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This paper presents a novel noise-robust feature extraction method for speech recognition using the robust perceptual minimum
variance distortionless response (MVDR) spectrum of temporally filtered autocorrelation sequence. The perceptual MVDR spec-
trum of the filtered short-time autocorrelation sequence can reduce the effects of residue of the nonstationary additive noise which
remains after filtering the autocorrelation. To achieve a more robust front-end, we also modify the robust distortionless constraint
of the MVDR spectral estimation method via revised weighting of the subband power spectrum values based on the sub-band
signal to noise ratios (SNRs), which adjusts it to the new proposed approach.This new function allows the components of the input
signal at the frequencies least affected by noise to pass with larger weights and attenuates more effectively the noisy and undesired
components.Thismodification results in reduction of the noise residuals of the estimated spectrum from the filtered autocorrelation
sequence, thereby leading to a more robust algorithm. Our proposed method, when evaluated on Aurora 2 task for recognition
purposes, outperformed all Mel frequency cepstral coefficients (MFCC) as the baseline, relative autocorrelation sequence MFCC
(RAS-MFCC), and the MVDR-based features in several different noisy conditions.

1. Introduction

Speech recognition systems are usually trained in clean
conditions and tested in different environments (clean and
noisy). This mismatch between the training and test con-
ditions drastically degrades the performance of automatic
speech recognition (ASR) systems in noisy environments.
Robust speech recognition is considered as one of the most
challenging areas in speech processing technology since the
type of the noise encountered in test conditions is usually
not predictable. Robust speech recognition methods may be
classified into four main categories [1]:

(1) robust speech feature extraction,
(2) speech enhancement for improved recognition,
(3) model-based compensation for noise,
(4) model-based feature enhancement.

Finding a set of parameters which are robust against the
variations made by different noises on speech signals is the

main purpose of the first method.This category, itself, can be
further classified into two main divisions:

(1) extracting more robust features,
(2) postprocessing of the features for robustness.

Many speech processing systems such as speech enhance-
ment, speech recognition, and speech coding use the magni-
tude information of speech signals in some sparse domain
such as short time fourier transform (STFT) [2, 3]. For
instance, mel frequency cepstral coefficients (MFCC) [2],
and perceptual linear prediction (PLP) [3] are considered as
famous features used. Therefore, modifying the power spec-
trum of the speech signal to make it robust against additive
or convolutional distortions ismorewidely used in the former
type. Among the usefulmethods in this category, we can refer
to differential power spectrum (DPS) [4], autocorrelation
Mel frequency cepstral coefficients (AMFCC) [5], relative
autocorrelation sequence MFCC (RAS-MFCC) [6], differ-
entiated autocorrelation sequence (DAS) [7], and DCT and
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MVDR-based features [8–11]. Feature extraction algorithms
based on auditory system such as power normalized cepstral
coefficients (PNCC) [12] and Fourier-Bessel Cepstral Coef-
ficients (FBCC) [13] are also among other methods in the
former group. Enhancing Mel-filtered log spectrum of noisy
signals based on the estimated distribution of speech in this
domain has also been proposed for extracting more robust
features [14]. Furthermore, feature normalization is consid-
ered as one of the most significant group of methods in the
postprocessing of features. Histogram equalization (HEQ)
[15], cepstral moment normalization methods [16, 17], and
cepstral subband normalization (CSN) [18] are the best
examples in this division.

In this paper, we aim to modify the power spectrum of
the noisy speech signal to obtain more robust features. This
method is categorized in the first division of robust feature
extraction strategies. In the proposed approach, we extract
robust MVDR spectrum of filtered autocorrelation sequence.
Therefore, the robustness in our method is achieved due to
the following approaches:

(1) filtering the short-time autocorrelation sequence, in
order to reduce the noise effects,

(2) extracting the MVDR spectrum, instead of the com-
mon periodogram technique,

(3) improving the MVDR spectrum and obtaining a
more robust one, to reduce the residual noise effects,
even for nonstationary noises.

