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The authors find the greatest value 𝜆 and the least value 𝜇, such that the double inequality𝐶(𝜆𝑎+(1−𝜆𝑏), 𝜆𝑏+(1−𝜆)𝑎) < 𝛼𝐴(𝑎, 𝑏)+
(1−𝛼)𝑇(𝑎, 𝑏) < 𝐶(𝜇𝑎+(1−𝜇)𝑏, 𝜇𝑏+(1−𝜇)𝑎) holds for all 𝛼 ∈ (0, 1) and 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏, where𝐶(𝑎, 𝑏) = 2(𝑎2+𝑎𝑏+𝑏2)/3(𝑎+𝑏),
𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2, and 𝑇(𝑎, 𝑏) = (2/𝜋) ∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃𝑑𝜃 denote, respectively, the centroidal, arithmetic, and Toader
means of the two positive numbers 𝑎 and 𝑏.

1. Introduction

In [1], Toader introduced a mean

𝑇 (𝑎, 𝑏) =
2

𝜋
∫

𝜋/2

0

√𝑎2cos2𝜃 + 𝑏2sin2𝜃𝑑𝜃

=

{{{{{{{{{{

{{{{{{{{{{

{

2𝑎E
√1 − (𝑏/𝑎)

2

𝜋
, 𝑎 > 𝑏,

2𝑏E
√1 − (𝑎/𝑏)

2

𝜋
, 𝑎 < 𝑏,

𝑎, 𝑎 = 𝑏,

(1)

where

E = E (𝑟) = ∫

𝜋/2

0

(1 − 𝑟
2sin2𝜃)

1/2

𝑑𝜃, (2)

for 𝑟 ∈ [0, 1] is the complete elliptic integral of the second
kind.

In recent years, there have been plenty of literature, such
as [2–6], dedicated to the Toader mean.

For 𝑝 ∈ R and 𝑎, 𝑏 > 0, the centroidal mean 𝐶(𝑎, 𝑏) and
𝑝th power mean𝑀

𝑝
(𝑎, 𝑏) are, respectively, defined by

𝐶 (𝑎, 𝑏) =
2 (𝑎
2
+ 𝑎𝑏 + 𝑏

2
)

3 (𝑎 + 𝑏)
,

𝑀
𝑝
(𝑎, 𝑏) =

{{{

{{{

{

(
𝑎
𝑝
+ 𝑎
𝑝

2
)

1/𝑝

, 𝑝 ̸= 0,

√𝑎𝑏, 𝑝 = 0.

(3)

In [7], Vuorinen conjectured that

𝑀
3/2

(𝑎, 𝑏) < 𝑇 (𝑎, 𝑏) , (4)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏. This conjecture was verified by Qiu
and Shen [8] and by Barnard et al. [9], respectively.

In [10], Alzer and Qiu presented a best possible upper
power mean bound for the Toader mean as follows:

𝑇 (𝑎, 𝑏) < 𝑀log 2/ log(𝜋/2) (𝑎, 𝑏) , (5)

for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏.
Chu et al. [5] proved that the double inequality

𝐶 (𝛼𝑎 + (1 − 𝛼) 𝑏, 𝛼𝑏 + (1 − 𝛼) 𝑎)

< 𝑇 (𝑎, 𝑏)

< 𝐶 (𝛽𝑎 + (1 − 𝛽) 𝑏, 𝛽𝑏 + (1 − 𝛽) 𝑎)

(6)
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holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ 3/4 and
𝛽 ≥ 1/2 + √4𝜋 − 𝜋2/(2𝜋).

Very recently, Hua and Qi [11] proved that the double
inequality

𝛼𝐶 (𝑎, 𝑏) + (1 − 𝛼)𝐴 (𝑎, 𝑏)

< 𝑇 (𝑎, 𝑏)

< 𝛽𝐶 (𝑎, 𝑏) + (1 − 𝛽)𝐴 (𝑎, 𝑏)

(7)

is valid for all 𝑎, 𝑏 > 0with 𝑎 ̸= 𝑏 if and only if 𝛼 ≤ 3/4 and 𝛽 ≥
(12/𝜋) − 3. Where 𝐴(𝑎, 𝑏) = (𝑎 + 𝑏)/2 denote the arithmetic
mean.

