g., [1–4] and the references
therein).

Generalized Newton method (semismooth Newton
method) is one of efficacious algorithms for solving CP(𝐹).

The main idea of semismooth Newton method is based
on an equivalent reformulation of the complementarity
problems consisting of a nonsmooth equation and then
solving the nonsmooth equation by Newton type method
(see, e.g., [5, 6]). Most reformulations of the CP(𝐹) are based
on the Fischer-Burmeister function [7] (see, e.g., [8–10]
and the references therein). Chen et al. [11] introduced
a penalized Fischer-Burmeister function and proposed a
new semismooth Newton method based on this new NCP
function. Kanzow and Kleinmichel [12] proposed a new,
one-parametric class of NCP functions based on Fischer-
Burmeister function and gave a semismoothNewtonmethod
via these NCP functions. Kanzow [13] researched an inexact
semismooth Newton method based on Fischer-Burmeister
function and penalized Fischer-Burmeister function. Ito and
Kunisch [14] studied a semismooth Newton method based
on the max-type NCP function.

All generalized Newton methods mentioned above
involve the continuously differentiable assumption on 𝐹 in
CP(𝐹). The existed generalized Newton methods proposed
are based on the equivalent reformulation via NCP functions.
To the best of our knowledge, until now, there exist very few
literature resources to study the complementary problems
when the involved function 𝐹 is not differentiable. However,
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as in many practical problems, 𝐹 is not differentiable; for
instance, 𝐹(𝑥) = 𝐴𝑥 − |𝑥| − 𝑏; see Noor et al. [15]. This is
our focus in this paper.

In this paper, we consider the following absolute-value
linear complementarity problems (for short AVLCP (𝐴, 𝑏)):
find 𝑥 ∈ R𝑛 such that

𝑥 ≤ 0, 𝐴𝑥 − |𝑥| − 𝑏 ≤ 0, (𝐴𝑥 − |𝑥| − 𝑏)
𝑇

𝑥 = 0,

(3)

where 𝐴 ∈ R𝑛×𝑛 and 𝑏 ∈ R𝑛.
The AVLCP(𝐴, 𝑏) is a special case when 𝐹 is a piecewise-

linear function𝐹 = 𝐴𝑥−|𝑥|−𝑏 in CP(𝐹) and can be viewed as
an extension of the LCP. This complementarity problem was
first introduced and studied by Noor et al. [15] in 2012. Noor
et al. proposed a generalized AOR method via establishing
the equivalence between AVLCP(𝐴, 𝑏) and the fixed point
problem using the projection operator, but the convergence
rate is linear. Moreover, the study on AVLCP(𝐴, 𝑏) is in its
infancy and, to the authors knowledge, there has been no
work except for the above-mentioned results of Noor et al.
[15]. These observations motivated us to further improve the
theory and numerical system for solving AVLCP(𝐴, 𝑏).

We use the penalty technique to show that the
AVLCP(𝐴, 𝑏) in R𝑛 are approximately equivalent to a
nonlinear penalized equation, which was first introduced
for solving AVLCP(𝐴, 𝑏). It is worth mentioning that the
penalty technique has been widely used in solving nonlinear
programming, but it seems that there is a limited study
for complementarity problems (see [16–18]). We show
that the solution to this penalized equation converges to
that of the AVLCP(𝐴, 𝑏) at an exponential rate when the
penalized parameter tends to infinity. We again use the
generalized Jacobian based on subgradient to analyze a
generalized Newton method for solving the nonlinear
penalized equation under some mild assumptions. The
algorithm will be shown to be superlinearly convergent and
can start from an arbitrary point. Preliminary numerical
experiments are also given to show the effectiveness and
efficiency of the proposed method.

The rest of this paper is organized as follows. In Section 2,
we present some notations and the well-known results. In
Section 3, we provide a penalized equation for approximating
the AVLCP(𝐴, 𝑏) and its properties. In Section 4, a general-
ized Newton method is introduced for solving the penalized
equation. In Section 5, we introduce the numerical results of
our methods.

2. Preliminaries

For convenience, we will now briefly explain some of the
terminologies that will be used in the next section. R𝑛
denotes the 𝑛-dimensional Euclidean space. All vectors inR𝑛
are column vectors. Let 𝐴 = (𝑎

𝑖𝑗
) ∈ R𝑛×𝑛 be an 𝑛 × 𝑛 real

matrix. The scalar product of two vectors 𝑥 and 𝑦 is denoted
by 𝑥
𝑇

𝑦. For 𝑝 > 1, the 𝑝-norm of 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇

∈

R𝑛 is defined as ‖𝑥‖
𝑝

= (∑
𝑛

𝑖=1
|𝑥
𝑖
|
𝑝

)
1/𝑝. When 𝑝 = 2,

the 𝑝-norm becomes the 2-norm ‖𝑥‖ = (𝑥
𝑇

𝑥)
1/2. For any

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
) ∈ R𝑛 and 𝛼 ∈ R, 𝑥𝛼 = (𝑥

𝛼

1
, 𝑥
𝛼

2
, . . . , 𝑥

𝛼

𝑛
).

|𝑥| stands for the vector in R𝑛 of absolute values of compo-
nents of 𝑥. sign(𝑥) will denote the vector with components
equal to 1, 0, or −1 depending on whether the corresponding
component of 𝑥 is positive, zero, or negative. diag(sign(𝑥))
will denote a diagonal matrix corresponding to sign(𝑥). The
plus function [𝑥]

+
, which replaces the negative components

of 𝑥 by zeros, is a projection operator that projects 𝑥 onto the
nonnegative orthant; namely, [𝑥]

+
= max{𝑥, 0}. For a solvable

matrix equation 𝐵𝑦 = 𝑑, we will use the MATLAB backslash
𝐵\𝑑 to denote a solution 𝑦. The generalized Jacobians 𝜕|𝑥| of
|𝑥| and 𝜕[𝑥]

1/𝑙

+
of [𝑥]1/𝑙

+
based on a subgradient [20] of their

components are given by the diagonal matrices 𝐷(𝑥) and
𝐷


(𝑥), respectively, where 𝐷(𝑥) = diag(sign(𝑥)) and 𝐷


(𝑥)

is the the diagonal matrix whose diagonal entries are equal
to (1/𝑙)𝑥

(1/𝑙)−1

𝑖
, 0, or a real number 𝜎 ∈ [0, 1] depending

on whether the corresponding component of 𝑥 is positive,
negative, or zero.

Definition 1 (see [21]). Let𝐴 =∈ R𝑛×𝑛 be a matrix; the matrix
𝐴 is called

(1) positive definite if there exists a constant 𝛾 > 0 such
that 𝑥𝑇𝐴𝑥 ≥ 𝛾‖𝑥‖

2 for any 𝑥 ∈ R𝑛,
(2) bounded if there exists a constant 𝛽 > 0 such that

‖𝐴𝑥‖ ≤ 𝛽‖𝑥‖ for any 𝑥 ∈ R𝑛.

Lemma 2 (Hölder’s inequality). Let 𝑥, 𝑦 ∈ R𝑛. Then


𝑥
𝑇

𝑦

≤ ‖𝑥‖

𝑝

𝑦
𝑞

= (

𝑛

∑

𝑖=1

𝑥𝑖


𝑝

)

1/𝑝

(

𝑛

∑

𝑖=1

𝑦𝑖


𝑞

)

1/𝑞

, (4)

where 𝑝 > 1 and 𝑞 > 1 are real numbers such that (1/𝑝) +
(1/𝑞) = 1.

