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The present work deals with functionally gradedmaterials (FGM) isotropic plates in the neighborhood of the first-order symmetric
zero group velocity (S

1
-ZGV) point. The mechanical properties of functionally graded material (FGM) are assumed to vary

continuously through the thickness of the plate and obey a power law of the volume fraction of the constituents. Governing
equations for the problemare derived, and the power series technique (PST) is employed to solve the recursive equations.The impact
of the FGM basic materials properties on S

1
-ZGV frequency of FGM plate is investigated. Numerical results show that S

1
-ZGV

frequency is comparatively more sensitive to the shear modulus.The gradient coefficient p does not affect the linear dependence of
ZGV frequency 𝑓

𝑜
as function of cut-off frequency 𝑓

𝑐
; only the slope is slightly varied.

1. Introduction

A functionally graded material (FGM) is a kind of an
inhomogeneousmaterial.The characterization ofmechanical
properties of materials is important for testing their struc-
tural integrity. Lamb waves are frequently employed in the
ultrasonic characterization of thin plates [1]. As an important
property of Lamb waves, the zero group velocity (ZGV) at
the frequency minimum 𝑓

𝑜
of the first-order symmetric (S

1
)

continues to be of an interest for the scientific community [2,
3]. Tolstoy and Usdin pointed out that for the S

1
Lambmode,

group velocity vanishes at a particular point of the dispersion
curve and predicted that this zero group velocity point
must be associated with a sharp continuous wave resonance
and ringing effect [4]. Holland and Chimenti demonstrated
the exploitation of this mode for high-sensitivity imaging
applications.With air-coupled transducers, they observed the
transparency of a plate due to the S

1
mode ZGV resonance

[5].
The S
1
-ZGV frequency is obviously sensitive to mechan-

ical properties and to any change in the plate thickness. To
exploit this phenomenon recent works evoke the idea that
it may be suitable for the measurement of nanometer-scale

thickness variations in homogeneous plates [6, 7]. Due to the
resulting differential equations of variable coefficients associ-
ated with the spatial variation of the material properties, the
wave propagation in FGM remains difficult to analyze. Some
numerical [8–10] and analytical methods [11–16] have been
applied in order to study the wave propagation behavior in
an inhomogeneousmediumwithmaterial properties varying
continuously along the depth direction. In an effort to show
the interest of ZGV in the study of FGMmaterials, Bouhdima
[15] first discussed the effect of the linear variation ofmechan-
ical properties along the thickness plate on the S

1
-ZGV using

the power series technique (PST). To our knowledge, no
reports have been published on the relationship between the
S
1
-ZGV frequency and material properties in an inhomo-

geneous free standing plate. Previous investigations on S
1
-

ZGV phenomenon are limited to inspection experiments on
homogenous plates and mainly focused on measuring the
thickness of a coating on a relatively thin plate [3, 7, 17]. The
present investigation includes different kinds of FGM plates
with various basicmaterials, to extract the effects produced by
mechanical parameters variation. All the selected materials
for the illustration are in agreement with the convergence cri-
terion. The PST has been used and the recursive relationship
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for 𝑝 = 2 is derived.The performed developments permit the
evaluation of the impact of the nonlinear profile ondispersion
curves of Lambwaves.The effect of the shearmodulus on this
frequency is highlighted. Furthermore, the relative variation
of the stress and the mechanical displacement is investigated
at the S

1
-ZGV frequency.

The FGM plate data and the basic theory of PST are
reported in Sections 2-3. The last paragraph is devoted to the
discussion and the main results.