For positive numbers 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏, let

𝐽 (𝑥) = 𝐶 (𝑥𝑎 + (1 − 𝑥) 𝑏, 𝑥𝑏 + (1 − 𝑥) 𝑎) (8)

be on [1/2, 1]. It is not difficult to directly verify that 𝐽(𝑥) is
continuous and strictly increasing on [1/2, 1].

Themain purpose of the paper is to find the greatest value
𝜆 and the least value 𝜇, such that the double inequality𝐶(𝜆𝑎+
(1 − 𝜆𝑏), 𝜆𝑏 + (1 − 𝜆)𝑎) < 𝛼𝐴(𝑎, 𝑏) + (1 − 𝛼)𝑇(𝑎, 𝑏) < 𝐶(𝜇𝑎 +

(1 − 𝜇)𝑏, 𝜇𝑏 + (1 − 𝜇)𝑎) holds for all 𝛼 ∈ (0, 1) and 𝑎, 𝑏 > 0

with 𝑎 ̸= 𝑏. As applications, we also present new bounds for
the complete elliptic integral of the second kind.

2. Preliminaries and Lemmas

In order to establish ourmain result, we need several formulas
and Lemmas below.

For 0 < 𝑟 < 1 and 𝑟

= √1 − 𝑟2, Legendre’s complete

elliptic integrals of the first and second kinds are defined in
[12, 13] by

K = K (𝑟) = ∫

𝜋/2

0

(1 − 𝑟
2sin2𝜃)

−1/2

𝑑𝜃,

K

= K

(𝑟) = K (𝑟


) ,

K (0) =
𝜋

2
, K (1) = ∞,

E = E (𝑟) = ∫

𝜋/2

0

(1 − 𝑟
2sin2𝜃)

1/2

𝑑𝜃,

E

= E

(𝑟) = E (𝑟


) ,

E (0) =
𝜋

2
, E (1) = 1,

(9)

respectively.
For 0 < 𝑟 < 1, the formulas

𝑑K

𝑑𝑟
=
E − 𝑟
2K

𝑟𝑟
2

,
𝑑E

𝑑𝑟
=
E −K

𝑟
,

𝑑 (E − 𝑟
2K)

𝑑𝑟
= 𝑟K,

𝑑 (K −E)

𝑑𝑟
=
𝑟E

𝑟
2
,

E(
2√𝑟

1 + 𝑟
) =

2E − 𝑟
2K

1 + 𝑟

(10)

were presented in [14, Appendix E, pages 474-475].

Lemma 1 (see [14,Theorem 3.21(1), 3.43 exercises 13(a)]). The
function (E − 𝑟

2K)/𝑟
2 is strictly increasing from (0, 1) to

(𝜋/4, 1), and the function 2E − 𝑟
2K is increasing from (0, 1)

to (𝜋/2, 2).

Lemma 2. Let 𝑢, 𝛼 ∈ (0, 1) and

𝑓
𝑢,𝛼

(𝑟) =
1

3
𝑢𝑟
2

− (1 − 𝛼) (
2

𝜋
(2E (𝑟) − (1 − 𝑟

2
)K (𝑟)) − 1) .

(11)

Then,𝑓
𝑢,𝛼

> 0, for all 𝑟 ∈ (0, 1) if and only if 𝑢 ≥ 3(1−𝛼)(4/𝜋−
1), and 𝑓

𝑢,𝛼
< 0, for all 𝑟 ∈ (0, 1) if and only if 𝑢 ≤ 3(1 − 𝛼)/4.

Proof. From (11), one has

𝑓
𝑢,𝛼

(0
+
) = 0, (12)

𝑓
𝑢,𝛼

(1
−
) =

1

3
𝑢 − (1 − 𝛼) (

4

𝜋
− 1) , (13)

𝑓


𝑢,𝛼
(𝑟) =

2

3
𝑟 [𝑢 − 3 (1 − 𝛼) 𝑔 (𝑟)] , (14)

where 𝑔(𝑟) = (1/𝜋)((E − 𝑟
2K)/𝑟

2
).

We divide the proof into four cases.

Case 1 (𝑢 ≥ 3(1−𝛼)/𝜋). From (14) and Lemma 1 together with
the monotonicity of 𝑔(𝑟), we clearly see that 𝑓

𝑢,𝛼
(𝑟) is strictly

increasing on (0, 1). Therefore, 𝑓
𝑢,𝛼
(𝑟) > 0, for all 𝑟 ∈ (0, 1).

