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Bundle-shaped TbPO
4
⋅H
2
O nanorods have been prepared by a facile hydrothermal technique and characterized by XRD, SEM,

TEM, UV-Vis diffuse reflectance spectrum (DRS), photoluminescence (PL) spectrum, and lifetime. The results indicate that the
obtained sample has hexagonal structure of TbPO

4
⋅H
2
O and is composed of nanorods bundles which is assembled from many

single crystalline nanorodswith the diameter of around 45 nmand the length of 2.3𝜇m.Thegrowth of the single crystalline nanorod
is along the (001) plane direction. Under the UV light irradiation, TbPO

4
⋅H
2
O nanorods bundles exhibit bright green emission

corresponding to the 5D
4
→

7F
𝐽
(𝐽 = 6, 5, 4, 3) transitions of the Tb3+ ions, and the lifetime is determined to be about 0.24ms.

1. Introduction

In recent years, inorganic nanostructures with well-defined
shapes and sizes have attracted growing attention because
of their unique size- and shape-dependent properties [1–3].
Among many kinds of nanostructured materials, lanthanide
orthophosphates (LnPO

4
) with uniform size and various

morphologies have been prepared by some mild and con-
trollable methods [4, 5] and attracted great interest because
of their unique properties including very low solubility in
water (The solubility product constant, 𝑝Ksol = 25–27) [6],
high thermal stability, high index of refraction, and high
luminescent efficiency [7, 8]. These materials have been
used as active components in a wide range of applica-
tions such as phosphors, laser hosts, and biolabeling [9–
12]. The chemical and optical properties of one-dimensional
(1D) LnPO

4
nanostructures (e.g., CePO

4
: Tb3+ nanowires,

LaPO
4
nanorods, CePO

4
peanut-liked nanostructures, etc.)

can be successfully tailored, which makes these materials
have significant potential applications in fabricating the next
generation of information storage, optoelectronic, sensing
devices, and nanoscale devices [13–15].

As an important sort of lanthanide phosphates, TbPO
4

has been investigated mainly focusing on its physical low-
temperature properties (magnetic properties, birefringence
measurements, and mean-field calculations) in previous
literatures [16, 17]. Recently, much attention has been focused
on the synthesis and properties of the TbPO

4
with various

morphologies. It is known that the hydrothermal technique
is a common method in the field of material science. Using
this technique, many materials with uniform morphology
and satisfying crystallinity can be obtained at relatively low
reaction temperature, usually without any further calcina-
tions at high temperature [18, 19]. For example, TbPO

4
: Eu3+

square-like particles were prepared by hydrothermal method
with citric acid as the organic additive, and the reaction
temperature is as low as 160∘C [20]. As a contrast, TbPO

4

hollow spheres can be obtained through solid state method
when the annealing temperature is increased to 1150∘C
[21, 22]. In this work, uniform TbPO

4
⋅H
2
O bundle-shaped

nanostructures composed of single crystalline nanorods
were synthesized at 180∘C through a facile hydrothermal
technique and characterized by XRD, SEM, TEM DRS, PL
spectra, and so forth. The possible mechanism leading to
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Figure 1: XRD patterns of bundle-shaped TbPO
4
⋅H
2
O nanorods (a) and standard data of bulk TbPO

4
⋅H
2
O ((b), JCPDS card 20-1244).

(a) (b)

Figure 2: SEM images (a) and (b) of TbPO
4
⋅H
2
O nanorods bundles.

bundle-shaped structures, phase structure, morphology, and
optical properties were discussed in detail.