2. Statement of the Problem and
Theoretical Study

A functionally graded plate with thickness “𝑑” is considered
here. It is assumed that the mechanical properties of FGM
vary continuously through the thickness of plate.Themotion
is restricted in the (𝑥

1
, 𝑥
3
) plane and the Lamb waves

propagate in the positive direction of the𝑥
1
-axis.Thematerial

properties 𝛼 can be expressed as [18–21]

𝛼 (𝑥
3
) = 𝛼
𝑐
× 𝐹
𝑐
+ 𝛼
𝑚
× 𝐹
𝑚
, (1)

where 𝐹
𝑚
and 𝐹

𝑐
are the volume fractions and the subscripts

𝑚 and 𝑐 denote the metallic and ceramic constituents,
respectively. 𝐹

𝑐
and 𝐹

𝑚
follow a simple power law as

𝐹
𝑐
= (

𝑥
3

𝑑
+

1

2
)
𝑝

, 𝐹
𝑚

= 1 − 𝐹
𝑐
, (2)

where 𝑥
3
is the thickness coordinate and “𝑝” is a gradient

coefficient. According to this distribution, the bottom surface
(𝑥
3
= −𝑑/2) of the functionally graded plate is puremetal and

the top surface (𝑥
3
= 𝑑/2) is pure ceramic, and for different

values of “𝑝” one can obtain different volume fractions of
metal.

The constitutive equations can be expressed as follows:

𝑇
𝑖𝑗
= 𝐶
𝑖𝑗𝑘𝑙

𝑆
𝑘𝑙
,

𝑆
𝑖𝑗
=

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) ,

𝜕𝑇
𝑖𝑗

𝜕𝑥
𝑗

= 𝜌 × �̈�
𝑖
.

(3)

In (3), 𝑇
𝑖𝑗
and 𝑆
𝑘𝑙
are the stress and strain tensors,𝐶

𝑖𝑗𝑘𝑙
are the

elastic coefficients, 𝜌 is the density, and 𝑢
𝑖
is the component

of the mechanical displacement in the 𝑖th direction.
On the basis of the previous assumption of plane strain,

the displacement components can be described as

𝑢
1
(𝑥
1
, 𝑥
3
, 𝑡) = 𝑈

1
(𝑥
3
) exp [𝑖 (𝑘𝑥

1
− 𝜔𝑡)] ;

𝑢
2
= 0;

𝑢
3
(𝑥
1
, 𝑥
3
, 𝑡) = 𝑖𝑈

3
(𝑥
3
) exp [𝑖 (𝑘𝑥

1
− 𝜔𝑡)] ,

(4)

where 𝑘 is the wave number, 𝜔 denotes the frequency, and
𝑖 = √−1. Note that for convenient description 𝑖 is introduced
to make the first and third displacement components in

phase quadrature so that the polarization locus becomes
elliptical. Additionally the recursive process inherent to the
PST method will have a suitable form. On the other hand
and for brevity, the complex exponential exp[𝑖(𝑘𝑥

1
− 𝜔𝑡)] is

omitted below. From (3)-(4), the governing equations in an
inhomogeneous FGM plate are rewritten as follows:

𝑐
44
𝑈
1
+ 𝑐
44
𝑈
1
+ (𝜌𝜔2 − 𝑐

11
𝑘2)𝑈
1
− (𝑐
13

+ 𝑐
44
) 𝑘𝑈
3

− 𝑘𝑐
44
𝑈
3
= 0

𝑐
11
𝑈
3
+ 𝑐
11
𝑈
3
+ (𝜌𝜔2 − 𝑐

44
𝑘2)𝑈
3
+ (𝑐
13

+ 𝑐
44
) 𝑘𝑈
1

+ 𝑐
13
𝑘𝑈
1
= 0.

(5)

The symbols () and () represent the first and second dif-
ferentials with respect to 𝑥

3
. The considered FGM materials

are isotropic so their elastic constants are expressed in terms
of Lame’s coefficients 𝜆 and 𝜇; this leads to 𝑐

11
= 𝜆 + 2 ⋅ 𝜇,

𝑐
13

= 𝜆, and 𝑐
44

= 𝜇.
Then (5) can be transformed into the following forms:

𝜇𝑈
1
+ 𝜇𝑈

1
+ (𝜌𝑐2 − 𝜆 − 2𝜇) 𝑘2𝑈

1
− (𝜆 + 𝜇) 𝑘𝑈

3

− 𝑘𝜇𝑈
3
= 0

(𝜆 + 2𝜇)𝑈
3
+ (𝜆 + 2𝜇)



𝑈
3
+ (𝜌𝑐2 − 𝜇) 𝑘2𝑈

3
+ (𝜆 + 𝜇) 𝑘𝑈

1

+ 𝜆𝑘𝑈
1
= 0.

