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For y > —1/2, the authors have developed elsewhere a scheme for interpolation by Hankel translates of a basis function ® in
certain spaces of continuous functions Y, (n € N) depending on a weight w. The functions ® and w are connected through the
distributional identity t“(h;d))(t) = 1/w(t), where h; denotes the generalized Hankel transform of order u. In this paper, we
use the projection operators associated with an appropriate direct sum decomposition of the Zemanian space 7, in order to
derive explicit representations of the derivatives S;'® and their Hankel transforms, the former ones being valid whenm € Z, is
restricted to a suitable interval for which S;"CD is continuous. Here, SZ' denotes the mth iterate of the Bessel differential operator Sﬂ
if m € N, while Sz is the identity operator. These formulas, which can be regarded as inverses of generalizations of the equation

(h;‘(D)(t) = 1/t*"w(t), will allow us to get some polynomial bounds for such derivatives. Corresponding results are obtained for the

members of the interpolation space Y,,.

1. Introduction

The method of radial basis function interpolation has seen
substantial developments, both theoretical and computa-
tional, and in applications; compare [1-3] and references
therein. A radially symmetric function in Euclidean space
R? can be identified with a function on the positive real
axis. The d-dimensional Fourier transform of a radial func-
tion is also radial and reduces to a 1-dimensional Hankel
transform of order d/2 — 1 [4, Theorem 3.3]. The natural
convolution structure in the positive real axis is not that of
a group but is given by the family of the so-called Bessel-
Kingman hypergroups, depending on a parameter y > —1/2.
The Kingman convolution is defined upon a generalized
translation operator, known as Delsarte translation, and for
p = —1/2 coincides with the standard one. Recently [5, 6],
the authors have benefited from the hypergroup structure in
order to provide a new approach to the problem of radial basis
function interpolation, which extends the usual scheme. Such
an approach yields a greater variety of manageable kernels,
which could be useful in handling mathematical models built

upon classes of radial basis functions depending on the order
p and whose performance is expected to improve by suitably
adjusting y, as it happens, for instance, with the family of
Matérn kernels in [7, Supplement, page 6]. The examples and
numerical experiments included in [5] seem to support this
view.

Our scheme actually considers a variant of the Delsarte
translation, the so-called Hankel translation, in order to
accommodate the usual definition of the Hankel integral
transformation, namely,

(hy<p)<x)=j0 o7, (thdt (xeD), (1)

where I = 10, 0o, fﬂ(z) = zl/zly(z) (z € I) and ], denotes

the Bessel function of the first kind and order y € R.
Aiming to define the Hankel transformation in spaces of

distributions, Zemanian [8] introduced the space 7 u of all



those smooth, complex-valued functions ¢ = ¢(x) (x € I)
such that

_ 2\ (1K —u-1/2
V“”((P)_Qfg)iig? (1+x ) (x D) X go(x)|<oo

(rez,).
)

Here, and in the sequel, D = D, = d/dx and (x"lD)k
is the operator x D iterated k times (k € N) or the
identity operator (k = 0). When topologized by the family of
norms {v,,},cz, » # , becomes a Fréchet space where h, is an
automorphism provided that 4 > —1/2. Then the generalized
Hankel transformation hL, defined by transposition on the

dual Z ,'4 of #,, is an automorphism of # ; when this latter

space is endowed with either its weak™ or its strong topology.

The space O consists of all those smooth, complex-valued
functions 6 on I such that 0y € 7, whenever y € #, and
the linear operator y +— Oy is a continuous mapping of #,

into itself. This @ is also the space of multipliers of # L,

the corresponding multiplication operators being defined by
transposition [9].

Denote by L! ; the class of all those Lebesgue measurable
functions u = u(t) (¢t € I) such that

r lu@®)t*?dt <o (a>0). 3)
0

The following spaces were introduced in [5].

Definition 1. Let w = w(t) > 0 (¢t € I) be a continuous
function, let

—U=1/2 1y 20+l —u—1/2
S, =Sy, =t * 2D DY (4)
be the Bessel differential operator, and let
! ! 1 2
Y,={fex, :hSifel,nl, } (nez), ()

0 . . . n .
where S, is the identity operator, S, (n € N)is the operator S,

iterated n times, and L? w stands for the class of all measurable
functions u = u(t) (t € I) satistying

00 1/2
lluall 0 = <J |u () w (t) t"“/zdt) <co. (6
0
A seminorm (norm if n = 0) is defined on Y, by setting

£l = it

0 1/2
- (L |(m,.S5.) (t)|2w(t)t’“1/2dt> (fev,).
@)

The function w will be called a weight function for Y,.