Spectral estimation methods are either nonparametric or
parametric [19]. While the FFT-based periodogram is the
most popular method of the former strategy, especially in
speech recognition areas, model identification and MVDR
methods are among the most well-known approaches of the
latter [19]. The model identification methods are classified
into three divisions, namely, auto regressive (AR), moving
average (MA), and ARMA [19]. The traditional speech fea-
tures, namely, MFCC are extracted from the FFT-based per-
iodogram power spectrum, whose estimation suffers from
large bias and variance [10]. Bias is mainly caused by the
leakage of power from surrounding frequencies of the band-
pass filter used to measure the power [10]. Large variance is
due to employing a single sample in the power estimation
process [10]. Both of these shortcomings have been addressed
by the MVDR spectrum estimation method [8, 10]. Incor-
porating MVDR spectral estimation method which reduces
the bias and variance of the spectrum estimates would be
effective in extracting robust speech features. This happens
because (i) the bias and variance of the spectrum estimate
affect speech features which are used to extract Gaussian
parameters modeling the speech classes, (ii) increasing the
level of noise in noisy signals enlarges the variance of
the power spectrum and thus deteriorates the recognition
accuracy, and (iii) other widely used features in ASR systems,
namely, linear prediction (LP) [2] and PLP, which are based
on AR or LP methods, are not good candidates for accurate
estimation of the power spectrumof voiced speech, especially
high-pitch voices. Thus, the LP-based spectrum will also be
sensitive to noise, because its envelope tends to follow the fine

structure of speech spectrum in such voices [10]. Therefore,
we suggest using MVDR-based speech feature extraction
as an appropriate approach for making ASR systems more
robust against noise.

In addition, filtering the temporal trajectories of short-
time autocorrelation sequences, denoted as RAS, is helpful
in removing the noise effects in case of stationary noise [6].
However, the additive noise encountered in most ASR sys-
tems is nonstationary, and therefore this technique cannot
remove the distortions completely. For this reason, we pro-
pose to find the MVDR spectrum of this filtered autocorrela-
tion sequence to further reduce the noise residuals.Moreover,
in order to make the proposed method more robust even in
low signal to noise ratios (SNRs), we suggest using a robust
MVDR approach similar to [11]. The robustness in [11] is
achieved by modifying the distortionless constraint of the
MVDR spectral estimationmethod byweighting the subband
power spectrum values based on the subband SNRs. In this
paper, we also modify the weighting function proposed in
[11] to not only adjust it to the new proposed approach but
also improve the recognition accuracies in both high and low
SNRs. We have suggested this modification on the weighting
function to adapt it to the proposed procedure on the
perceptual spectrum of temporally filtered autocorrelation
sequence, which has higher subband SNR compared to non-
filtered case. The higher subband SNR is caused by suppress-
ing some parts of the noise by the mentioned temporal filter.
This new function which introduces a new robust distor-
tionless constraint for the filtered MVDR spectrum causes
more reliable components of the input signal at the frequen-
cies least affected by noise to pass with larger weights, while
attenuating the noisy (less reliable) components with smaller
weights. Hence, the noise effects still remained after applying
the mentioned filter on the autocorrelation sequence will be
reduced, which is helpful especially for non-stationary noise.
The recognition results show that this strategy is very helpful
in extracting more robust features.

The paper is organized as follows. In Section 2, we briefly
describe the robust MVDR spectral estimation as the related
work. Our proposed robust front-end is given in Section 3.
The experimental results are presented in Section 4. Finally,
discussion and conclusions are given in Sections 5 and 6,
respectively.