(6)

For Lambwaves that propagate in the FGMplate, the traction
free boundary condition should be satisfied at the top and
bottom surfaces (𝑥

3
= ±𝑑/2), that is,

𝑇
13

(𝑥
3
= ±

𝑑

2
) = 0, 𝑇

33
(𝑥
3
= ±

𝑑

2
) = 0. (7)

Equations (6) are relative to the motion along 𝑥
1
and 𝑥

3
; they

reveal coupling between both displacement amplitudes 𝑈
1

and 𝑈
3
.

3. Used Method

To solve the differential equation with variable coefficients,
we use the PST method [15, 16]. Regarding the longitudinal
and the shear wave amplitudes for Lamb guided waves, the
PST method specifies that 𝑈

1
and 𝑈

3
can take the following

forms:

𝑈
1
= ∑
𝑛

𝐴
𝑛
(
𝑥
3

𝑑
)
𝑛

; 𝑈
3
= ∑
𝑛

𝐵
𝑛
(
𝑥
3

𝑑
)
𝑛

. (8)
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It is assumed that the parameters of the FGM possess the
following form:

𝜆 (𝑥
3
) =

𝑝

∑
𝑖=0

𝑎
𝑖
(
𝑥
3

𝑑
)
𝑖

𝜇 (𝑥
3
) =

𝑝

∑
𝑖=0

𝑏
𝑖
(
𝑥
3

𝑑
)
𝑖

𝜌 (𝑥
3
) =

𝑝

∑
𝑖=0

𝑐
𝑖
(
𝑥
3

𝑑
)
𝑖

.

(9)

Substituting (8) and (9) into (6) and by equating the coef-
ficients of (𝑥

3
/𝑑)𝑛 to zero we can obtain two recursive

equations. At this level any couple (𝐴
𝑛
, 𝐵
𝑛
) can be expressed

as a function of the quadruplet {𝐴
0
, 𝐴
1
, 𝐵
0
, 𝐵
1
}; this is true

for the displacement components. Accordingly, any physical
magnitude will have a four-dimensional vector form. For 𝑝 =
2, the corresponding recursive relationships involving𝐴

𝑛
and

𝐵
𝑛
are written below:

(𝑛 + 2) (𝑛 + 1) 𝑏
𝑜
𝐴
𝑛+2

+ (𝑛 + 1)
2𝑏
1
𝐴
𝑛+1

− 𝑘𝑑 (𝑛 + 1) (𝑎
𝑜
+ 𝑏
𝑜
) 𝐵
𝑛+1

+ [𝑘2𝑑2 (𝑐
𝑜
𝐶2 − 𝑎

𝑜𝑜
) + 𝑛 (𝑛 + 1) 𝑏

2
] 𝐴
𝑛

− 𝑘𝑑 [𝑛𝑎
1
+ (𝑛 + 1) 𝑏

1
] 𝐵
𝑛

+ 𝑘2𝑑2 (𝑐
1
𝐶2 − 𝑎

11
)𝐴
𝑛−1

− 𝑘𝑑 [(𝑛 − 1) 𝑎
2
+ (𝑛 + 1) 𝑏

2
] 𝐵
𝑛−1

+ 𝑘2𝑑2 (𝑐
2
𝐶2 − 𝑎

22
)𝐴
𝑛−2

= 0,

(𝑛 + 2) (𝑛 + 1) 𝑎
𝑜𝑜
𝐵
𝑛+2

+ (𝑛 + 1)
2𝑎
11
𝐵
𝑛+1

+ 𝑘𝑑 (𝑛 + 1) (𝑎
𝑜
+ 𝑏
𝑜
) 𝐴
𝑛+1

+ [𝑘2𝑑2 (𝑐
𝑜
𝐶2 − 𝑏

𝑜
) + 𝑛 (𝑛 + 1) 𝑎

22
] 𝐵
𝑛

+ 𝑘𝑑 [𝑛𝑏
1
+ (𝑛 + 1) 𝑎

1
] 𝐴
𝑛
+ 𝑘2𝑑2 (𝑐

1
𝐶2 − 𝑏

1
) 𝐵
𝑛−1

+ 𝑘𝑑 [(𝑛 − 1) 𝑏
2
+ (𝑛 + 1) 𝑎

2
] 𝐴
𝑛−1

+ 𝑘2𝑑2 (𝑐
2
𝐶2 − 𝑏

2
) 𝐵
𝑛−2

= 0

(10)