Lemma 3 (see [15]). Let K be a closed and convex set in R𝑛.
A vector 𝑥 solves the AVLCP (𝐴, 𝑏) if and only if 𝑥 solves the
following absolute-value variational inequalities:

⟨𝐴𝑥 − |𝑥| − 𝑏, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾. (5)

Lemma 4. Let 𝐴 ∈ R𝑚×𝑛, 𝑥 ∈ R𝑛. Then

‖𝐴𝑥‖ ≤ ‖𝐴‖
𝐹
‖𝑥‖ , (6)

where ‖𝐴‖
𝐹
denotes the Frobenius norm ‖𝐴‖

2

𝐹
= tr(𝐴𝑇𝐴) =

∑
𝑚

𝑖=1
∑
𝑛

𝑗=1
|𝑎
𝑖𝑗
|
2.

Lemma 5 (see [22]). The singular values of the matrix 𝐴 ∈

R𝑛×𝑛 exceed 1 if and only if the minimum eigenvalue of 𝐴𝑇𝐴
exceeds 1.

Lemma 6 ((Banach perturbation lemma) [21]). Let 𝐴,𝐶 ∈

R𝑛×𝑛 and assume that 𝐴 is invertible with ‖𝐴
−1

‖ ≤ 𝛼. If ‖𝐴 −

𝐶‖ ≤ 𝛽 and 𝛼𝛽 < 1, then 𝐶 is also invertible and


𝐶
−1

≤

𝛼

1 − 𝛼𝛽
. (7)
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Lemma 7 (see [23]). Let 𝑥, 𝑦 ∈ R𝑛. Then
|𝑥| −

𝑦


 ≤ 2
𝑥 − 𝑦

 . (8)

Lemma 8. Let 𝑥, 𝑦 ∈ R𝑛. Then
[𝑥]+ − [𝑦]

+

 ≤
𝑥 − 𝑦

 . (9)

3. A Penalized-Equation Approximation
Reformulation of AVLCP(𝐴, 𝑏)

In this section, we construct a nonlinear penalized equa-
tion corresponding to absolute-value linear complementarity
problem (3).

Find 𝑥
𝜆
∈ R𝑛 such that

𝐴𝑥
𝜆
−
𝑥𝜆

 + 𝜆[𝑥
𝜆
]
1/ℓ

+
= 𝑏, (10)

where 𝜆 > 1 is the penalized parameter and ℓ ≥ 1.
We will prove that the solution to the penalized equation

(10) converges to that of the AVLCP(𝐴, 𝑏).Thus, we make the
following assumptions on the system matrix 𝐴:

(A1) 𝐴 is positive definite and 𝛾 > 1 in Definition 1;
(A2) the entries of 𝐴 satisfy 𝑎

𝑖𝑖
> 0, 𝑎

𝑖𝑗
≤ 0 for all 𝑖, 𝑗 =

1, 2, . . . , 𝑛 with 𝑖 ̸= 𝑗.

Under assumption (A1), the solution of AVLCP(𝐴, 𝑏) is
unique [15]. Our main results in this section are as follows.
First, we start our discussion with the following lemma.

Lemma 9. Let 𝑥
𝜆
be the solution to nonlinear penalized equa-

tion (10). Then there exists a positive constant 𝐶
0
, independent

of 𝑛, 𝑥
𝜆
, and 𝜆 such that

‖[𝑥
𝜆
]
+
‖ ≤

𝐶
0

𝜆ℓ/2
, (11)

where 𝜆 and ℓ are parameters used in (10).

Proof. Left-multiplying both sides of (10) by [𝑥
𝜆
]
𝑇

+
gives

[𝑥
𝜆
]
𝑇

+
𝐴𝑥
𝜆
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 + 𝜆[𝑥

𝜆
]
𝑇

+
[𝑥
𝜆
]
1/ℓ

+
= [𝑥
𝜆
]
𝑇

+
𝑏. (12)

Without loss of generality, we assume that [𝑥
𝜆
]
+
= (𝑢
𝑇

1
, 0)
𝑇,

where 𝑢
1
∈ R𝑚, 0 ≤ 𝑚 ≤ 𝑛, 𝑢

1
≥ 0. Other cases can be

transformed into this by reordering the system.
When𝑚 = 0, then [𝑥

𝜆
]
+
= 0; thus (11) is trivially satisfied.

We only consider the case when𝑚 ≥ 1. In this case 𝑥
𝜆
can be

decomposed into 𝑥
𝜆
= (𝑢
𝑇

1
, 𝑢
𝑇

2
)
𝑇, where 𝑢

2
∈ R𝑛−𝑚, 𝑢

2
≤ 0,

We now decompose 𝐴 into

𝐴 = (
𝐴
11

𝐴
12

𝐴
21

𝐴
22

) , (13)

where 𝐴
11

∈ R𝑚×𝑚, 𝐴
12

∈ R𝑚×(𝑛−𝑚), 𝐴
21

∈ R(𝑛−𝑚)×𝑚, and
𝐴
22

∈ R(𝑛−𝑚)×(𝑛−𝑚); then (12) becomes

𝑢
𝑇

1
𝐴
11
𝑢
1
+ 𝑢
𝑇

1
𝐴
12
𝑢
2
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 + 𝜆

[𝑥𝜆]+



𝑝

𝑝
= [𝑥
𝜆
]
𝑇

+
𝑏,

(14)

where 𝑝 = 1 + (1/ℓ).

From assumption (A1) and 𝑢
1
≥ 0, we have 𝑢𝑇

1
𝐴
11
𝑢
1
≥ 0,

and

𝑢
𝑇

1
𝐴
11
𝑢
1
= [𝑥
𝜆
]
𝑇

+
𝐴[𝑥
𝜆
]
+
≥ 𝛾

[𝑥𝜆]+



2

≥
[𝑥𝜆]+



2 (15)

holds, where the last inequality follows from 𝛾 > 1. From
assumption (A2) and 𝑢

2
≤ 0, we also have 𝑢𝑇

1
𝐴
12
𝑢
2
≥ 0. Note

that [𝑥
𝜆
]
𝑇

+
|𝑥
𝜆
| = ‖[𝑥

𝜆
]
+
‖
2; one has that

𝑢
𝑇

1
𝐴
11
𝑢
1
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 ≥ 0. (16)

It follows from (14), (16), and 𝑢
𝑇

1
𝐴
12
𝑢
2
≥ 0 that we have

the following inequality:

𝜆
[𝑥𝜆]+



𝑝

𝑝
≤ [𝑥
𝜆
]
𝑇

+
𝑏. (17)

By using Lemma 2 in (17), we get

𝜆
[𝑥𝜆]+



𝑝

𝑝
≤ [𝑥
𝜆
]
𝑇

+
𝑏 ≤

[𝑥𝜆]+

𝑝
‖𝑏‖
𝑞
, (18)

where 𝑞 = ℓ+1 satisfying (1/𝑝)+(1/𝑞) = 1. Since 𝑝−1 = 1/ℓ,
we thus have the following inequality:

[𝑥𝜆]+

𝑝
≤

1

𝜆ℓ
‖𝑏‖
ℓ

𝑞
. (19)

Since all norms on R𝑛 are equivalent for a fixed positive
integer 𝑛, then it follows that there exists a positive constant
𝑎
0
such that

[𝑥𝜆]+

 ≤ 𝑎
0

[𝑥𝜆]+

𝑝
, (20)

and thus the left hand in (16) can be written as

𝑢
𝑇

1
𝐴
11
𝑢
1
+ 𝑢
𝑇

1
𝐴
12
𝑢
2
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 + 𝜆

[𝑥𝜆]+



𝑝

𝑝

≥ 𝑢
𝑇

1
𝐴
11
𝑢
1
+ 𝑢
𝑇

1
𝐴
12
𝑢
2
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 +

𝜆

𝑎
𝑝

0

[𝑥𝜆]+



𝑝

.