In [5], for n € N and suitable conditions on the weight w
related to the values of n, the spaces Y,, were shown to consist
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of continuous functions on I. Also, interpolants to f € Y,, of
the form

m n-1
(Uf) (x) = Yo (1, @) (x) + Y B;pj (x) (xeI) (8)
i=1 j=0

were obtained, where {a,,...,a,,} C I is the set of interpo-
lation points; ¢ € # ; is a complex function defined on I
(the so-called basis function), connected with w through the
distributional identity

£ (h, @) () = )

wt)

Puj(x) = X2 (i e 7., 0 < j<n-1)are Miintz mono-
mials; 7, (z € I) denotes the Hankel translation operator of
order ysand o, B; (i,j € Z,, 1 <i<m, 0< j<n-1)are
complex coefficients.

In [5] the regularity results for the basis distribution @ [5,
Theorem 4.4] and the members of Y, [5, Theorems 3.2 and
3.6] were achieved with the aid of the Lagrange interpolation
projector onto the space of Miintz polynomials

ny,n—l = span {pp.,j (t) = t2j+p.+1/2 (t € I) . ] € Z+,
(10)
0<j<n-1}.

In this paper we use, instead, the projectors associated with
a suitable direct sum decomposition #, = #,, ® I, ,(p)
(which will be described in Section 2) to obtain conditions
guaranteeing the regularity of ®, the distributions in Y,
and their S;"—derivatives. In spite of the conditions obtained
being stronger than those in [5], this new approach has the
advantage of providing an explicit representation of these
functions, their SL"—derivatives, and their Hankel transforms,

along with some polynomial bounds. The formulas for S7'®

hold whenm € Z, ranges over a suitable interval and may be
considered as inverses of generalizations of the equation

1
h o)) = —-, 1
( 14 )() t4nw(t) ( )
valid on # ,'4’2”.
The paper is organized as follows. In Section2 we
introduce the direct sum decomposition #, = #,, &

I1,,,(p) along with the projection operators P, onto HH);,( p)
and Q, onto #,,. Section3 is devoted to studying the

properties of their adjoints P and Q.. Our main results are in
Section 5, where a Hankel inversion formula is presented in a
general setting and then specialized to basis distributions and
members of the interpolation space Y,. Section 4 contains
some auxiliary results of a rather technical nature.
Throughout the rest of this paper n € N will be fixed.
The positive real axis will be always denoted by I, while u
will stand for a real number not less than —1/2 and C will
represent a suitable positive constant, depending only on the
opportune subscripts (if any), whose value may vary from
line to line. Furthermore, we will adhere to the notations
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Z, = N U {0} for the set of nonnegative integers and Fu (z) =

1/ 2 Ju (z) (z € I) for the function giving the kernel of the

Hankel transformation h,,. The symbol & (resp., €" 1) will
denote the space of all continuous (resp., of class n — 1)
functions on I (note that € = %®°). For the operational
rules of the Hankel transformation that eventually might be
required, both in the classical and the generalized senses, the
reader is mainly referred to [10].

2. The Operators P, and Q,

In this section, we introduce the direct sum decomposition
H, = X, o I,,(p) along with the projectors P, onto
,,(p) and Q, onto #,,. The main properties of these
projectors are established.

We begin by recalling some definitions and results from
[5] which will be needed in the sequel.

Proposition 2. Assume ¢ € # . Then, for everym € Z, one
has

XM (x) = ZaszZj Ry (%) (x€D),  (12)
=0

where

1 —1/2
ay; = — lim (z7'D) 29 (2)
J 2JJ'Z~>0+ (13)

(jez,, 0<j<m),

and the remainder term satisfies

[R,,,, (x)| < C,x"!

- C1 o \2mek+l
X max sup |z Z(m k)+1(z ID) m—k+ 2 1/2 (Z)|
Osksm zef
(xel)
(14)
for some C,,, > 0.
Definition 3. Let
. 1\ —u-1/2
H = {(p €,: lerr(}Jr(x D) x*p(x)=0
(15)

(jez,, Ostn—l)}.

The space 7, ,,
that of 7.

is endowed with the topology inherited from

In view of Proposition 2, loosely speaking, one can say
that 7', , consists of all those ¢ € 7, such that xH20(x)
has a Maclaurin series expansion starting at X,

Definition 4. For j € Z, the distribution A ; € # ; is defined
by

-u—=1/2

—l)jcy)jxli_)rr&Jr(x*lD)Jx @ (x)

((PE%H)’

(Aje) =(

where ¢, ; = 2T(u+ j + 1).

Theorem 5. The following hold:

(i) Given j € Z_, one has h;Aj =
22 (e ),
(ii) The kernel of the operator S,, in %’L S 70y oy

Pyu,jp where p, ;(t) =

Next we introduce new spaces and mappings.

Definition 6. By 7/,,,, we denote the space of all complex-
valued functions ¢ € " such that the limit

Jim (D)2 )

exists forall j € Z,,0< j<n-1.