with 𝑎
𝑜𝑜

= 𝑎
𝑜
+ 2𝑏
𝑜
, 𝑎
11

= 𝑎
1
+ 2𝑏
1
, 𝑎
22

= 𝑎
2
+ 2𝑏
2
, 𝑘 is the

wave number, and 𝐶 is the phase velocity. Some explorations
related to coefficients denoted 𝑎

𝑖
, 𝑏
𝑖
, 𝑐
𝑖
(𝑖 = 0, 1, 2) are deduced

from the properties of the FGM basic materials (see (9)). 𝐴
𝑗

and 𝐵
𝑗
are equal to zero if 𝑗 < 0.

The next step consists of putting boundary conditions in
a suitable matrix form. Stress components 𝑇

𝑖3
written with

respect to {𝐴
0
, 𝐴
1
, 𝐵
0
, 𝐵
1
} on both sides of the plate give rise

to a square matrix (4 × 4) dependent on 𝜔 and 𝑘. For a given
frequency, the secular equation leads to the corresponding
wave number and obviously to the phase velocity. Then, the

Table 1: The physical properties of basic materials.

Material 𝜆 (Gpa) 𝜇 (Gpa) 𝜌 (Kg/m3) 𝑓
𝑜
(MHz)

Cu 79.291 37.313 8930 1.17
Ni 133.27 81.679 8907 1.66
Cr 74.2 102.5 7190 1.85
Si 86.1 79.5 2329 3.02
Ceramic 138 118.11 3900 2.87

dispersion curves of symmetric and antisymmetric propaga-
tive Lamb modes are represented by a set of branches in the
plane (𝜔, 𝑐).

From the recursive relationships one can deduce the
convergence criteria:

lim
𝑛→∞

𝐴
𝑛+1

𝐴
𝑛

=
𝑏
1

𝑏
𝑜

, lim
𝑛→∞

𝐵
𝑛+1

𝐵
𝑛

=
𝑎
1
+ 2𝑏
1

𝑎
𝑜
+ 2𝑏
𝑜

. (11)

The convergence condition of the solution is satisfied when
|𝑏
1
/𝑏
𝑜
| < 1 and |(𝑎

1
+ 2𝑏
1
)/(𝑎
𝑜
+ 2𝑏
𝑜
)| < 1. That has been

checked for the selected basic materials.

4. Results and Discussion

An artificial FGM is composed of two different kinds of
material and the volume fraction of each material varies
along the thickness [22]. As it is mentioned above and
according to (1) and (2), both density and elastic constants
of FGMmaterial are functions of 𝑥

3
coordinate. The physical

properties of basic materials used in this study are shown in
Table 1.

In the present work metals are associated either with
silicon or ceramic. The linear and nonlinear graded variation
of volume fraction of metallic phase through the plate
thickness are investigated below on the basis of (1).

Figure 1 shows the variations of volume fraction of metal-
lic phase through the plate thickness for 𝑝 = 1 and 2. When
the gradient coefficient 𝑝 is equal to one, the left side is metal-
rich and the right side is ceramic-rich. The 𝐹

𝑚
parameter

gives the mass rate of metal in the FGM plate. Anywhere in
the plate the mass rate of metal is increased when 𝑝 = 2
comparatively with 𝑝 = 1. for high values of 𝑝, the change
trend of properties is more pronounced.

To study the S
1
-ZGV modes of the FGM plate, different

kinds of FGM are considered. The investigation includes dif-
ferent basic materials; accordingly the nature of the ceramic
and/or the nature of metal is changed. The FGMs considered
in this study are reminded in Table 2. Similarly their S

1
-ZGV

frequency 𝑓
𝑜
and cut-off frequencies 𝑓

𝑐
are also reported for

both cases linear (𝑝 = 1) and nonlinear (𝑝 = 2).