2. Related Work: Robust MVDR
Spectral Estimation

The main purpose of MVDR spectral estimation is reducing
the bias and variance of the estimated spectrum. This goal is
achieved by designing an FIR filter, ℎ(𝑛), which minimizes its
output power subject to the constraint that its response at the
frequency of interest, 𝜔𝑙, has unity gain. This distortionless
constraint certifies that the components of the input signal
with the frequency of interest pass without any distortion
through the filter. Moreover, the output power minimization
precludes the leakage of power from surrounding frequen-
cies, resulting in reduced bias. The power of signal at
the frequency of interest will be equal to the power of
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the filtered signal [10, 19]. Hence, computing the power spec-
trum using all of the output samples decreases the variance.
The MVDR filter is designed by solving the following con-
strained optimization problem [10]:

min
ℎ

h𝐻R𝐿+1h subject to k𝐻 (𝑤𝑙) h = 1 (1)

which results in

h𝑙 =
R−1
𝐿+1

k (𝜔𝑙)

k𝐻 (𝜔𝑙)R−1𝐿+1k (𝜔𝑙)
, (2)

where k(𝜔) = [1, 𝑒
𝑗𝜔
, 𝑒
𝑗2𝜔

, . . . , 𝑒
𝑗𝐿𝜔

] , R𝐿+1 is the (𝐿 + 1) ×

(𝐿 + 1) Toeplitz autocorrelation matrix of the data, and
h = [ℎ0, ℎ1, . . . , ℎ𝐿]

𝑇 . The MVDR spectrum for all of the
frequencies is then computed by [10]

𝑃MV (𝜔) =
1

k𝐻 (𝜔)R−1
𝐿+1

k (𝜔)
. (3)

According to the distortionless constraint in (1), the filter
responses at all frequencies contribute to the final result
with the same weighting since all have unity gains. However,
noise usually affects the speech signal differently in various
frequencies. Consequently, if some frequencies are corrupted
by noise, the resulting MVDR power spectrum at those
frequencies will also be deteriorated. For this reason, we pro-
posed a robust distortionless constraint in [11] by modifying
this constraint such that the response of the filter at the
frequency of interest has a gain which is determined by the
signal to noise ratio at that frequency, instead of a unity
gain. This process will be the same as weighting the power
spectrum value at the frequency of interest based on the ratio
of the energy of the signal to the energy of noise at that
frequency which makes the MVDR spectrum robust against
noise.Therefore, the robust MVDR spectrum for all frequen-
cies will be computed by [11]

𝑃RMVDR (𝜔) =
𝑤(𝜔)
2

k𝐻 (𝜔)R−1
𝐿+1

k (𝜔)
, (4)

where

𝑤 (𝜔𝑙) =
𝑆 (𝜔𝑙)

𝑁 (𝜔𝑙)
, (5)

where 𝑆(𝜔𝑙) and 𝑁(𝜔𝑙) are the clean signal and noise at the
frequency of interest, 𝜔𝑙, respectively.

Hence, we assign larger weights to the components of the
input signal at the frequencies least affected by noise, whereas
the others get smaller weights. In [11], employing the exper-
imental findings of psychoacoustics [20, 21], we proposed
using the following weighting function with values between
zero and one:

𝑤
2

𝑖
= 1 − exp(−

SNR𝑖
𝛾𝑖

) , (6)

where SNR𝑖 is the signal to noise ratio computed from the
ratio of the energy of noisy signal to noise in the 𝑖th mel fre-
quency subband and 𝛾𝑖 is the gain that controls the steepness

of the weighting function. This weighting function was sug-
gested because using the raw subband signal to noise ratios
as the weighting factors did not lead to sufficient recognition
accuracies in low SNRs according to experimental results.
The following optimum function, which is made up of the
difference between two sigmoidal functions, was proposed
for 𝛾𝑖 in [11] based on recognition experiments

𝛾𝑖 =
1

1 + exp (−3 (SNR𝑖 − 0.5))

−
1

1 + exp (−3 (SNR𝑖 − 3.5))
.