Case 2 (𝑢 ≤ 3(1 − 𝛼)/4). From (14) and Lemma 1 together
with themonotonicity of𝑔(𝑟), we obtain that𝑓

𝑢,𝛼
(𝑟) is strictly

decreasing on (0, 1). Therefore, 𝑓
𝑢,𝛼
(𝑟) < 0, for all 𝑟 ∈ (0, 1).

Case 3 (3(1 − 𝛼)/4 < 𝑢 ≤ 3(1 − 𝛼)(4/𝜋 − 1)). From (13) and
(14) together with the monotonicity of 𝑔(𝑟), we see that there
exists 𝜆 ∈ (0, 1), such that𝑓

𝑢,𝛼
(𝑟) is strictly increasing in (0, 𝜆]

and strictly decreasing in [𝜆, 1) and

𝑓
𝑢,𝛼

(1
−
) ≤ 0. (15)

Therefore, making use of (12) and inequality (15) together
with the piecewise monotonicity of 𝑓

𝑢,𝛼
(𝑟) leads to the

conclusion that there exists 0 < 𝜆 < 𝜂 < 1, such that
𝑓
𝑢,𝛼
(𝑟) > 0 for 𝑟 ∈ (0, 𝜂) and 𝑓

𝑢,𝛼
(𝑟) < 0 for 𝑟 ∈ (𝜂, 1).

Case 4 (3(1 − 𝛼)(4/𝜋 − 1) ≤ 𝑢 < 3(1 − 𝛼)/𝜋). Equation (13)
leads to

𝑓
𝑢,𝛼

(1
−
) ≥ 0. (16)

From (13) and (14) togetherwith themonotonicity of𝑔(𝑟),
we clearly see that there exists 𝜆 ∈ (0, 1), such that 𝑓

𝑢,𝛼
(𝑟) is

strictly increasing in (0, 𝜆] and strictly decreasing in [𝜆, 1).
Therefore, 𝑓

𝑢,𝛼
(𝑟) > 0 for 𝑟 ∈ (0, 1) follows from (12) and (16)

together with the piecewise monotonicity of 𝑓
𝑢,𝛼
(𝑟).
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3. Main Results

Now, we are in a position to state and prove our main results.

Theorem 3. If 𝛼 ∈ (0, 1) and 𝜆, 𝜇 ∈ (1/2, 1), then the double
inequality

𝐶 (𝜆𝑎 + (1 − 𝜆) 𝑏, 𝜆𝑏 + (1 − 𝜆) 𝑎)

< 𝛼𝐴 (𝑎, 𝑏) + (1 − 𝛼) 𝑇 (𝑎, 𝑏)

< 𝐶 (𝜇𝑎 + (1 − 𝜇) 𝑏, 𝜇𝑏 + (1 − 𝜇) 𝑎)

(17)

holds for all 𝑎, 𝑏 > 0 with 𝑎 ̸= 𝑏 if and only if

𝜆 ≤
1

2
+
√3 (1 − 𝛼)

4
,

𝜇 ≥
1

2
(1 + √3 (1 − 𝛼) (

4

𝜋
− 1)) .

(18)

Proof. Since 𝐴(𝑎, 𝑏), 𝑇(𝑎, 𝑏), and 𝐶(𝑎, 𝑏) are symmetric and
homogeneous of degree one, without loss of generality, we
assume that 𝑎 > 𝑏. Let 𝑝 ∈ (1/2, 1), 𝑡 = 𝑏/𝑎 ∈ (0, 1), and
𝑟 = (1 − 𝑡)/(1 + 𝑡). Then,

𝐶 (𝑝𝑎 + (1 − 𝑝) 𝑏, 𝑝𝑏 + (1 − 𝑝) 𝑎)

− 𝛼𝐴 (𝑎, 𝑏) − (1 − 𝛼) 𝑇 (𝑎, 𝑏)

= 𝑎
2

3
((𝑝 + (1 − 𝑝)

𝑏

𝑎
)

2

+ (𝑝 + (1 − 𝑝)
𝑏

𝑎
)(𝑝

𝑏

𝑎
+ 1 − 𝑝)

+(𝑝
𝑏

𝑎
+ 1 − 𝑝)

2

)(1 +
𝑏

𝑎
)

−1

− 𝛼𝑎
1 + (𝑏/𝑎)

2

− (1 − 𝛼)
2𝑎

𝜋
E(√1 − (

𝑏

𝑎
)

2

)