4.1. Effect of Graded Variation on the S
1
-ZGV Mode. The

dispersion curves provide information on the properties of
materials. Some branches of the dispersion curves exhibit
minima for nonzero wave numbers. Such phenomenon has
been observed very early for the first-order symmetric (S

1
)

mode [3–5].The dispersion curves of Lambwaves in an FGM
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Table 2: S1-ZGV and cut-off frequencies of the different FGMs for
𝑝 = 1 and 𝑝 = 2.

FGM plate 𝑝 = 1 𝑝 = 2

𝑓
𝑜
(MHz) 𝑓

𝑐
(MHz) 𝑓

𝑜
(MHz) 𝑓

𝑐
(MHz)

Cr-ceramic 2.29 2.40 2.15 2.25
Cr-Si 2.30 2.40 2.18 2.28
Ni-ceramic 2.15 2.25 2.00 2.12
Ni-Si 2.14 2.28 2.01 2.14
Cu-ceramic 1.86 1.94 1.59 1.69
Cu-Si 1.80 1.87 1.62 1.71
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Figure 1: Variations of the volume fraction of metallic phase
through the dimensionless thickness of the functionally grated plate.

plate are located between those for the two corresponding
homogeneous plates [15, 16] (Figure 2).

The dispersion curves and the S
1
-ZGV frequency are

influenced not only by the gradient functions but also by the
gradient coefficients 𝑝. From Figure 3, one can see how the
S
1
-ZGV frequency is sensitive to the FGM profiles. When 𝑝

evolves from the linear to nonlinear case an appreciable shift
towards lower frequency is observed. In fact, to elucidate our
perception of S

1
-ZGV modes for linear and nonlinear FGM

profile, different basic materials are considered.
The observed shift towards low frequency in the above

plot (Cr-ceramic) has been checked for the other couples
of basic materials. That shift is expected since nonlinear 𝑝
corresponds to a FGM plate closer to the metallic phase.

4.2. Influence of Shear Modulus on the S
1
-ZGV Frequency.

From the investigation of FGM plates, where the ceramic
is kept unchanged, one can see from Figure 4(a) that the
layout of different dispersion curves for the FGMs plates is
coherent with their metals shear modulus (𝜇Cu < 𝜇Ni <
𝜇Cr). Accordingly, the S1-ZGV frequency value seems to be
sensitive to the nature of the metallic component. In the
numerical analysis, the variation of metals shear modulus
(from 81.7 Gpa to 102.5 Gpa) corresponds to a S

1
- ZGV fre-

quency shift about 240KHz. Conversely the effect of ceramic
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Figure 2: The dispersion curves of Lamb waves in the plates of Cr,
FGM and ceramic.
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Figure 3: S
1
-ZGV frequency shift when 𝑝 evolves from the linear to

nonlinear case.

shear modulus is not so significant (Figure 4(b)). In fact,
despite a large deviation of ceramic shear modulus (79.5GPa
for ceramic and 118.1 GPa for Si) the S

1
-ZGV frequency shift

does not exceed 10KHz. Such shift increases according to the
gradient coefficient 𝑝.

Additionally the numerical investigation includes the
effect associated with the plate thickness variation from 𝑑 to
2𝑑. As it was reported previously in literature [7, 16], the ZGV
frequency exhibits a linear behavior with respect to (𝑑−1/2).
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Figure 4: Influence of the shear modulus on the S
1
-ZGV frequency, (a) metals shear modulus, (b) ceramic shear modulus.
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That is still true for a nonlinear profile. Accordingly the S
1
-

ZGV frequency reveals a high sensitivity either to the metal
shear modulus or to the plate thickness. That result can be
exploited in the study of the microsystems.