Note that the functionals A ; (j € Z,, 0 < j<n-1)are
well defined on 77,

Definition 7. The space # ,,,, , consists of all those p € 7,
such that

Jim x 7 p () = 1,
hn(} (x D)J L 1/zp(x) 0 (jeN,1<j<n-1).
x— 0+
(18)

Givenp € #,,, ., we set

M, (p) = (x 7

Definition 8. Letp € %’ uun,« D€ fixed. The mappings P, : 77, ,
- 7, and Q, Pn : Vyn — 7y, (Lthe 1dent1ty
operator) are, respectlvely, defined by

px)p():ipem, b (19

n—1

(P.g) (x) = p(x) Z <Lj,(p> xH ((p €V X € I),
=0

(Qup) (%)

n-1

=p(x)-p() Y (Lpg)x™ (pe ¥y, x€l),
=0
J (20)

where

_ , ,
i= 2],]_!%Aj (jez,0<j<n-1). (21



The next theorem proves some useful properties of
the operators P, and Q,, and also clarifies the relationship
between %, and 7, . In what follows we will adopt the usual
notation //(P) and Z(P) for the kernel and range of a linear
operator P. Recall that a projector or projection P of a vector
space X is a linear transformation P : X — X which is
idempotent, meaning that P> = P.

Theorem 9. Let P,, Q, be as in Definition 8.

(i) B, and Q, are continuous linear mappings from 7,
into Z .

(ii) P, and Q,, are projections into Z, which satisfy

'/V(Pn):‘%(Qn):%p,n’ ‘%(Pn) :'/V(Qn):Hy,n (P)

(22)
(iil) 7, = %,,, & 1,,,(p).
(iv) Finally,
= hy (%WI) ®h, [HM (P)]
=hy, (%ﬂa”)
n—-1 .
{ o) (1,0 @)
=

(ajeC,jeZ+,Ostn—l)}.

Proof. To prove (i), let ¢ € x, and letr,m € Z,_, with 0 <
m < r. Then

(1 + xz)r(x_lD)mx_"_l/2 (P,9) (x)

n—1
= (1 + xz)r(xle)m x7#71/2P (x) Z <Lj,go> xzj]

,u 1/2 2]p (X)

=3 (1) (Y (D)

(xel).
(24)

Since p € ', and all even polynomials lie in O [10, Lemma
5.3-1], we may write

sup (1 + 9c2)r(3c71D)mx7"71/2 (P,p) (x)‘

x€l

< Zsup

j= —0 z€I

x[(Lj9)|

(1+z ) (z_lD)mz_“_l/zzsz (z)' (25)

(pe%
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Now it suffices to take into account that L; € # :4 (jez,
0<j<n-1).
Next, let ¢ € # . A simple manipulation yields

n—-1
(Prg) ) =p(x) 3 (Lj> Pugp) x”
=0

n—1n-1 - iy (26)
=p(0) ) Y (L2 p (@) (Lig)
=0 k=0
(xel).
Sincep € ;.. for jyk € Z,,0 < j, k <n—1, we have
<sz,z p(z)> = — lim (zle) L 1/2z2kp (2)

21]'z—>0+

lj AT _ i
- 572 (/) Jm [P

x lim [(z_lD)j_iz_”_l/zp (z)]

z— 0+
. j (27)
= — lim (ZilD) ZZk
211! z—0+
R e
27 j1. 2k (k — j)lz—0+
[ k=g
~ o, k#j.
Plugging (27) into (26),
n-1 )
(Blo) @) =p() ) (Lyg)x = (Bop) (x) (xel).
=0
(28)

Therefore, P, is a projection, and hence so is Q,,.

Let us show that P, : #, — I,,(p) is onto. If p(x) =
x P2 p(x)p(x) € I,,.(p), with p € m,, ,, thengp € 7,
and, using (27), it is easily seen that P,¢ = ¢.

In view of Definition 8, it is apparent that ¢ € #,,
implies P, = 0, so that 7', ,, C /¥ (P,). To prove the reverse
inclusion, take ¢ € #/(P,). Then

n—1 .
p(x)Z(Lj,q)>x2]=O (xel). (29)
=0

Asp € #,,, . we have lim, _, o, x *?p(x) = 1, and hence
there exists & > 0 such that x""_l/zp(x) >0(0 < x <9).

Consequently,

n—1
px) Y (Liypyx’ =0 (0<x<0) (30)
j=0
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forces
(Lpp)y=0 (jez,0<j<n-1). 31

From (21) we conclude that ¢ € 7 o
Since Q,, = I - P, we also have

‘/V(Qn):g?(Pn):Hy,n(p)’ '%(Qn):‘/V(Pn):%y,n

(32)

With the map P, being a projection of #',, we may write
Hy=N(B)®R(R) =X yn®T,,(p).  (33)
From the fact that h,, is an automorphism of 7', we infer

Z = () = 0 (% ) @by [T, ()] (34)

n—1 2j+pu+1/2
Let p € m,, 1, plx) = Yy ajx/™ 2 (x el a; € C,

j € 7,0 < j<mn-1)and consider x ¥ p(x)p(x) €
I1,,,(p). Then
n-1 .
xiM*l/zp(X)p(x) _ ZanZJP(x), (35)
=0
so that

h, [x_”_l/zp (x) p(x)] =

n-1 .
Ya(-5.) (he).  6)
j=0

We thus conclude

b [0 )] - {za< ) (o)

(a;eC, jez, 0stn—1)}.
(37)

This completes the proof. O

3. The Distribution Adjoints of P, and Q,,

This section is devoted to studying the definition and proper-
ties of the distribution adjoints of P, and Q,,. A new space of
functions must be introduced first.