(21)

Combining with (14), we obtain

𝑢
𝑇

1
𝐴
11
𝑢
1
+ 𝑢
𝑇

1
𝐴
12
𝑢
2
− [𝑥
𝜆
]
𝑇

+

𝑥𝜆
 +

𝜆

𝑎
𝑝

0

[𝑥𝜆]+


𝑝

≤ [𝑥
𝜆
]
𝑇

+
𝑏,

(22)

together with (16); dropping the first three terms in (22) and
using Lemma 2, we have

𝜆

𝑎
𝑝

0

[𝑥𝜆]+



𝑝

≤
[𝑥𝜆]+

𝑝
‖𝑏‖
𝑞
. (23)

Since 𝑝 = 1 + (1/ℓ) ∈ (1, 2], we thus have from the above
inequality

[𝑥𝜆]+

 ≤
1

𝜆(ℓ+1)/𝑝
(𝑎
𝑝

0
‖𝑏‖
ℓ+1

𝑞
)
1/𝑝

≤
1

𝜆ℓ/2
(𝑎
𝑝

0
‖𝑏‖
ℓ+1

𝑞
)
1/𝑝

=
𝐶
0

𝜆ℓ/2
,

(24)

where 𝐶
0
= (𝑎
𝑝

0
‖𝑏‖
ℓ+1

𝑞
)
1/𝑝. Thus, the proof of this lemma is

completed.
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Using Lemma 9, we can establish the relationship
between solutions of penalized equation (10) and solutions
of the AVLCP(𝐴, 𝑏).

Theorem 10. Let 𝑥∗ and 𝑥
𝜆
be the solution to AVLCP(𝐴, 𝑏)

and nonlinear penalized equation (10), respectively. Then there
exists a positive constant 𝐶, independent of 𝑛, 𝑥∗, 𝑥

𝜆
, and 𝜆

such that

𝑥
∗

− 𝑥
𝜆

 ≤
𝐶

𝜆ℓ/2
, (25)

where 𝜆 and ℓ are parameters used in (10).

Proof. Let [𝑥
𝜆
]
−
= −min{𝑥

𝜆
, 0}; then

𝑥
𝜆
= [𝑥
𝜆
]
+
− [𝑥
𝜆
]
−
, (26)

and the vector 𝑥∗ − 𝑥
𝜆
can be decomposed as

𝑥
∗

− 𝑥
𝜆
= 𝑥
∗

+ [𝑥
𝜆
]
−
− [𝑥
𝜆
]
+
= 𝑟
𝜆
− [𝑥
𝜆
]
+
, (27)

where 𝑟
𝜆
= 𝑥
∗

+ [𝑥
𝜆
]
−
.

Let 𝜔 = 𝑥
∗

− 𝑟
𝜆
; one has that

𝜔 = 𝑥
∗

− 𝑟
𝜆
= −[𝑥

𝜆
]
−
≤ 0, (28)

and therefore 𝜔 ∈ 𝐾 = {𝑦 ∈ R𝑛 | 𝑦 ≤ 0}.
Replacing 𝑦 in (5) by 𝜔 gives

−𝑟
𝑇

𝜆
(𝐴𝑥
∗

−
𝑥
∗) ≥ −𝑟

𝑇

𝜆
𝑏; (29)

left-multiplying (10) by 𝑟𝑇
𝜆
we have

𝑟
𝑇

𝜆
𝐴𝑥
𝜆
− 𝑟
𝑇

𝜆

𝑥𝜆
 + 𝜆𝑟

𝑇

𝜆
[𝑥
𝜆
]
1/ℓ

+
= 𝑟
𝑇

𝜆
𝑏; (30)

adding up to (29) and (30), we get

𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(
𝑥
∗ −

𝑥𝜆
) + 𝜆𝑟

𝑇

𝜆
[𝑥
𝜆
]
1/ℓ

+
≥ 0; (31)

further we get from (31) that

𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(
𝑥
∗ −

𝑥𝜆
) ≥ 0, (32)

where

𝑟
𝑇

𝜆
[𝑥
𝜆
]
1/ℓ

+
= (𝑥
∗

+ [𝑥
𝜆
]
−
)
𝑇

[𝑥
𝜆
]
1/ℓ

+
= (𝑥
∗

)
𝑇

[𝑥
𝜆
]
1/ℓ

+
≤ 0.

(33)

One further has that

𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(
𝑥
∗ −

𝑥𝜆
)

= 𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(−𝑥
∗

−
𝑥𝜆

 + 𝑥
𝜆
− 𝑥
𝜆
)

= 𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(𝑥
𝜆
− 𝑥
∗

) − 𝑟
𝑇

𝜆
(𝑥
𝜆
+
𝑥𝜆

)

= 𝑟
𝑇

𝜆
𝐴 (𝑥
𝜆
− 𝑥
∗

) + 𝑟
𝑇

𝜆
(𝑥
𝜆
− 𝑥
∗

) − 2𝑟
𝑇

𝜆
[𝑥
𝜆
]
+

= 𝑟
𝑇

𝜆
𝐴 ([𝑥
𝜆
]
+
− 𝑟
𝜆
) + 𝑟
𝑇

𝜆
([𝑥
𝜆
]
+
− 𝑟
𝜆
) − 2𝑟

𝑇

𝜆
[𝑥
𝜆
]
+

= 𝑟
𝑇

𝜆
𝐴[𝑥
𝜆
]
+
− 𝑟
𝑇

𝜆
𝐴𝑟
𝜆
− 𝑟
𝑇

𝜆
𝑟
𝜆
− 𝑟
𝑇

𝜆
[𝑥
𝜆
]
+
;

(34)

thus

𝑟
𝑇

𝜆
𝐴[𝑥
𝜆
]
+
− 𝑟
𝑇

𝜆
[𝑥
𝜆
]
+
≥ 𝑟
𝑇

𝜆
𝐴𝑟
𝜆
+ 𝑟
𝑇

𝜆
𝑟
𝜆
≥ (𝛾 + 1)

𝑟𝜆


2

;

(35)

the last inequality is true by the positive definiteness of 𝐴.
Hence

𝑟
𝑇

𝜆
𝐴[𝑥
𝜆
]
+
− 𝑟
𝑇

𝜆
[𝑥
𝜆
]
+
≥ 0. (36)

On the other hand, using the Cauchy-Schwarz inequality,
Lemma 4, and (11) to (36), we get