4.3. Effect of FGM Proprieties on the Shape Factor 𝛽. For
a homogenous plate, it has been shown that the S

1
-ZGV

frequency 𝑓
𝑜
varies linearly with the cut-off frequency (𝑓

𝑐
)

according to the relation 𝑓
𝑜
= 𝛽 ∗ 𝑓

𝑐
, where 𝛽 is the shape

factor introduced by Sansalone et al. [23, 24].
These ZGV and cut-off frequencies are studied when the

plate thickness of FGM plate is increased from 𝑑 to 2𝑑. For
the nonlinear profile of the FGM plate, the obtained results

reveal that the ZGV frequency𝑓
𝑜
presents the same behavior;

a linear variation in terms of the cut-off frequency is reported
in Figure 5. The obtained linear variation in the case of the
nonlinear FGM plate seems to be in agreement with the
literature [14]. The gradient coefficient 𝑝 does not affect the
linear dependence of𝑓

𝑜
as function of𝑓

𝑐
, but 𝛽 varies slightly

(see Figure 5).
Moreover, 𝛽 undergoes slight change when 𝑝 varies from

1 to 2. That is mainly produced by a small change of the
Poisson’s ratio 𝜐 due to its local character. To illustrate how 𝑓

𝑜

depends on 𝑓
𝑐
, two kinds of FGM plates have been selected

Cr/ceramic andNi/ceramic. For the first couple, ]Cr is smaller
than ]Ceramic whereas, for the second couple, ]Ni is greater
than ]Ceramic. The reported shift in Figure 5 is coherent with
the corresponding Poisson’s ratios. The obtained result is
consistent with the relationship of 𝛽 according to ], given by
Clorennec [4].

4.4. Mechanical Displacement and Distribution of Stress. At
the dispersive region of the S

1
mode, the phase velocity

decreases rapidly when the frequency passes from 𝑓
𝑐
to 𝑓
𝑜

and the guided wave leaves its steady character. At the cut-
off frequency (𝑓

𝑐
), the whole surface is vibrating in phase.

Conversely, with a finite wave number, ZGV modes give rise
to local resonances. So, we focus on this resonance frequency
𝑓
𝑜
to study the vibratory structure of the S

1
Lamb modes in

the FGM plate. In Figure 6, the variation of the stress and the
mechanical displacement are plotted as function of the depth
at the 𝑓

𝑜
frequency.

Using the mechanical displacements 𝑈
1
(𝑥
3
) and 𝑈

3
(𝑥
3
)

plotted in Figure 6(a), we can describe the wave power pene-
tration through the thickness of FGM plate. Because of the
asymmetric properties of the FGM plate, the displacement
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Figure 6: Profiles of displacement (a) and stress (b) in the nonlinear ceramic-chromium FGM plate.

amplitudes do not reveal a symmetric character as obtained
for the homogeneous plate [3, 20]. The amplitudes of 𝑈

1
and

𝑈
3
are comparatively high in the neighborhood of the free

surfaces. The obtained profiles for the longitudinal and the
transverse components, respectively, 𝑈

1
and 𝑈

3
are coherent

with the symmetrical character of the ZGV mode.
Besides we verify on Figure 6(b) that stress components

𝑇
13

and 𝑇
33

vanish on free sides of the FGM plate. This
permits to be ensured about the computation process. The
same plots performed for the linear FGM profile [16], not
included here, show that displacement components are more
sensitive than stress components to 𝑝 coefficient.

5. Conclusion

Using the power series technique, we have analytically solved
the propagation of Lamb waves. As an originating phe-
nomenon, the S

1
-ZGV Lamb mode in a functionally graded

plate is studied. Based on the PST, governing equations for
the problem of Lamb waves that propagate in an FGM plate
are derived. For the kinds of FGM discussed in this paper,
the S
1
-ZGV frequency in an FGM plate is between those for

the two corresponding homogeneous plates. Moreover, the
S
1
-ZGV value depends on metal shear modulus and gradient

coefficient 𝑝.
Hence, in both cases (linear and nonlinear), the metal

shear modulus influences enormously the S
1
-ZGV.

On the other hand, the linear dependence between S
1
-

ZGV frequency 𝑓
𝑜
and cut-off frequency 𝑓

𝑐
is still observed

even for nonlinear profile. The ZGV frequency provides a
local measurement of Poisson’s ratio. At the point corre-
sponding to ZGV frequency, the displacement components
are more sensitive than stress components.
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