Definition 10. Set

n—1 . -1 J
Ky = {q)é% :lerr(}+(x D)(p(x):O
(38)
(jeZ+,0§j§n—1)}.

Definition 11. The adjoints P),Q., : %L — %’; of P,,Q,
#, — I, are defined by transposition:

(P, @) = (u, o)

<Q;u,(p> = (u,Q, ) (u € Z,’;, pe€ %#)

(weor,, pe,),
(39)

Theorem 12. The operators P, and Q| have the following
properties:

(i) P, and Q., are projections and P.+Q|, =1, the identity
!
onF,
(ii) Ifu € #,,, then
n-1

Pu=Yb WL (40)
j=0

where bj(u) = (ux,xsz(x)) (jeZ,,0<j<n-1).

(iii) %(Pé) = /V(Q;) = h;(nﬂ,n_l) = span{Aj 1] o€
Z,,0<j<n-1}

(iv) V(B) = R(Q,) = {u € X, : (u, xp(x)) = 0(j €
Z,,0<j<n-1}=IL_(p).

(v) 7/; = H;n(p)e}span{Aj 1jeZ,,0<j<n-1}
(vi) yu = w(Q;u) whenever u € %; andy € ON ,%W,

Proof. Part (i) is a direct consequence of P, and Q, being
projections of #,, with P, + Q, =Ton 7 ;:

(R +Q)we)=(w(P,+Q,)¢)

= (u,Ip) = <I'u, (p>

To establish (ii), let u € # ['4 Then

(41)
(90 € %H)'

n—-1 .
(Pg) = (u, Pp) = <ux>P(x) Y (L) >
=

- Z (L) (o xp () = Zb @) (L)
= <2bj (“)LJ’(P> (pez,),

(42)

where b;(u) = (up, x7p(x)) (j€Z,,0<j<n-1).

Since, distributionally, (hLA Dx) = 22 for all je
Z,,0 < j<n-1(Theorem 5), from (ii) and (21) it follows
that

R (P,) < by (7yr) - (43)
Next we prove
(7 ) € (Q). (44)

Take u € h;l(rr%n_l), so that

n-1
U=y a;
=0

(a;€C, jez, 0<jsn-1), (45



andlet ¢ € # . Then Q,¢ € #,,, (Theorem 9) implies

n—1
(Qup) = (4,Q.9) = Ya; (A, Q) =0.  (46)
j=0

As *%(Pr’;) = /V(Q;), by virtue of (43) and (44) we may

write
! ! !
R (P") =N (Qn) = hu (ny,n—l) . (47)
On the other hand, given u € # ; we have Plu = 0 if, and

only if, hL(Pr'lu) = 0, or, from (ii) and (21),

n—-1 n-1 (—l)jb. (1)
b; (u) WL, = +h' :
jZ:(:) J w-J ]ZO ZJ]!CM,], uJ

= I)Jb ()

=) e

=0

(48)

2j+y+1/2 -0

This happens if, and only if, (ux,xsz(x)) = bj(u) =0(je
Z,, 0 < j<n-1). Therefore,

R(Q:,) = /V(P,'l) = {u € %L : <ux,x2jp(x)> =0

(jez,o0<jsn-1)}. )
From the identity P! = I' - Q) we arrive at
7= ¥ (B) a2 (7)
= fuea,: (u,x"p(x)) =0 (50)

(jez,0<j<n-1)}oh, (m,..).

To complete the proof, let ¢ € #, andy € O N F .
The Leibniz rule ensures that yg € #,,, = #(Q,), so that

vo = Q,(y¢) (Theorem 9). Thus, for any u € %L we may
write

(yu, ¢) = (u,yg) = (u,Q, (y9))
= {(Quye) = (v(Qu),9).

The arbitrariness of ¢ € 7, leads us to conclude that yu =
I//(Q;u) as distributions over % - O

4. Auxiliary Results

Here we prove two auxiliary lemmas.