𝑟
𝑇

𝜆
𝐴[𝑥
𝜆
]
+
− 𝑟
𝑇

𝜆
[𝑥
𝜆
]
+

≤

𝑟
𝑇

𝜆
𝐴[𝑥
𝜆
]
+


+

𝑟
𝑇

𝜆
[𝑥
𝜆
]
+



≤
𝑟𝜆

 ⋅
𝐴[𝑥𝜆]+

 +
𝑟𝜆

 ⋅
[𝑥𝜆]+



≤
𝑟𝜆

 ⋅ ‖𝐴‖𝐹 ⋅
[𝑥𝜆]+

 +
𝑟𝜆

 ⋅
[𝑥𝜆]+



=
𝑟𝜆

 ⋅
[𝑥𝜆]+

 ⋅ (‖𝐴‖𝐹 + 1)

≤
𝑟𝜆

 ⋅
𝐶
0

𝜆ℓ/2
⋅ (‖𝐴‖

𝐹
+ 1) ;

(37)

this implies that

𝑟𝜆
 ≤

𝐶
0
(‖𝐴‖
𝐹
+ 1)

(𝛾 + 1) 𝜆ℓ/2
=

𝐶


𝜆ℓ/2
, (38)

where 𝐶 = 𝐶
0
(‖𝐴‖
𝐹
+ 1)/(𝛾 + 1). From (11), (27), (38), and

the triangle inequality, we obtain

𝑥
∗

− 𝑥
𝜆

 ≤
𝑟𝜆

 +
[𝑥𝜆]+

 ≤
𝐶

𝜆ℓ/2
. (39)

We complete this theorem.

4. A Penalized-Equation-Based Generalized
Newton Method and Its Convergence

In this section, we present a generalized Newton method
for solving nonlinear penalized equation (10). We begin
by defining the vector function specified by the nonlinear
penalized equation (10) as follows:

𝑔 (𝑥
𝜆
) = 𝐴𝑥

𝜆
−
𝑥𝜆

 + 𝜆[𝑥
𝜆
]
1/ℓ

+
− 𝑏, 𝜆 > 1. (40)

Let 𝑥
𝜆
= (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
)
𝑇; a generalized Jacobian 𝜕𝑔(𝑥

𝜆
)

of 𝑔(𝑥
𝜆
) is given by

𝜕𝑔 (𝑥
𝜆
) = 𝐴 − 𝐷 (𝑥

𝜆
) + 𝜆𝐷



(𝑥
𝜆
) , (41)

where 𝐷(𝑥
𝜆
) = 𝜕|𝑥

𝜆
| = diag(sign(𝑥

𝜆
)) and 𝐷



(𝑥
𝜆
) =

𝜕[𝑥
𝜆
]
1/ℓ

+
is a diagonal matrix whose diagonal entries are equal

to (1/ℓ)𝑢
(1/ℓ)−1

𝑖
, 0, or a real number 𝜎 ∈ [0, 1] depending

on whether the corresponding component of 𝑥
𝜆
is positive,

negative, or zero.The generalizedNewtonmethod for finding
a solution of the equation 𝑔(𝑥

𝜆
) = 0 consists of the following

iteration:

𝑔 (𝑥
𝑖

𝜆
) + 𝜕𝑔 (𝑥

𝑖

𝜆
) (𝑥
𝑖+1

𝜆
− 𝑥
𝑖

𝜆
) = 0. (42)
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Replacing 𝑔(𝑥
𝑖

𝜆
) by its definition (40) and setting 𝜕𝑔(𝑥

𝑖

𝜆
)

by (41) give

[𝐴 − 𝐷 (𝑥
𝑖

𝜆
) + 𝜆𝐷



(𝑥
𝑖

𝜆
)] 𝑥
𝑖+1

𝜆
= 𝑏 + 𝜆(

1

ℓ
− 1) [𝑥

𝑖

𝜆
]
1/ℓ

+

.

(43)

Thus, solving for 𝑥𝑖+1
𝜆

gives

𝑥
𝑖+1

𝜆
= [𝐴 −𝐷(𝑥

𝑖

𝜆
) +𝜆𝐷



(𝑥
𝑖

𝜆
)] \(𝑏+ 𝜆 ((

1

ℓ
) −1) [𝑥

𝑖

𝜆
]
1/ℓ

+

) ,

(44)

which is our final generalizedNewton iteration for solving the
nonlinear penalized equation (10). In the following, we can
establish the penalized-equation-based generalized Newton
method for solving AVLCP(𝐴, 𝑏).

Algorithm 11 (penalized-equation-based generalized Newton
algorithm). We have the following.

Step 1. Given constants 𝜀 > 0, 𝜆
0
> 1, 𝜇 > 1, ℓ ≥ 1, and

𝜎 ∈ [0, 1] and a starting point 𝑥0
𝜆0

∈ R𝑛, set 𝑘 := 0.

Step 2. Calculate 𝑥𝑖+1
𝜆𝑘

from the generalized Newton equation

[𝐴 − 𝐷 (𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)] 𝑥
𝑖+1

𝜆𝑘

= 𝑏 + 𝜆
𝑘
(
1

ℓ
− 1) [𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

,

(45)

starting from 𝑥
0

𝜆𝑘

associated with 𝜆
𝑘
.

Step 3. If 𝐷(𝑥
𝑖+1

𝜆𝑘

) = 𝐷(𝑥
𝑖

𝜆𝑘

), 𝐷(𝑥𝑖+1
𝜆𝑘

) = 𝐷


(𝑥
𝑖

𝜆𝑘

) and ‖𝑥
𝑖+1

𝜆𝑘

−

𝑥
𝑖

𝜆𝑘

‖ ≤ 𝜀, stop; otherwise, set 𝑖 := 𝑖+1 and go to Step 2. Denote
the accumulation point of {𝑥𝑖

𝜆𝑘

} by 𝑥
𝑘
.

Step 4. If ‖[𝑥
𝑘
]
+
‖ ≤ 𝜀, then stop; otherwise, let 𝜆

𝑘+1
= 𝜇𝜆
𝑘
,

choose new starting point 𝑥0
𝜆𝑘+1

= 𝑥
𝑘
, set 𝑘 := 𝑘+ 1, and go to

Step 2.

4.1. Existence of Accumulation Point at Each Generalized
Newton Iteration. We will show that the sequence {𝑥

𝑖

𝜆𝑘

}
+∞

𝑖=1

generated by generalized Newton iteration (45) converges
to an accumulation point 𝑥

𝑘
associated with 𝜆

𝑘
. We firstly

give the following sufficient conditions that the generalized
Newton iteration (45) is well defined.

Lemma 12. If the singular values of 𝐴 ∈ R𝑛×𝑛 exceed 1.
Then (𝐴 − 𝐷(𝑥

𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1 exists for any diagonal

matrices 𝐷(𝑥
𝑖

𝜆𝑘

) and 𝐷


(𝑥
𝑖

𝜆𝑘

), where 𝜆
𝑘

> 1, 𝐷(𝑥
𝑖

𝜆𝑘

) is the
diagonal matrix with diagonal elements equal to ±1 or 0 and
𝐷


(𝑥
𝑖

𝜆𝑘

) is the diagonal matrix with diagonal elements equal to
(1/ℓ)𝑢

(1/ℓ)−1

𝑖
, 0, or a real number 𝜎 ∈ [0, 1].