2. Experimental Section

2.1. Synthesis of Bundle-Shaped TbPO
4
⋅H
2
O Nanorods.

Tb
4
O
7
(99.99%) and (NH

4
)
2
HPO
4
(≥98.5%) were used

as starting materials without any further purification.
Tb(NO

3
)
3
was prepared by dissolving Tb

4
O
7
in diluted

nitric acid, and the water in the solutions was distilled off
by heating. Bundle-shaped TbPO

4
⋅H
2
O nanorods were

prepared by hydrothermal technique. Typically, 2mmol of
(NH
4
)
2
HPO
4
was added to 20mL of 0.1mol/L Tb(NO

3
)
3

aqueous solution and the mixture was continuously stirred
for 2 h. The obtained suspension was then transferred into
a Teflon bottle held in a stainless steel autoclave, which was
sealed and hydrothermally treated at 180∘C for 24 h. After
the autoclave was cooled to room temperature naturally, the
precipitates were separated by centrifugation, washed with
ethanol and distilled water twice, respectively, and dried at
70∘C for 24 h to obtain the sample.

2.2. Characterization. Phase structure was characterized by
a Bruker D8 Advance X-ray diffractometer (XRD) with Cu-
K𝛼 radiation (𝜆 = 0.15406 nm). The accelerating voltage
and emission current were 40 kV and 40mA, respectively.

Morphology of the samples was observed using a scanning
electronmicroscope (SEM, Quanta 200) with an acceleration
voltage of 25 kV. The TEM image and selected area electron
diffraction (SAED) pattern were obtained on a JEOL-2010
transmission electron microscope at an accelerating voltage
of 200 kV. UV-Vis diffuse reflectance spectrum (DRS) was
obtained using a UV/Vis Spectrophotometer (Lambda35,
PerkinElmer) equipped with an integrating sphere attach-
ment. Photoluminescence (PL) spectra and lifetime were
recorded using an FLS920P Edinburgh Analytical Instru-
ment apparatus equipped with a 450W xenon lamp and a
𝜇F900H high-energy microsecond flash lamp as the excita-
tion sources.

3. Results and Discussion

3.1. Phase Structure and Morphology. Figure 1 shows the
XRD patterns of bundle-shaped TbPO

4
⋅H
2
O nanorods

(Figure 1(a)) and standard data of TbPO
4
⋅H
2
O powders

(Figure 1(b)). It can be seen that all of the diffraction
peaks of the bundle-shaped TbPO

4
⋅H
2
O nanorods are in

agreement with the standard data of hexagonal structure
TbPO

4
⋅H
2
O (JCPDS No. 20-1244), with the space group

of P3
1
21 (152). Figures 2(a) and 2(b) show the low- and

high-magnification SEM images of TbPO
4
⋅H
2
O nanorods

bundles, respectively. It can be seen that these bundle-shaped



Advances in Condensed Matter Physics 3

(a)

(100)

(001)

(b)

0.596
nm

0.633
nm

(c)

Figure 3: TEM images of bundle-shaped TbPO
4
⋅H
2
O nanorods (a) and (b), SAED pattern (inset in (b)), and HRTEM image (c) of the single

nanorod.

structures are homogeneous in the large field of vision
(Figure 2(a)), the magnified image (Figure 2(b)) indicates
that the bundle-shaped structures are actually composed of
nanorods, and most of the nanorods are linked together by
side-by-side conjunction.

To investigate the growth mechanism and microstruc-
ture of bundle-shaped structures in detail, the obtained
sample was observed by the TEM and high resolution
TEM (HRTEM) images equipped with selected area electron
diffraction (SAED) pattern (Figure 3). It can be clearly seen
from Figure 3(a) that the obtained sample is composed of
bundle-shaped morphology, which is assembled by many
TbPO

4
⋅H
2
O nanorods with the diameter of ∼45 nm and

the length of ∼2.3𝜇m. A high-magnified image of bundled
nanorods (Figure 3(b)) indicates that these single crystalline
nanorods as the primary construction unit are relatively uni-
form. The SAED pattern (Figure 3(b), inset) taken from the
upper single nanorod can be indexed to the (100) and (001)

planes of TbPO
4
⋅H
2
O single crystalline with the hexagonal

phase structure. These findings are consistent with the XRD
result mentioned above. The HRTEM image (Figure 3(c))
of the single TbPO