Lemma13. Fory € 7, there holds

B (h9) 0= [ g (7,60) W dx e,
Q, (hﬂw) (t) = LOO Q¢ (j P (xf)) By (x)dx (tel).
(52)
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Proof. Lety € #, and fix x € I. According to Definition 8,
we have

n-1
P (F, ) =p®) Y (L F, (x)  (tel),
j=0

(53)
where
(Lje S (x0) = 2}, < 6 T (59)
_ ZJ_J'EL m (87D () ], (+8)
G (€D 0,00

( 1)] 2j+u+1/2

Jim ()7, ()

21j!
(_1)jx2]'+l/l+l/2
B 21'j!cw
(54)
Hence,
n-1 i 2j+u+1/2
—1) x2itu )
Pus (7,00) 0= p0 3, T (e,

j=0 =)

(55)

Now,

n—-1
P (1) ©=p 0 (L)
j=0

()22(1 ,1) (A jhy)

()sz,

nl_1yigi

=p(t A ” x) X2 gy
PO Y S |, veo

]2]+[4+1/2 j
- [ <)Z( ” ]w(x)dx

= L P (jy (xf)) Oy (x)dx (tel).
(56)

<h,4 )t

Consequently
Q, (hy) () = (hy) (8) = P, (h,w) (6)

- | ey ax
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[ Re (7. 69) O dx

- j:o (7, () - Py (7,

- | (7 ) v wdr e,
(57)

(x8) ()] v (x) dx

as asserted. O

Remark 14. Since p € ¥, and all even polynomials lie in O,
from (55) it follows that

P (7, (xt) e, c, (58)

for each x € I. On the other hand, it is apparent that 7 ,(x-) €

%L for each x € I. Therefore, Qn,f(jﬂ(xf)) € %L for each
x € 1.

We close this section with some useful estimates.

Lemma 15. Suppose that the function p used to define the
projection operator Q,, (cf. Definition 8) also satisfies 0 <
tf"*l/zp(t) <1 (¢t € I) andsupp p C [0, 1]. Then:

(i) for all x,t € 1, one has

(71 D.) "5 [Que (£, (x0)) 0]

< C(l + xz)”t2m+p.+l/2’

157 [Que (7, 8) )] 9)
<C /2 1 o \Nt+m mtz(m+i)+p.+l/2)
X1+ x%) ;
(ii) for x € I and 0 < t < a, one has
(D) " [Que (7, 9) 0]
(60)
< C(l + x2)”t2n+y+l/2)
St [Que (7 ) ]| = G H2(1 4 7).
(61)

Proof. Fix x,t € I. Equation (55) gives

Que (£, (x6) (1) = 7, (xt) = P (7, (x) (8)

JA2jtut1/2
) 2]

= 7, (xt) - (t)z( S

(62)

so that
(x7'D0) "% [Que (7, () )]

(xile)mxf"*l/sz (xt)

n-m-1 (_1)m+k 2k

X 2(m+k)
=4 —pt L
p( ) }; zkk!C‘u,m_'_k " "
(xile)mxf”fl/sz (xt), m=n.
Ifm>n,
(x7'D,) " [Que (7, (x) ()]
= ()" ey (),
whence

(63)

(64)

(D) " [Que (7, (68) ]| < 742

Ifm<n,
(x D) "x2 [Que (7, (xB) ()]
= (1) ey E L ()
n-m-1 k 2k
- ()" (1) kzo zkk',,wk ,
whence

(7' D,) " [Que (7, (x8) 0]

n-m-1 x2k
< C—l + Z t2m+y+1/2
wm 2kklc
;m+k

k
ot (14 22)
-1 2m+p+1/2
= |:C"’m+ Z 2kk!c !

—m-1
< C(l +x2)" m t2m+y+1/2.

Here we have used our hypotheses on p. To summarize,

(7' D,) " [Que (7, 68) )]

—m-1
C(l +x2)n T2y
mn.

Ct2m+y+1/2,
Thus we find
(71 D.) "5 [Que (£, () 0]

< C(l i xz)”t2m+y+1/2.

Assume now 0 < t < a. When m > n, (65) yields
(D) [Que (£, ) 0]

2m+p+1/2
< C—l a2m+;4+l/2 t “
- wm g2mtu+1/2

< C—l az(m—n) t2n+y+1/2

_ 2n+u+1/2
o =Ct .

(65)

(66)

(67)

(68)

(69)

(70)



If m < n, (66) can be written as

(x_le)mx_M_l/2 [Qn,g (fﬂ (xf)) (t)]

= ( (1= 772 p ()] ot o () + 67720 (1)

n—-m-—1 k 2k
m (=1)"(xt)
wawﬂzmrﬁ>

+m,k

x (_l)mt2m+[4+l/2

= ( [1- 647 2p ()] ()7 o (1)

2k
ot - 1/2 (t) Z (Zklk)' (Xt) >(_1)mt2m+‘u+l/2.

k=n-m .‘”mk

(71)

Since p € #,, . from Proposition 2 it follows that

(7' D,) "5 [Que (7, 8) )]
<C ([1 FH 1/2p (t)] t—u—l/Zp (t) (xt)Z(n—m)) t2m+[4+1/2

-u-1/2 _ mp-1/2
C t [1 t p(t)]t2m+‘u+l/2

tZVl
+t—y—1/2p (t) xZ(n m >t2n+y+l/2

1—t# 125t e
cc| o]

% (1 + xZ)”_thnerJrl/Z

< C(l + x2)”_mt2n+/4+1/2.