(7)

The flow diagram for extracting the proposed robust per-
ceptual MVDR-based cepstral coefficients (RPMCC) accord-
ing to the explained procedure is given in Figure 1. RPMCC
features are extracted from the warped power spectrum by
incorporating the PLP structure as in [11]. This gives better
recognition results because exploiting the perceptual infor-
mation always improves the speech recognition systems. The
equal loudness curve and power law of hearing blocks are
according to [3].We calculate the warped power spectrum by
applying the conventional triangular Mel-based filter bank to
the FFT-based periodogram.Then the warpedMVDR power
spectrum is computed from the Mel-warped spectrum after
applying weighting to subbands. Then, the cepstral features
are calculated by applying IFFT to the Mel-scale MVDR
log-spectrum. The Mel-warped spectrum is also known as
subband spectrum in the area of speech recognition.

3. The Proposed New Front-End Based
on Robust MVDR Spectrum of Filtered
Autocorrelation Sequence

We assume an additive noise model as follows:

𝑦 (𝑚, 𝑛) = 𝑥 (𝑚, 𝑛) + V (𝑚, 𝑛) , 0 ≤ 𝑚 ≤ 𝑀 − 1,

0 ≤ 𝑛 ≤ 𝑁 − 1,

(8)

where 𝑥(𝑚, 𝑛), 𝑦(𝑚, 𝑛), and V(𝑚, 𝑛) represent the clean
speech, the noisy speech waveform, and the additive noise,
respectively, 𝑚 is the frame index and 𝑛 is the discrete time
index within a frame. 𝑀 denotes the number of frames and
𝑁 the number of samples in each frame.

We can have a similar additive equation for autocorrela-
tion of noisy speech, clean speech, and noise on the condition
that noise is assumed to be uncorrelated with speech

𝑟𝑦𝑦 (𝑚, 𝑘) = 𝑟𝑥𝑥 (𝑚, 𝑘) + 𝑟VV (𝑚, 𝑘) , 0 ≤ 𝑚 ≤ 𝑀 − 1,

0 ≤ 𝑘 ≤ 𝑁 − 1,

(9)

where 𝑟𝑥𝑥(𝑚, 𝑘), 𝑟𝑦𝑦(𝑚, 𝑘), and 𝑟VV(𝑚, 𝑘) represent the short-
time autocorrelation sequences of clean speech, the noisy
speech, and the additive noise, respectively, and 𝑘 is the
autocorrelation sequence index. If the additive noise is
assumed to be stationary, its autocorrelation sequencemay be
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Figure 1: The block diagram for extracting RPMCC features [11]. The subband weighting is applied according to (6) and (7).
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Figure 2: The block diagram for extracting RAS-MFCC features similar to [6]. The windowing block after applying the RAS filter to the
autocorrelation sequence is a DDR hamming window to compensate for the variation in dynamic range of the power spectrum of the
autocorrelation sequence compared to the corresponding signal’s power spectrum. IDCT refers to inverse discrete cosine transform.

considered to have identical values for all frames. Therefore,
we can omit the frame index,𝑚, from 𝑟VV(𝑚, 𝑘) in (9)

𝑟𝑦𝑦 (𝑚, 𝑘) = 𝑟𝑥𝑥 (𝑚, 𝑘) + 𝑟VV (𝑘) , 0 ≤ 𝑚 ≤ 𝑀 − 1,

0 ≤ 𝑘 ≤ 𝑁 − 1.

(10)

Hence, we can calculate the differentiation of both sides of
(10) with respect to frame index 𝑚, to find the RAS of noisy
and clean speech, which yields [6]

𝜕𝑟𝑦𝑦 (𝑚, 𝑘)

𝜕𝑚
=

𝜕𝑟𝑥𝑥 (𝑚, 𝑘)

𝜕𝑚
, 0 ≤ 𝑚 ≤ 𝑀 − 1,

0 ≤ 𝑘 ≤ 𝑁 − 1.