Proof. If (𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) is singular, then 𝑥 ̸= 0

exists such that

(𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) 𝑥 = 0. (46)

Thus, we have the following contradiction

𝑥
𝑇

𝑥 < 𝑥
𝑇

𝐴
𝑇

𝐴𝑥 = (𝐴𝑥)
𝑇

𝐴𝑥

= 𝑥
𝑇

(𝐷 (𝑥
𝑖

𝜆𝑘

) − 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
𝑇

× (𝐷 − 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) 𝑥 ≤ 𝑥
𝑇

𝑥

(47)

for ℓ = 1 and 𝜆
𝑘

∈ (1, 2), where the first inequality
follows from Lemma 5. Hence, (𝐴 − 𝐷(𝑥

𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) is
nonsingular.

We now establish boundness of the generalized Newton
iteration (45) and thus existence of an accumulation.

Theorem 13. Let the singular values of 𝐴 ∈ R𝑛×𝑛 exceed 1.
Then the iteration 𝑥

𝑖+1

𝜆𝑘

= [𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)] \ (𝑏 +

𝜆
𝑘
((1/ℓ) − 1)[𝑥

𝑖

𝜆𝑘

]
1/ℓ

+
) of the Algorithm 11 is well defined and

bounded. Consequently, there exists an accumulation point 𝑥
𝑘

such that (𝐴−𝐷(𝑥
𝑘
)+𝜆
𝑘
𝐷


(𝑥
𝑘
))𝑥
𝑘
= 𝑏+𝜆

𝑘
((1/ℓ)−1)[𝑥

𝑘
]
1/ℓ

+
.

Proof. By Lemma 12, (𝐴−𝐷(𝑥
𝑖

𝜆𝑘

)+𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1 exists; hence,

the generalized Newton iteration 𝑥
𝑖+1

𝜆𝑘

= [𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) +

𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)] \ (𝑏 + 𝜆
𝑘
((1/ℓ) − 1)[𝑥

𝑖

𝜆
]
1/ℓ

+
) is well defined.

We now prove the boundedness of the iterative sequence
{𝑥
𝑖

𝜆𝑘

}. Suppose that {𝑥𝑖
𝜆𝑘

} is unbounded; then there exists a
subsequence {𝑥

𝑖𝑗+1

𝜆𝑘

} with ‖𝑥
𝑖𝑗+1

𝜆𝑘

‖ → ∞ and nonzero such

that 𝐷(𝑥
𝑖𝑗

𝜆𝑘

) = 𝐷, 𝐷(𝑥𝑖𝑗
𝜆𝑘

) = 𝐷, where 𝐷 and 𝐷 are
fixed diagonal matrices extended from the finite number of
possible configurations for 𝐷(𝑥

𝑖𝑗

𝜆𝑘

) in the sequence {𝐷(𝑥
𝑖𝑗

𝜆𝑘

)}

and 𝐷


(𝑥
𝑖𝑗

𝜆𝑘

) in the sequence {𝐷


(𝑥
𝑖𝑗

𝜆𝑘

)}, respectively, such

that the bounded subsequence {𝑥𝑖𝑗+1
𝜆𝑘

/‖𝑥
𝑖𝑗+1

𝜆𝑘

‖} converges to 𝑥.
Hence

(𝐴 − 𝐷 + 𝜆
𝑘
𝐷)

𝑥
𝑖𝑗+1

𝜆𝑘


𝑥
𝑖𝑗+1

𝜆𝑘



=

𝑏 + 𝜆
𝑘
((1/ℓ) − 1) [𝑥

𝑖

𝜆
]
1/ℓ

+


𝑥
𝑖𝑗+1

𝜆𝑘



. (48)

By letting 𝑗 → ∞, we obtain

(𝐴 − 𝐷 + 𝜆
𝑘
𝐷) 𝑥 = 0, ‖𝑥‖ = 1, (49)

since ‖𝑥
𝑖𝑗+1

𝜆𝑘

‖ → ∞. This contradicts the nonsingularity
(𝐴 − 𝐷 + 𝜆

𝑘
𝐷) which follows from Lemma 12. Therefore,

the iterative sequence {𝑥
𝑖

𝜆𝑘

} is bounded and there exists an
accumulation point 𝑥

𝑘
such that (𝐴−𝐷(𝑥

𝑘
) +𝜆
𝑘
𝐷


(𝑥
𝑘
))𝑥
𝑘
=

𝑏 + 𝜆
𝑘
((1/ℓ) − 1)[𝑥

𝑘
]
1/ℓ

+
.

We then establish the finite termination of generalized
Newton iteration (45).

Theorem 14. Let the singular values of 𝐴 ∈ R𝑛×𝑛 exceed 1. If
𝐷(𝑥
𝑖+1

𝜆𝑘

) = 𝐷(𝑥
𝑖

𝜆𝑘

), 𝐷(𝑥𝑖+1
𝜆𝑘

) = 𝐷


(𝑥
𝑖

𝜆𝑘

), and ‖𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑖

𝜆𝑘

‖ ≤ 𝜀

for some 𝑖 for the well defined iteration (45) in Algorithm 11,
then 𝑥

𝑖+1

𝜆𝑘

solves the nonlinear penalized equation (10).
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Proof. The generalized Newton iteration

𝑥
𝑖+1

𝜆𝑘

= [𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)] \ (𝑏 + 𝜆
𝑘
(
1

ℓ
− 1)

× [𝑥
𝑖

𝜆𝑘

]
1/ℓ

+

)

(50)

is well defined by Lemma 12, and if 𝐷(𝑥
𝑖+1

𝜆𝑘

) = 𝐷(𝑥
𝑖

𝜆𝑘

),
𝐷


(𝑥
𝑖+1

𝜆𝑘

) = 𝐷


(𝑥
𝑖

𝜆𝑘

) and ‖𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑖

𝜆𝑘

‖ ≤ 𝜀, then

0 = [𝐴 − 𝐷(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)] 𝑥
𝑖+1

𝜆𝑘

− 𝑏 − 𝜆
𝑘
(
1

ℓ
− 1) [𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

= 𝐴𝑥
𝑖+1

𝜆𝑘

− 𝐷(𝑥
𝑖

𝜆𝑘

) 𝑥
𝑖+1

𝜆𝑘

+ 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

) 𝑥
𝑖+1

𝜆𝑘

− 𝑏 − 𝜆
𝑘
(
1

ℓ
− 1) [𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

= 𝐴𝑥
𝑖+1

𝜆𝑘

− 𝐷(𝑥
𝑖+1

𝜆𝑘

) 𝑥
𝑖+1

𝜆𝑘

+ 𝜆
𝑘
𝐷


(𝑥
𝑖+1

𝜆𝑘

) 𝑥
𝑖+1

𝜆𝑘

− 𝑏 − 𝜆
𝑘
(
1

ℓ
− 1) [𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

= 𝐴𝑥
𝑖+1

𝜆𝑘

−

𝑥
𝑖+1

𝜆𝑘


+ 𝜆
𝑘
[𝑥
𝑖

𝜆𝑘

]
1/ℓ

+

− 𝑏

+ 𝜆
𝑘
(𝐷


(𝑥
𝑖+1

𝜆𝑘

) 𝑥
𝑖+1

𝜆𝑘

− 𝐷


(𝑥
𝑖

𝜆𝑘

) 𝑥
𝑖

𝜆𝑘

)

= 𝐴𝑥
𝑖+1

𝜆𝑘

−

𝑥
𝑖+1

𝜆𝑘


+ 𝜆
𝑘
[𝑥
𝑖

𝜆𝑘

]
1/ℓ

+

− 𝑏

+ 𝜆
𝑘
𝐷


(𝑥
𝑖+1

𝜆𝑘

) (𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑖

𝜆𝑘

)

= 𝐴𝑥
𝑖+1

𝜆𝑘

−

𝑥
𝑖+1

𝜆𝑘


+ 𝜆
𝑘
[𝑥
𝑖+1

𝜆𝑘

]
1/ℓ

+

− 𝑏 + 𝑂 (𝜀) ,

(51)

giving the result.