(72)
To summarize,
(71 D) " * [Que (7, ) 1]
< {C(l + xz)”‘mtznﬂm/z, me<n (73)
= Ct2n+;4+1/2’ m>n.
In any case, we get
(71 D) T [Que (7, ) 0]
(74)

< C(l + xZ)"t2n+y+l/2‘

To complete the proof we note that if ¢ € €>”, then

x 12 (S:'(/)) (x) = iam,xZi(x_lD)m

i=0

TG (x) (75)
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for suitable coefficients a,,; (i € Z,, 0 <i < m). Hence
S [Que (7 ) )]

m
<C 2i 1+ 2 ”tz(m+i)+;4+1/2
21+ 5)

(76)
< C(l n XZ)”eritZ(mH)ﬂH—l/Z
i=0
for any t € I, while
x2S [Que (S (x0) ]|
< CZXZJ( ) 2n+,u+1/2 (77)
< C(l n x2)”+mt2n+;4+l/2
if0 <t <aforsomea € I. O

5. Main Results

Throughout this section we will assume that the function p
used in Definition 8 satisfies 0 < xiﬂ*l/zp(x) <1 (xel)and
supp p C [0, 1], so that Lemma 15 applies.

First we prove a regularity result, along with a Hankel
inversion formula and a polynomial estimate, in a general
setting.

Theorem 16. Let f € %’; be such that the distribution h;f is
regular on .. Then, forallm € Z,

W) = [N © ) Q@

(78)
+(m(Sip) ) (vem,),
where
”1(1)Jh (x),x*p (x)
p(®) = Z <( ;J)Jx X plx > IR ey
0
" (79)

Further, if there exists r € Z, and a function G integrable on I
for which

|(7,1) (O Syt [Que (7, (x8) ]|
(80)

<C(1+x*)G) (xtel),

where C is independent of t, then S;” f € G, with
(= [N oS la )0l

+(SIp)(x) (xeD),
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and the estimate
(s f) @] <c1+27) +|(Syp) )| (xeD (82)
holds.

Proof. Fixm € Z, andlety € ,. We have
(W, (S2f)w) = ((-8)" (h.1) © .y ®)
= ((hA)®.(-8)"v©®)
= () ®.(-&)" Q) ®)
(1) ©,(-8)" (B) ®) -

On the one hand, from our hypotheses on f and since Q,y €
# . ,» We may write

(W) ®.(-8)" Q) ©)

0 m (84)
- | )" Qw @
On the other hand,
ALAGAPINS
£ (_l)j <(h, f) (x) ’xsz (x)> 2j+u+1/2
:j;) szjlcﬂ)j E] u+1/2 _ P(f) (85)
&el),
or
B, (,f) = hp. (86)
Thus,
() ®.(-8)" (Bw) ®)
={(m.f)®.p[(-)"y 0] ) o
87
=((-&)"P(nf) ©.y ©®)

={(-8)" (h.p) ©.y ®) = (I, (S'p) . ¥)-

A combination of (83), (84), and (87) gives (78).
Note that (80) and the fact that (th)SP":x [Qn)g(j#(xf))] €

@ as a function of x € I ensure that
LOO (hf) Sy, [Que (£, (xB) (1)] dt - (88)

also belongs to € as a function of x € I (cf. [11, Proposition
7.8.3]). Furthermore, (80) entails

J:O (K f) 1) S22, [Que (7, 8) ()] | dt
(89)

SC(1+x2)r (xel).

Now we have
(Sufow) = (Bt (Siw))

= (1 fQu [ (S7w)]) + (it B [y (SZW)(]9>05

Lemma 13 allows us to write

(hof Qu [ (S1)])

- Jooo (1. f) Q[ (Sy'w)] (1) dt

- JOOO (hf)@)dt LOO Que (7. (x9) ) (Si'y) (x) dx.
1)
In view of Remark 14,
JOOO Qe (jﬂ (xf)) (1) (STW) (x)dx
= (Que (7, (x6) (0, (S1'y) ()
(92)

= (S [Que (7, 60) )] ()

- [ sl (7, 60) 0] y @ dx
Hence
(rfs Qu [ (Siw)])
0

Lm (m.f) @ at j S [Que (7, 68) ()] w (%) dx

[ v [ (1) 052 [Que (7, (x0) 0]

) <LOO (7 f) O 8 [Que (7 (x®) 0] ity (x)> ,
(93)

the change in the order of integration being justified by (89).
Lastly, from (86),

(o2, [, (S3w)]) = (i [P ()] Siw)
= (p.Siv) = (Sipy)-
Equations (90), (93), and (94) lead us to (81), while the

estimate (82) follows immediately from (89) and (81). The
proof is thus complete. O

At this point, let us formalize the definition of a basis
distribution.

Definition 17. We call ® ¢ %’L a basis distribution if
t4"(h}'4®)(t) = 1/w(¢) for some weight w (cf. Definition 1)
such that 1/w € LLJ and there exists y € R with 1/w(t) =
O(t")ast — oo.
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The existence of basis distributions is guaranteed by the
next Lemma 18, which also proves that a basis distribution is
unique modulo a polynomial in 77, ,,,_;. Although Lemma 18
is substantially Lemma 3.3 in [5], its proof illustrates the ideas
behind our main results below, and we include it for the sake
of completeness.