= 𝑎{
2

3
((𝑝 + (1 − 𝑝) 𝑡)

2

+ (𝑝 + (1 − 𝑝) 𝑡) (𝑝𝑡 + 1 − 𝑝)

+ (𝑝𝑡 + 1 − 𝑝)
2

) (1 + 𝑡)
−1

−𝛼
1 + 𝑡

2
− (1 − 𝛼)

2

𝜋
E (√1 − 𝑡2)}

= 𝑎{
(1 − 2𝑝)

2

𝑟
2
+ 3

3 (1 + 𝑟)
− 𝛼

1

1 + 𝑟

− (1 − 𝛼)
2

𝜋

2E − 𝑟
2K

1 + 𝑟
}

=
𝑎

1 + 𝑟
[
1

3
(1 − 2𝑝)

2

𝑟
2
+ 1 − 𝛼

− (1 − 𝛼)
2

𝜋
(2E − 𝑟

2

K)] .

(19)

Therefore, Theorem 3 follows easily from Lemma 2 and (19).

Let 𝛼 = 1/4, 𝜆 = 7/8, 𝜇 = (1/2)(1 + (3√4/𝜋 − 1/2)).
Then, from Theorem 3, we get new bounds for the complete
elliptic integral E(𝑟) of the second kind in terms of elemen-
tary functions as follows.

Corollary 4. For 𝑟 ∈ (0, 1) and 𝑟 = √1 − 𝑟2, one has

𝜋

2
[
5 + 6𝑟


+ 5𝑟
2

8 (1 + 𝑟)
] < E (𝑟) < 𝜋[

[

𝑟

+ (2/𝜋) (1 − 𝑟


)
2

1 + 𝑟
]

]

.

(20)

4. Remarks

Remark 5. In the recent past, the complete elliptic integrals
have attracted the attention of numerous mathematicians. In
[4], it was established that

𝜋

2

[

[

1

2

√1 + 𝑟
2

2
+
1 + 𝑟


4

]

]

< E (𝑟)

<
𝜋

2

[

[

4 − 𝜋

(√2 − 1) 𝜋

√1 + 𝑟
2

2
+
(√2𝜋 − 4) (1 + 𝑟


)

2 (√2 − 1) 𝜋

]

]

,

(21)

for all 𝑟 ∈ (0, 1).
Guo and Qi [15] proved that

𝜋

2
−
1

2
log (1 + 𝑟)

1−𝑟

(1 − 𝑟)
1+𝑟

< E (𝑟) <
𝜋 − 1

2
+
1 − 𝑟
2

4𝑟
log 1 + 𝑟

1 − 𝑟
,

(22)

for all 𝑟 ∈ (0, 1).
Yin and Qi [16] presented that

𝜋

2

√6 + 2√1 − 𝑟2 − 3𝑟2

2√2
≤ E (𝑟) ≤

𝜋

2

√10 − 2√1 − 𝑟2 − 5𝑟2

2√2
,

(23)

for all 𝑟 ∈ (0, 1).
It was pointed out in [4] that the bounds in (21) for E(𝑟)

are better than the bounds in (22) for some 𝑟 ∈ (0, 1).
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Remark 6. The lower bound in (20) forE(𝑟) is better than the
lower bound in (21). Indeed,

5 + 6𝑥 + 5𝑥
2

8 (1 + 𝑥)
− [

[

1

2

√
1 + 𝑥
2

2
+
1 + 𝑥

4

]

]

=

3𝑥
2
+ 2𝑥 + 3 − 2√2 (1 + 𝑥2) (1 + 𝑥)

8 (1 + 𝑥)
,

(3𝑥
2
+ 2𝑥 + 3)

2

− (2√2(1 + 𝑥2)(1 + 𝑥))

2

= (1 − 𝑥)
4
> 0,

(24)

for all 𝑥 ∈ (0, 1).

Remark 7. The following equivalence relations for 𝑥 ∈ (0, 1)

show that the lower bound in (20) for E(𝑟) is better than the
lower bound in (23):

5 + 6𝑥 + 5𝑥
2

8 (1 + 𝑥)
>

√6 + 2𝑥 − 3 (1 − 𝑥2)

2√2

⇐⇒ (5𝑥
2
+ 6𝑥 + 5)

2

> 8(𝑥 + 1)
2
(3𝑥
2
+ 2𝑥 + 3)

⇐⇒ (𝑥 − 1)
4
> 0.

(25)
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