Furthermore, we have the following results.

Theorem 15. Suppose that the singular values of 𝐴 ∈ R𝑛×𝑛

exceed 1 and𝑥
𝑘
is the unique solution of the nonlinear penalized

equation (10). Then, for any 𝑥
𝜆𝑘

such that

(𝑥
𝑘
)
𝑖
> 0 ⇒ (𝑥

𝜆𝑘
)
𝑖

> 0, (𝑥
𝑘
)
𝑖
< 0 ⇒ (𝑥

𝜆𝑘
)
𝑖

< 0,

∀𝑖 ∈ {1, 2, . . . , 𝑛} ,

(52)

the generalized Newton iteration (45) reaches 𝑥
𝑘
in one

iteration.

Proof. The theorem can be proved in a similar way to the one
in [24, Lemma 2.1]. We omit it here.

Remark 16. Not that the “sign match” property (52) holds
if 𝑥
𝜆𝑘

is sufficiently near 𝑥
𝑘
. Hence, by Theorem 15, global

convergence is then obvious for generalizedNewton iteration
(45).

Now, we discuss the globally linear convergence of
{𝑥
𝑖

𝜆𝑘

}
+∞

𝑖=1
generated by generalized Newton iteration (45).

Theorem 17. If ‖(𝐴 + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ < 1/(4 + 𝜆
𝑘
(1 +

‖𝐷


(𝑥
𝑖

𝜆𝑘

)‖)) holds for all sufficiently large𝜆
𝑘
and ‖𝐷(𝑥

𝑖

𝜆𝑘

)‖ ̸= 0,
then the generalized Newton iteration (45) converges linearly
from any starting point 𝑥0

𝜆𝑘

to a solution 𝑥
𝑘
of the nonlinear

penalized equation (10).

Proof. Since ‖(𝐴 + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ ⋅ ‖𝐷(𝑥
𝑖

𝜆𝑘

)‖ < 1 according
to the assumption and the definition of 𝐷(𝑥

𝑖

𝜆𝑘

), then (𝐴 +

𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)−𝐷(𝑥
𝑖

𝜆𝑘

))
−1 exists for any 𝑥𝑖

𝜆𝑘

by Lemma 6.We also
have by the same lemma that


[(𝐴 + 𝜆

𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) − 𝐷 (𝑥
𝑖

𝜆𝑘

)]
−1

≤


(𝐴 + 𝜆

𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

1 −

(𝐴 + 𝜆

𝑘
𝐷 (𝑥
𝑖

𝜆𝑘

))
−1

⋅

𝐷 (𝑥
𝑖

𝜆𝑘

)


<

1/ (4 + 𝜆
𝑘
(1 +


𝐷


(𝑥
𝑖

𝜆𝑘

)

))

1 − (1/1/ (4 + 𝜆
𝑘
(1 +


𝐷 (𝑥
𝑖

𝜆𝑘

)

))) ⋅ 1

=
1

3 + 𝜆
𝑘
(1 +


𝐷 (𝑥
𝑖

𝜆𝑘

)

)

.

(53)

Let 𝑥
𝑘
be a solution of the nonlinear penalized equation

(10). To simplify notation, let𝐷 = 𝐷(𝑥
𝑘
),𝐷𝑖 = 𝐷(𝑥

𝑖

𝜆𝑘

), 𝐷 =

𝐷


(𝑥
𝑘
), and 𝐷


𝑖

= 𝐷


(𝑥
𝑖

𝜆𝑘

). Noting that |𝑥
𝑘
| = 𝐷𝑥

𝑘
, |𝑥𝑖
𝜆𝑘

| =

𝐷
𝑖

𝑥
𝑖

𝜆𝑘

, (1/ℓ)[𝑥
𝑘
]
1/ℓ

+
= 𝐷𝑥

𝑘
, and (1/ℓ)[𝑥

𝑖

𝜆𝑘

]
1/ℓ

+
= 𝐷

𝑖

𝑥
𝑖

𝜆𝑘

, we
have

𝐴(𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘
)

= 𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

− 𝜆
𝑘
𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

+ 𝑏 + 𝜆
𝑘
(
1

ℓ
− 1) [𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− (𝐷𝑥
𝑘
− 𝜆
𝑘
𝐷𝑥
𝑘
+ 𝑏 + 𝜆

𝑘
(
1

ℓ
− 1) [𝑥

𝑘
]
1/ℓ

+
)

= 𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

− 𝜆
𝑘
𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

− 𝐷𝑥
𝑘
+ 𝜆
𝑘
𝐷𝑥
𝑘

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)

= (𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

− 𝐷𝑥
𝑘
) − 𝜆
𝑘
(𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

− 𝐷𝑥
𝑘
)

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)

= (𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

−
𝑥𝑘

) − 𝜆
𝑘
(𝐷
𝑖

𝑥
𝑖+1

𝜆𝑘

−
1

ℓ
[𝑥
𝑘
]
1/ℓ

+
)

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)
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= 𝐷
𝑖

(𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑖

𝜆𝑘

+ 𝑥
𝑖

𝜆𝑘

) −
𝑥𝑘



− 𝜆
𝑘
[𝐷
𝑖

(𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑖

𝜆𝑘

+ 𝑥
𝑖

𝜆𝑘

) −
1

ℓ
[𝑥
𝑘
]
1/ℓ

+
]

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)

=

𝑥
𝑖

𝜆𝑘


−
𝑥𝑘

 + 𝐷
𝑖

(𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘
+ 𝑥
𝑘
− 𝑥
𝑖

𝜆𝑘

)

−
1

ℓ
𝜆
𝑘
([𝑥
𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)

− 𝜆
𝑘
𝐷
𝑖

(𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘
+ 𝑥
𝑘
− 𝑥
𝑖

𝜆𝑘

)

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
) ,

(54)

where the first inequality follows from (𝐴 − 𝐷 + 𝜆
𝑘
𝐷)𝑥
𝑘
=

𝑏+𝜆
𝑘
((1/ℓ)−1)[𝑥

𝑘
]
1/ℓ

+
and (𝐴−𝐷

𝑖

+𝜆
𝑘
𝐷

𝑖

)𝑥
𝑖+1

𝜆𝑘

= 𝑏+𝜆
𝑘
((1/ℓ)−

1)[𝑥
𝑖

𝜆𝑘

]
1/ℓ

+
.

Hence, one has that

(𝐴 − 𝐷
𝑖

+ 𝜆
𝑘
𝐷
𝑖

) (𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘
)

=

𝑥
𝑖

𝜆𝑘


−
𝑥𝑘

 − 𝐷
𝑖

(𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘
)

−
1

ℓ
𝜆
𝑘
([𝑥
𝑖

𝜆𝑘

]
+

− [𝑥
𝑘
]
+
) + 𝜆
𝑘
𝐷

𝑖

(𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘
)

+ 𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
) .