Lemma 18. Assume F € LLJ and there exists y € R such that

F(x) =0O(x")asx — oo.Letr € Z,.On x,, we define the
linear functional F, by

(F.y) = j = “}w@ﬁ# (vez.). (5

Then
(i) F, € %;

(ii) Any extension F; € %L of F, to Z , satisfies
(-O)YFE®.00)) =(Fg) (pez,). (%)
(iii) If F;,

((-°)E,

€ ?/; is an extension of F,, € %'

war fO 7/#, then

0,y @®) =(F.v) (ve,). (97

(iv) Ij; Fr1 and IF,Z are two extensions of F, to Z, then
h,(F}) = h(F}) € 7, .

Proof. Note that (ii) gives hLS;(hLFf)(t) = (—tz)rFf(t) = F(t).
Therefore, part (iv) is a consequence of Theorem 5.

Let a,C > 0 be such that F(x) < Cx"? (x > a). To prove
(i), take y € #, , and write

R

JOO F@® y(t)dt.  (98)
EDA

a (—tz)r

Using Proposition 2 and the hypothesis that F € L' , for the

first integral we obtain

wl

“ B (f)
J; —y”

oy ()

g
0 t2r

|F (t)| t*" 1% dt

< [sup (z D) ZH2 (z)'
zel
_ _ 2r—k+1 _,,_
+max sup |22 k)“(z 1D) T w2y, (z)| ] )
0<k<r zeg

(99)
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As to the second integral, we get

[ Gy

Je—pi—
- 00|t MI/ZW(t)|d
O Eargmen

(t)dt

(100)
—p— 1/2 dt
<C SZI;II) 'Z 14 (Z)| J; th+2r+y—p-1/2
= Csup 'zk w2y, (z)|,

zel

provided k € Z_ is chosen so that k > -2r —y + u +
3/2. A combination of (98), (99), and (100) along with the
arbitrariness of y € #', , completes the proof of (i).
Now we establish (ii). First of all, we note that specializing
= 0 in (i) we obtain F € ,7/; Next, let F, € %L be an
extension of F, to Z”ﬂ, and let ¢ € %#. Since (—tz)rq)(t) €
# > we may write

(-£)F®,0®)

) F (1)
=(E 0. () 90) = L ﬂ)( Vewadt o

:JO F(t) g (t)dt = (F¢).

The arbitrariness of ¢ € 7, gives (ii).

Finally, we prove (iii). Define F,, € # ;4 5, by (95), and let

E € %L be an extension of F,, to #,. Then

((-°)E,

= (B, 0),(-)y®) = L th)( C)y©dt g
ﬂjigwmw=@w>

whenever y € #, .. Thus we are done. O

®),y ()

When applied to a basis distribution @, Theorem 16 yields
our second main result.

Theorem 19. Pick a weight function w with the properties that
1w e L ] and 1/w(t) = Ot ") ast — oo for somey € R.
Let® € % satisfy £ (b, ®)(t) = 1/w(t), so that b, ® € F,,,
and

<h @, > JO t4nw (f) dt (q) € %y,Zn) (103)
(Lemma 18). Then, for allm € Z one has
£ (Quy) ()
W (S"® =(-1 d
(I, (7)) = (1" J oG £ o

+(n(Sip) ) (ve),
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where
221 (=1)7 (W @) (x), x¥p (x)) .
o) = ;0 (( ”21'3'!6[4)]- >EZJ+H“/2 (Eel.
(105)
Further, if
4m<4n+y—/4—§> (106)
then S;"d) €,
00 8" [Que (£, (x8)) 1]
m _ Ux 8 [
(Sy@) () = JO 0 dt (107)

+(Sip) () (xeD),
and the inequality

(spo) @] <c(1+x7) +|(Sp) ()] (xeD (108)

holds for somer € Z,.

Proof. In order to derive this result from Theorem 16 it
suffices to establish, under (106), an estimate like (80), with
® instead of f.

LetC > 0, a > 1 be such that 1/w(t) < Ct™ (t > a), with
y € R. Use Lemma 15 to choose r € Z, satistying

|S:Z" [Q2”>5 (jy (xf)) (t)” < C(l + xz)rt4"+ﬂ+1/2

(xel,0<t<a),

(109)

|S;Zx [an,f (;H (XE)) (t)” < C(l " xz)rztz(m+i)+u+1/z

i=0

(xel, t>a).
(110)

Note that
(m®) (187, [Qung (£, (x0)) (1]

S [Qung (£, (x8)) 0]
e (111)

=" (h,®) (1)

81 [Qung (0 (x0) ()]
_ K . I
= e () (x,teI).