(11)

This differentiation can be obtained by an FIR filter on the
temporal autocorrelation trajectory. The transfer function of
this filter is as follows [6]:

𝐻(𝑧) =
1

𝑇𝑄

𝑄

∑

𝑡=−𝑄

𝑡𝑧
𝑡
, (12)

where

𝑇𝑄 =

𝑄

∑

𝑡=−𝑄

𝑡
2
, (13)

where (2𝑄 + 1) is the frame range for applying the filter.

The block diagram for extracting the RAS-MFCC features
is given in Figure 2. We have changed the strategy proposed
in [6] by adding a hamming window at the beginning of the
process to make it similar to other speech feature extraction
methods. Therefore, a double-dynamic-range (DDR) ham-
ming window is required after applying the RAS filter to find
the correct power spectrum.The reason for adding this block
is that the power spectrum of an autocorrelation sequence
has a dynamic range twice that of the corresponding signal’s
power spectrum.Hence, to construct an𝑁-lengthDDRham-
ming window, we perform the following procedure similar
to [5]:

(i) Construct an𝑁/2-length Hamming window,

(ii) Calculate its (𝑁 − 1)-length two-sided (biased) auto-
correlation sequence which has a maximum at zeroth
lag in the center,

(iii) Pad one zero at the end to make an 𝑁-length desired
window.

In other words, the RAS of clean speech can be calculated
by applying the high-pass filter in (12) to the autocorrelation
of noisy speech in the frame range specified by (2𝑄 + 1).
According to (11), as long as the additive noise is stationary,
the RAS of noisy speech will be equal to RAS of clean speech,
and thus the effect of noise is removed. However, we often
encounter non-stationary additive noise in ASR systems.
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Therefore, this technique cannot remove the distortions com-
pletely and only suppresses DC or slowly varying noise (or
stationary noise). In order to reduce the noise residuals which
remain after applying RAS filter, we propose finding the
MVDR spectrum of this filtered autocorrelation sequence.
Moreover, to further suppress the noise effects and thus find
more robust features even in low SNRs, we propose using a
robust MVDR approach similar to [11] which was explained
in Section 2. Therefore, we extract the proposed percep-
tual MVDR spectrum of relative autocorrelation sequence
(PMSR) features from the subband MVDR power spectrum
of filtered short-time autocorrelation sequence. The block
diagram for extracting the proposed PMSR features is given
in Figure 3(a). Also Figure 3(b) illustrates the procedure we
proposed for extractingRobust-PMSR (R-PMSR) features. To
calculate R-PMSR coefficients, we first pass the short-time
autocorrelation sequence through a RAS filter in (12). Then
we find the proposed features from the robust perceptual
MVDR spectrum of this filtered autocorrelation sequence.
The robust perceptual MVDR spectrum is estimated similar
to the approach explained in Section 2. However, according
to our experiments given in Section 4, the subband SNRs of
the signal passed through a RAS filter are increased compared
to the case when no filter is applied to the autocorrelation
sequence. This happens due to suppression of noise effects
by processing the signal with RAS technique. This causes
the subband SNRs to be estimated more reliably. Therefore,
we propose modifying the subband weighting function sug-
gested in [11]. To this end, we added two free parameters to
the steepness controlling gain in (7) to make it more flexible
to subband SNR variations

𝛾𝑖 =
1

1 + exp (−3 (SNR𝑖 − 𝛾1𝑖
))

−
1

1 + exp (−3 (SNR𝑖 − 𝛾2𝑖
))

,

(14)

where

𝛾1𝑖
= 0.4 +

0.1

1 + exp (− (SNR𝑖 − 1))
,

𝛾2𝑖
= 3 +

0.5

1 + exp (4 (SNR𝑖 − 1))
.