(55)

Thus

𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘

= (𝐴 − 𝐷
𝑖

+ 𝜆
𝑘
𝐷
𝑖

)
−1

× [

𝑥
𝑖

𝜆𝑘


−
𝑥𝑘

 − 𝐷
𝑖

(𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘
)

−
1

ℓ
𝜆
𝑘
([𝑥
𝑖

𝜆𝑘

]
+

− [𝑥
𝑘
]
+
)

+ 𝜆
𝑘
𝐷
𝑖

(𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘
)

+𝜆
𝑘
(
1

ℓ
− 1) ([𝑥

𝑖

𝜆𝑘

]
1/ℓ

+

− [𝑥
𝑘
]
1/ℓ

+
)] .

(56)

Applying Lemmas 7 and 8 and ‖[𝑥
𝑖

𝜆𝑘

]
+
− [𝑥
𝑘
]
+
‖ ≤ 𝜀 when

𝑖 is sufficiently large, we get


𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘



≤

(𝐴 − 𝐷

𝑖

+ 𝜆
𝑘
𝐷
𝑖

)
−1

⋅ ((3 +
𝜆
𝑘

ℓ
)

𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘



+ 𝜆
𝑘


𝐷
𝑖

(𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘
)


+ 𝜆
𝑘
(1 −

1

ℓ
)

[𝑥
𝑖

𝜆𝑘

]
+

− [𝑥
𝑘
]
+


+𝑂 (𝜀) )

≤ (3 + 𝜆
𝑘
+ 𝜆
𝑘


𝐷
𝑖

+ 𝑂 (𝜀))

⋅

(𝐴 − 𝐷

𝑖

+ 𝜆
𝑘
𝐷
𝑖

)
−1

⋅

𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘


.

(57)

Letting 𝑖 → ∞, 𝜀 → 0 and taking limits in both sides of
the last inequality above, we have


𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘



𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘



≤ (3 + 𝜆
𝑘
(1 +


𝐷


(𝑥
𝑖

𝜆𝑘

)

))

⋅

(𝐴 − 𝐷

𝑖

(𝑥
𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷
𝑖

(𝑥
𝑖

𝜆𝑘

))
−1

< 1,

(58)

where the last inequality in (58) follows from ‖(𝐴 −𝐷(𝑥
𝑖

𝜆𝑘

) +

𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ < 1/(3 + 𝜆
𝑘
(1 + ‖𝐷

𝑖

‖)).
Consequently, the sequence {𝑥𝑖

𝜆𝑘

} converges linearly to a
solution 𝑥

𝑘
.

In the above proof, the choice of 𝑥
𝑘
is arbitrary; hence we

have the following result.

Corollary 18. Assume that ‖(𝐴 + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ < 1/(1 +

𝜆
𝑖

𝑘
(1 + ‖𝐷



(𝑥
𝑖

𝜆𝑘

)‖)) and ‖𝐷(𝑥
𝑖

𝜆𝑘

)‖ ̸= 0 for any sufficiently large
𝜆
𝑘
. Then the nonlinear penalized equation (10) has a unique

solution for any 𝑏 ∈ R𝑛.

Finally, we give the globally superlinear convergence of
{𝑥
𝑖

𝜆𝑘

}
+∞

𝑖=1
generated by generalized Newton iteration (45).

Theorem 19. Assume that ‖(𝐴 + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ < 1/(1 +

𝜆
𝑖

𝑘
(1 + ‖𝐷



(𝑥
𝑖

𝜆𝑘

)‖)) and ‖𝐷(𝑥
𝑖

𝜆𝑘

)‖ ̸= 0 for any sufficiently
large 𝜆

𝑘
. Then the generalized Newton iteration (45) converges

superlinearly from any starting point 𝑥0
𝜆𝑘

to a solution 𝑥
𝑘
of the

nonlinear penalized equation (10).
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Proof. According to Lemma 6, one has that

[(𝐴 + 𝜆

𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

)) − 𝐷 (𝑥
𝑖

𝜆𝑘

)]
−1

≤


(𝐴 + 𝜆

𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

1 −

(𝐴 + 𝜆

𝑘
𝐷 (𝑥
𝑖

𝜆𝑘

))
−1

⋅

𝐷 (𝑥
𝑖

𝜆𝑘

)


≤


(𝐴 + 𝜆

𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

1 −

(𝐴 + 𝜆

𝑘
𝐷 (𝑥
𝑖

𝜆𝑘

))
−1

<
1

𝜆
𝑖

𝑘
(1 +


𝐷 (𝑥
𝑖

𝜆𝑘

)

)

,

(59)

where the last inequality follows from the sequence ‖(𝐴 +

𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

‖ ≤ 1/(1 + 𝜆
𝑖

𝑘
(1 + ‖𝐷



(𝑥
𝑖

𝜆𝑘

)‖)).
Combining this with (58) inTheorem 15, we have

𝑥
𝑖+1

𝜆𝑘

− 𝑥
𝑘



𝑥
𝑖

𝜆𝑘

− 𝑥
𝑘



< (3 + 𝜆
𝑘
(1 +


𝐷


(𝑥
𝑖

𝜆𝑘

)

))

⋅

(𝐴 − 𝐷 (𝑥

𝑖

𝜆𝑘

) + 𝜆
𝑘
𝐷


(𝑥
𝑖

𝜆𝑘

))
−1

(60)

<

3 + 𝜆
𝑘
(1 +


𝐷


(𝑥
𝑖

𝜆𝑘

)

)

𝜆
𝑖

𝑘
(1 +


𝐷 (𝑥
𝑖

𝜆𝑘

)

)

. (61)

Letting 𝑖 → ∞ and taking limits in (61), we can see that the
sequence {𝑥𝑖

𝜆𝑘

}
+∞

𝑖=1
generated by generalized Newton iteration

(45) converges superlinearly to a solution 𝑥
𝑘
.

4.2. Convergence of Penalized-Equation-Based Generalized
Newton Method. In this subsection, we will focus on the
convergence of Algorithm 11. We first present the global
convergence.

Theorem 20. Let the singular values of 𝐴 ∈ R𝑛×𝑛 exceed 1.
Then the sequence {𝑥

𝑘
} generated by Algorithm 11 is bounded.

Consequently, there exists an accumulation point 𝑥
∗ of the

nonlinear penalized equation (10).

Proof. Since𝑥
𝑘
is an accumulation point of {𝑥𝑖

𝜆𝑘

}
+∞

𝑖=1
, it follows

from Theorem 13 that the sequence {𝑥𝑖
𝜆𝑘

}
+∞

𝑖=1
is bounded, we

can thus obtain the boundness of {𝑥
𝑘
}. Hence there exists

an accumulation point 𝑥∗ of {𝑥
𝑘
} such that the nonlinear

penalized equation (10) holds, giving the results.

We then establish the linear convergence of Algorithm 11.

Theorem21. Under the assumption that ‖(𝐴+𝜆
𝑘
𝐷


(𝑥
𝑘
))
−1

‖ <

1/(1+𝜆
𝑘
(1 + ‖𝐷



(𝑥
𝑘
)‖)), ‖𝐷(𝑥

𝑘
)‖ ̸= 0, Algorithm 11 converges

linearly from any starting point 𝑥0
𝜆0

to a solution 𝑥
∗ of the

nonlinear penalized equation (10).