Now

81 [Qune (7, (x0) ()]
t4nw (t)

, t4n+y+1/2 (112)

<C(1+x*
( X t4”w(t)

rtpt+1/2

w(t)

=C(1+x2) (x el

1
if 0 < t < a, while
Si [Qung (£, (x8)) 0]
tw (t)
m t2(m+i)+;4+1/2 (113)
<c(1+4) Y —
( ) ; t4nw (t)
< C(l + x2)7t4m—4n—y+y+1/2 (x c I)
if t > a. Set
ty+1/2
— > O<t<a
G@t)=qw(®) (114)
t4m—4n—y+y+1/2 t>a

This function is integrable on I aslong as 1 /w € LLJ and (106)

holds. The required estimate is established by combining (111),
(112), and (113). O

Remark 20. In [5, Theorem 4.4], under the same hypotheses
on the weight w as in Theorem 19, we proved that any
basis distribution @ has the property that S;"(D € €
whenever m € Z, satisfies 2m < 4n+y — u — 3/2,a
condition in fact weaker than (106). However, interestingly
enough, Theorem 19 provides us with explicit expressions and
polynomial bounds for the Bessel derivatives S;'® whenever

m € Z, satisfies (106).

Next we apply Theorem 16 to the distributions in Y, in
order to obtain Theorem 21, our last main result.

Theorem 21. Assume 1/w € LL’, and there exists y € R
such that 1/w(t) = Ot™Y) ast — oo. Let f € Y, so that
(—tz)”(h’Zf)(t) € LLJ. Then h[gf € %;m’ and forallm € Z,
one has

W(sz)wd = | ) ©(-8)" @ @
0 (115)
+(h, (Sip).v) (vex,),

where

nl (=1 ((h, f) (x), x"7p (x))

12
P@ = - g g en.
]; 2J]!cw-
(116)
Further, if
3
8m<4n+y—[/t—£, 117)

then S f € €, with
(521 @ = [ 040) 057 [Que (7, 69) 0] de

+(Si'p) () (xeD),
(118)
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and the estimate
(S7f) @) sc(1+°) +|(Srp) )| (xeDn (u9)
holds for somer € Z,.

Proof. Since h;(SZ f)e Li’w, we have

0 2\ (11 2 +1/2 12
171, = (L (&) (hf) @ wr g d&) <o,
(120)
Choose C > 0, a > 1 such that 1/w(t) < Ct™Y (t > a), with

y € R. For any v € #,,, the Cauchy-Schwarz inequality
gives

iy

[N CHICIGIE:

<11l FEZMﬁWWEM
S Erw(©)

- 172 121)
PP @O (
<|fl, <L Wf" dé

+ JOO |£_”_1/2W(£)|2§/4+1/2d£ :
a  Ew()

Using Proposition 2, for the first bounding integral we obtain

o 2
J'u '5 w 1/21l/ (£)| EMH/ZdE
o &mw(d)
<C [sup (zle)nzf’H/zw (z)'
zel
+max sup zz("_k)”(z_lD)Zn_kHz_”_l/zy/ (z)| 2
0<k<n zeg ’
(122)
As to the second one,
o 2
J-OO .E u l/zw (€)| €‘u+1/2d5
a f4nw ©)
(123)

k—u-1/2 2(* 48
Scszlg)lz W(Z)| L €2k+4n+y—[4—1/2

=C suplzkf’kl/zll/ (Z)|2,

zel

provided k € Z, is chosen so that 2k > —4n —y + pu + 3/2.
This proves that h; fe /IM' Now (115) follows from (78).

To complete the proof it suffices to establish, under (117),
an estimate like (80) and apply Theorem 16.
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With this purpose, fix x € I. As above, factorize

(h,f) O Sy [Que (Fu (x)) O] = FOR®)  (te),
(124)

where
E(t) = (-)" (K.f) ) w'? () (PPt e ),

(125)

S:Zx [Qn,t (jy (xt)) (t)] t_(‘u+1/2)/2 (tel.

R(t) = (_tz)nwl/z (t)

Because of (120), F is square-integrable on I. On the other
hand, Lemma 15 and the argument in the proof of Theorem 19
show that

Spox [Qn,t (ju (Xt)) (t)] ~1/2))2

R(@)| = |-~
IR ()] £2nyl/2 (t) (126)
<C(1+x*)H(®) (tel)
for some r € Z,, where
ty+1/2
_, 0<t<a
H®H=1w® (127)
t8m—4n—y+/4+1/2 t>a

is integrable on I, as far as 1/w € LLJ and (117) holds. Letting
G(t) = |F@®)|H(t) (t € I), from (124) we find that G is
integrable and

(1. £) @ 1 [Que (7, 1) )]

. (128)
<C(1+4*)G(t) (tel.

This ends the proof. O

Remark 22. In [5, Theorem 3.2], under the same hypotheses
on the weight w as in Theorem 21, we proved that every
f € Y, has the property that S f € & wheneverm € Z,
satisfies 4m < 4n + y — u — 3/2. Although this condition
is actually weaker than (117), Theorem 21 provides us with
explicit expressions and polynomial bounds for those S,-
derivatives.
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