(15)

When the proposed 𝛾𝑖 in (14) is used as the controlling gain
in the subband weighting function in (6), larger weights are
assigned to higher SNRs, while lower SNRs get smaller
weights. This weighting function makes the algorithm more
robust because we encounter less error while estimating the
subband SNRs of the warped power spectrum computed
from the RAS-filtered autocorrelation sequence compared to
the non-filtered case. Therefore, this robust weighting allows
the components of the input signal at the frequencies least
affected by noise to passwith largerweights, while attenuating
those components which are undesirably more affected by
noise via assigning smaller weights. In addition, the new pro-
posed function for 𝛾𝑖 makes it more flexible to variations of
SNR; that is, it can be more easily tuned to a desired environ-
ment. The fixed values used in the proposed functions for 𝛾1𝑖

and 𝛾2𝑖
have been selected to increase the speech recognition

accuracies. Experimental results given in Section 4 prove the
usefulness of this suggested algorithm. Figure 4 compares
the proposed 𝛾𝑖 and the resulted weighting function with
those used in [11] for signals not passed through a RAS filter.
Therefore, we extract the proposed RPMCC features based on
the subband weighting in (7) and (6), while we use (14) and
(6) to compute the subband weighting for R-PMSR coeffi-
cients.

In order to improve the performance of our algorithm
against non-stationary noises, we estimate the noise power
spectrum by a simple updating algorithm where the first few
nonspeech frames are considered as the initial noise values
[22]

if E [𝑦𝑙 (𝑖)] ≤ 𝛽E [𝑁𝑙 (𝑖 − 1)]

then E [𝑁𝑙 (𝑖)] = 𝛼E [𝑁𝑙 (𝑖 − 1)] + (1 − 𝛼)E [𝑦𝑙 (𝑖)]

else E [𝑁𝑙 (𝑖)] = E [𝑁𝑙 (𝑖 − 1)] ,

(16)

where E[𝑦𝑙(𝑖)] and E[𝑁𝑙(𝑖)] are the estimated energies of the
noisy signal and the noise of the 𝑙th subband in frame 𝑖,
respectively. In addition, we have set 𝛼 to 0.99 and 𝛽 to 2. Fur-
thermore, SNR𝑙(𝑖), which is the signal to noise ratio of the 𝑙th
subband in frame 𝑖, is calculated as follows:

SNR𝑙 (𝑖) =
E [𝑦𝑙 (𝑖)]

E [𝑁𝑙 (𝑖)]
. (17)

For computational purposes, the 𝐿th order MVDR spec-
trum is computed using LP coefficients 𝑎𝑘 and prediction
error variance 𝑃𝑒 [10, 19]

𝑃MVDR (𝜔) =
1

∑
𝐿

−𝐿
𝜇 (𝑘) 𝑒−𝑗𝜔𝑘

, (18)

𝜇 (𝑘) =

{{

{{

{

1

𝑃𝑒

𝐿−𝑘

∑

𝑖=0

(𝐿 + 1 − 𝑘 − 2𝑖) 𝑎𝑖𝑎
∗

𝑖+𝑘
𝑘 = 0, . . . , 𝐿

𝜇
∗
(−𝑘) 𝑘 = −𝐿, . . . , −1,

(19)

where (2𝐿 + 1) coefficients of 𝜇(𝑘) are called the MVDR
coefficients and theMVDR spectrum can easily be calculated
by an FFT computation according to (18).