Proof. Taking into account “match property” (52), the theo-
rem can be proved in a similar way to that ofTheorem 15.

Table 1: The numerical results of Example 1.

Initial point 𝑥𝑠
𝜆0

Numbers of Newton iterations 𝑥
∗

(0, 0)
𝑇 2 (−

4

11
, −

1

11
)

𝑇

(0, 1)
𝑇 2 (−

4

11
, −

1

11
)

𝑇

(−1, −1)
𝑇 1 (−

4

11
, −

1

11
)

𝑇

(2, −1)
𝑇 2 (−

4

11
, −

1

11
)

𝑇

Finally, we establish the superlinear convergence of
Algorithm 11.

Theorem 22. Under the assumption that ‖(𝐴 +

𝜆
𝑘
𝐷


(𝑥
𝑘
))
−1

‖ < 1/(1 + 𝜆
𝑚

𝑘
(1 + ‖𝐷



(𝑥
𝑘
)‖)) (𝑚 > 1),

‖𝐷(𝑥
𝑘
)‖ ̸= 0, Algorithm 11 converges superlinearly from any

starting point 𝑥0
𝜆0

to a solution 𝑥
∗ of the nonlinear penalized

equation (10).

Proof. Taking into account “match property” (52), the theo-
rem can be proved in a similar way to that ofTheorems 15 and
17.

5. Numerical Results

In this section, we consider several examples to show the
efficiency of the proposed method by running in MATLAB
7.5 with Intel(R) Core (TM) of 2 × 2.70GHz and RAM of
2.0GB. Throughout these computational experiments, the
parameters used in the algorithm are set as 𝜀 = 10

−6, 𝜆
0
= 10,

𝜇 = 2, and ℓ = 1. The accumulation point of Algorithm 11 is
written as 𝑥∗.

Example 1. Let the matrix 𝐴 of AVLCP(𝐴, 𝑏) be given by

𝐴 = (
2 −1

−1 3
) , (62)

and 𝑏 = (−1, 0)
𝑇. The solution of AVLCP(𝐴, 𝑏) is 𝑥

∗

=

(−4/11, −1/11)
𝑇. The computational results are shown in

Table 1.

Example 2. Let the matrix 𝐴 of AVLCP(𝐴, 𝑏) be given by

𝐴 = (

4 −1 0 0

−1 4 −1 0

0 −1 4 −1

0 0 −1 4

) , (63)

and 𝑏 = (−1, −1, 0, 0)
𝑇. The solution of AVLCP(𝐴, 𝑏) is

𝑥
∗

= (−139/551, −144/551, −30/551, −6/551)
𝑇. The compu-

tational results are shown in Table 2.
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Table 2: The numerical results of Example 2.

Initial point 𝑥𝑠
𝜆0

Numbers
of

Newton
iterations

𝑥
∗

(−1, −1, −1, −1)
𝑇 1 (−

139

551
, −

144

551
, −

30

551
, −

6

551
)

𝑇

(0, 0, 0, 0)
𝑇 2 (−

139

551
, −

144

551
, −

30

551
, −

6

551
)

𝑇

(1, −1, 1, −1)
𝑇 2 (−

139

551
, −

144

551
, −

30

551
, −

6

551
)

𝑇

(1, 2, −1, 0)
𝑇 2 (−

139

551
, −

144

551
, −

30

551
, −

6

551
)

𝑇

Example 3. Let the matrix 𝐴 of AVLCP(𝐴, 𝑏) be given by

𝐴 = (

(

4 0 0 0 −1 −1

0 4 0 0 −1 −1

0 0 4 −1 −1 0

0 0 −1 4 0 0

−1 −1 −1 0 4 0

−1 −1 0 0 0 4

)

)

, (64)

and 𝑏 = (−4, 4, −4, −4, 4, −4)
𝑇. The solution of AVLCP(𝐴, 𝑏)

is 𝑥∗ = (−1, 0, −1, −1, 0, −1)
𝑇. The computational results are

shown in Table 3.

Example 4. Let the matrix 𝐴 of AVLCP(𝐴, 𝑏) be given by

𝑎
𝑖𝑗
=

{{{{{

{{{{{

{

8, for 𝑗 = 𝑖,

−1, for {
𝑗 = 𝑖 + 1, 𝑖 = 1, 2, . . . , 𝑛 − 1,

𝑗 = 𝑖 − 1, 𝑖 = 2, 3, . . . , 𝑛,

0, otherwise.

(65)

Let 𝑏 = (6, 5, 5, . . . , 5, 6)
𝑇. Then choose initial point 𝑥𝑠

𝜆0

as
𝑥
𝑠

𝜆0

= (0, 0, . . . , 0)
𝑇. We compared our algorithm with the

existing methods in [15, 19]. The computational results are
shown in Table 4.

From Table 1 to Table 4, we can see that our method has
some nice convergence which coincides with our results.

6. Conclusion

In this paper, we propose a new approximation to absolute-
value linear complementarity problems (3) by using the non-
linear penalized equation (10), based on which a generalized
Newton method is proposed for solving this penalized
equation. Under suitable assumptions, the algorithm is
shown to be both globally and superlinearly convergent.
The numerical results presented showed that the gener-
alized Newton method proposed by us is efficient. The
results and ideas of this paper may be used to solve the

Table 3: The numerical results of Example 3.

Initial point 𝑥𝑠
𝜆0

Numbers
of

Newton
iterations

𝑥
∗

= (𝑢
∗

1
, 𝑢
∗

2
, 𝑢
∗

3
, 𝑢
∗

4
, 𝑢
∗

5
, 𝑢
∗

6
)
𝑇

(0, 0, 0, 0, 0, 0)
𝑇 21

𝑢
∗

1
= −1

𝑢
∗

2
= 5.72204𝑒 − 7

𝑢
∗

3
= −1

𝑢
∗

4
= −1

𝑢
∗

5
= 3.8147𝑒 − 7

𝑢
∗

6
= −1

(−1, −1, −1, −1, −1, −1)
𝑇 21

𝑢
∗

1
= −1

𝑢
∗

2
= 5.72204𝑒 − 7

𝑢
∗

3
= −1

𝑢
∗

4
= −1

𝑢
∗

5
= 3.8147𝑒 − 7

𝑢
∗

6
= −1

(−2, 0, −2, −2, 0, −2)
𝑇 20

𝑢
∗

1
= −1

𝑢
∗

2
= 5.72204𝑒 − 7

𝑢
∗

3
= −1

𝑢
∗

4
= −1

𝑢
∗

5
= 3.8147𝑒 − 7

𝑢
∗

6
= −1

(1, 1, 1, 1, 1, 1)
𝑇 21

𝑢
∗

1
= −1

𝑢
∗

2
= 5.72204𝑒 − 7

𝑢
∗

3
= −1

𝑢
∗

4
= −1

𝑢
∗

5
= 3.8147𝑒 − 7

𝑢
∗

6
= −1

Table 4: Computational results of Example 4.

Order Numbers of iterations
Iterative method [19] GAOR method [15] Algorithm 11

4 10 10 8
8 11 11 9
16 11 11 9
32 12 11 9
64 12 11 9
128 12 11 9
256 12 11 9
512 12 11 9
1024 13 11 9

absolute variational inequalities and related optimization
problems.
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