4
⋅H
2
O nanorod marked as an oval in

Figure 3(b) displays singlecrystalline nature. The values of
interplanar spacing of TbPO

4
⋅H
2
O nanorod are 0.596 and

0.633 nm, which is identical to the (100) and (001) facet
distance of bulk TbPO

4
⋅H
2
O powders, respectively. It can

be seen that the growth direction of TbPO
4
⋅H
2
O single-

crystalline nanorod is along (001) plane. According to the
experimental results and analysis, the growth mechanism
of TbPO

4
⋅H
2
O nanorods bundles was proposed. Generally,

TbPO
4
⋅H
2
O tends to grow as 1D nanorods, which is pos-

sibly due to the 1D characteristics of the infinite linear
chains of hexagonal-structured TbPO

4
[7]. And then, the

surface energy of these nanorods may change under the
hydrothermal process [23], so these nanorods aggregates
might be assembled and grown along the same direction
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Figure 4: UV-Vis DRS (a), PL excitation (b), emission (c) spectra, and decay curve (d) of bundle-shaped TbPO
4
⋅H
2
O nanorods.

(oriented attachment) to form bundle-shaped structures.
The formation process of TbPO

4
⋅H
2
O nanorods bundles is

similar to that of In(OH)
3
rod bundles [24].

3.2. Optical Properties. Figure 4(a) shows the UV-Vis DRS
spectrum of TbPO

4
⋅H
2
O nanorods bundles. The absorption

peaks at 216 and 310 nm are due to the spin-allowed 4f-5d
transition and the spin-forbidden transition of the Tb3+ ions,
respectively. The absorption peak at 487 nm is assigned to
the transitions from the ground level 7F

6
to the excited level

5D
4
of Tb3+ ion [25].The excitation spectrum of TbPO

4
⋅H
2
O

nanorods bundles was obtained by monitoring the emission
of Tb3+ due to 5D

4
→

7F
5
transition at 543 nm, as shown in

Figure 4(b). It can be seen that the excitation peak at 255 nm
is assigned to intra 4f8 transitions between the 4f75d1, and
most of the excitation peaks can be clearly assigned (352 nm:
7F
6
→

5D
2
; 368 nm: 7F

6
→

5G
6
; and 378 nm: 7F

6
→

5D
3
).

Under the UV light irradiation (378 nm), the emission spec-
trum is composed of fourwell-resolved peaks at 490, 543, 588,

and 612 nm, which is corresponding to the 5D
4
→

7F
𝐽
(𝐽 =

6, 5, 4, 3) transitions of Tb3+ ions as labeled in Figure 4(c).
Figure 4(d) shows the PL decay curves of TbPO

4
⋅H
2
O

nanorods bundles with the excitation wavelength (378 nm)
and emission wavelength at 543 nm. The PL decay curve for
Tb3+ in the TbPO

4
⋅H
2
O nanorods bundles can be well fitted

into a single exponential function as 𝐼(𝑡) = 𝐼
0
exp(−𝑡/𝜏) (𝜏

is 1/𝑒 lifetime of Tb3+ ion) [26]. The lifetime for Tb3+ in
TbPO

4
⋅H
2
O nanorods bundles is determined to be 0.24ms.

4. Conclusion

In summary, the bundle-shaped TbPO
4
⋅H
2
O nanorods have

been successfully prepared by the hydrothermal route. The
reaction media are aqueous solution and free of any surfac-
tants or templates, and the synthesis technique is simple and
environmentally friendly. The bundle-shaped TbPO

4
⋅H
2
O

nanostructures are assembled by many single crystalline
TbPO

4
⋅H
2
O nanorods through side-by-side conjunction.
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And these nanorods bundles yield green emission attributed
to the transitions from the 5D

4
to the 7F

𝐽
(𝐽 = 6, 5, 4, 3)

energy levels of Tb3+, which makes these nanorods bundles
have potential applications inmany fields such as lighting and
optoelectronic devices with nanometer dimensions.
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