4. Experimental Results

We have conducted the recognition experiments on Aurora
2 task [23] with clean training scenario. Aurora 2 is a well-
known task often used for evaluating the robust speaker-
independent speech recognition systems. It has been derived
from the TIDigits database, consisting of connected digits
spoken by American English talkers, and is downsampled
to 8 kHz. It includes two training modes: clean-condition
training and multicondition training. In this paper, we only
use the clean-condition training set which includes 8440
utterances containing the recordings of 55 male and 55
female adults. All of these signals have already been filtered
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Figure 3:Theblock diagram for extracting the proposed new front-end based on robustMVDR spectrumof filtered autocorrelation sequence,
namely PMSR and R-PMSR features. The filter applied to unbiased autocorrelation sequence is the RAS filter according to (12). The subband
weighting for R-PMSR features is calculated according to (14) and (6).
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with G.712 characteristic (a standard telephone line filtering
defined by ITU [24]). The test data of Aurora 2 task contain
three sets, namely, test sets A, B, and C. 4004 utterances from
TIDigits test set data are split into four subsets with 1001
utterances in each. Besides the clean speech signals, one noise
type is added to each subset at SNRs of 20 dB, 15 dB, 10 dB,
5 dB, 0 dB, and −5 dB, in order to form the test set.The noises
of test set A are suburban train, babble, car, and exhibition
hall. In addition, restaurant, street, airport, and train station
noises are used tomake test set B. Test set C consists of 2 of the
4 subsets. Consequently, while each of the test sets of A and B
contains 28028 utterances, test set C is made up of 14014
utterances. Suburban train and street are used as the additive
noises in test set C. In this set, speech and noises are filtered
with an MIRS characteristic (to simulate the behavior of
a telecommunication terminal) before adding the so called
noises. Test set C is used to evaluate the performance of ASR
systems in case of the presence of both convolutional and
additive distortions.

In this paper, we used hiddenMarkovmodels (HMMs) to
model the digits and pauses using the same topology in [23].
The robustness of the obtained features was evaluated on
Aurora 2 task using HTK software [25]. The baseline uses the
well-known MFCC features. For extracting all the features,
speech was segmented into 25ms frames with a frame-shift
of 10ms. The Mel filter bank consists of 23 triangular filters.
Themodel order of 15 was used for MVDR-based coefficients
which gives the best average recognition accuracy according
to our previous experiments. For the features based on filter-
ing the autocorrelation sequence, we used the RAS filter with
an order of 2 to get the best recognition results. As usual, we
also applied a Juang lifter [2]with a parameter of 22 to cepstral
coefficients to further improve the recognition scores for all
extracted features. Finally, each frame was represented by a
vector consisting of 12 cepstral features augmented by their
first and second order derivatives.

We carried out a set of preliminary experiments to get the
idea of modifying 𝛾𝑖 as the steepness controller of the weight-
ing function for the proposed R-PMSR features. To this end,
we compared the average subband SNR estimated after apply-
ing the RAS filter to the unbiased autocorrelation sequence,
with those computed without any filtering (the common
Mel-warped spectrum followed by equal loudness curve and
power law of hearing). For this reason, we created a compact
corpus consisting of 110 Aurora 2 files extracted from the
clean training utterances.We have carefully chosen these files
such that the resulting compact database includes both single
and connected digit utterances. We also added four noises
of subway, babble, car, and exhibition at SNRs of 20 dB,
15 dB, 10 dB, 5 dB, 0 dB, and −5 dB following the procedure in
[23]. Figure 5 shows the average of estimated subband SNRs
obtained over this compact database (containing both clean
and noisy data at SNRs from 20 dB to −5 dB) for two cases of
using the RAS filter andwithout it, as explained. Note that the
subband SNRs are estimated at the output of Mel filter-banks
followed by equal loudness curve andpower lawof hearing, as
shown in Figure 3(b) and, therefore, are different from SNRs
or segmental SNRs estimated on the whole signal. According
to this figure, applying the RAS filter increases the SNR in
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Figure 5: Comparison of the average estimated subband SNRs
obtained over the created compact database (containing both clean
and noisy data at SNRs from 20 dB to −5 dB) for two cases of
using the RAS filter and without it. The SNR in the figure refers to
estimated subband SNRs at the output of Mel filter banks followed
by equal loudness curve and power law of hearing, as shown in
Figure 3(b).

Table 1: Average recognition accuracies over different noise types
and SNRs for test sets A, B, and C and different features.

Feature Set A Set B Set C
MFCC 63.90 66.15 58.21
RAS-MFCC 68.10 69.06 63.70
PMCC 66.25 68.73 60.87
RPMCC 72.36 72.99 67.17
PMSR 70.28 71.11 65.79
R-PMSR 76.64 76.68 72.69

all subbands, and therefore the estimated subband SNRs are
more reliable. Consequently, we proposed subbandweighting
based on (6) and (14), as discussed before in Section 3. The
fixed values of the functions in (14) and (15) were also tuned
using the results of the recognition experiments.

Table 1 gives the average recognition accuracies ofMFCC,
RAS-MFCC, PMCC, RPMCC, PMSR, and R-PMSR features
over different noise types and SNRs for test sets A, B, and C.
PMCC is the MVDR-based features extracted similar to [10,
11]. Figures 6, 7, and 8 show word recognition accuracies for
the proposed and baseline features in different types of noises
for test sets A, B, and C, respectively.

5. Discussion

Table 1 and Figures 6, 7, and 8 clearly show the robustness of
the proposed features on three different test sets of Aurora 2
task in different noisy conditions. Even in clean conditions,
the performance of the proposed features is not degraded
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Figure 6: Recognition accuracies for different features in various noise types of test set A of Aurora 2 task. RAS and PMCC refer to RAS-
MFCC and perceptual MVDR-based cepstral coefficients, respectively. PMSR and R-PMSR are the proposed robust features.

compared to MFCC and PMCC as the baselines. Better
accuracy of RAS-MFCC features in comparison with MFCC
is the result of filtering the autocorrelation sequence which
can reduce DC, low-varying, and stationary noise. In addi-
tion, although the recognition accuracies of RAS-MFCC
features are slightly lower than MFCCs in clean cases, the
proposed R-PMSR features have compensated this drawback.
Moreover, better results in noisy cases show that our sug-
gested algorithm is successful in reducing the noise effects
remained after applying the RAS filter. R-PMSR coefficients
also show much better performance compared to PMSR and
RPMCC features in all noisy conditions. This proves the
usefulness of the proposed flexible weighting function in

(14) and (6) as an advantageous modification to produce a
more robust distortionless constraint forMVDR spectrum of
filtered autocorrelation sequence. The R-PMSR features lead
to a relative improvement of 35.3%, 31.1%, and 34.6% for test
sets A, B, and C, respectively, compared toMFCC in the aver-
age word error rate (WER). This relative improvement over
RAS-MFCC is equal to 26.77%, 24.6%, and 24.8%. Further-
more, PMSR features are more robust than RAS-MFCC in all
cases according to the obtained results. This is because of the
smaller bias and variance of the estimated perceptual MVDR
spectrum used to extract the proposed features. The low
bias helps detect low level peaks in the presence of higher ones
which preserves the formants of the signals even in low SNRs.
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Figure 7: Recognition accuracies for different features in various noise types of test set B ofAurora 2 task. RAS andPMCC refer to RAS-MFCC
and perceptual MVDR-based cepstral coefficients, respectively. PMSR and R-PMSR are the proposed robust features.

Thus, the power spectrum of clean signals will also be
extracted more accurately. Moreover, decreasing the variance
in estimating the MVDR spectrum makes the undesired fine
structure smoother, and hence the extracted features will be
more robust against different additive noises.

It is worth mentioning that in this paper we aimed to
propose a new robust front-end for speech recognition based
on robust MVDR spectrum of filtered short-time autocor-
relation sequence of speech signals. Thus we chose MFCC,
PMCC, and RAS-MFCC features as the baselines for our
experimental comparisons. However, since our suggested
technique does not employ any of the complicated enhance-
ment techniques, it can also be used to complement those

complex front-ends to make them more robust against
environmental noise. Better performance of the proposed R-
PMSR features compared to RPMCC proves this claim.

6. Conclusion

In this paper, we proposed a new front-end for robust speech
recognition. This front-end is based on robust perceptual
MVDR spectrum of RAS-filtered autocorrelation sequence.
Since we often encounter nonstationary additive noise in
ASR, filtering the temporal trajectories of short-time autocor-
relation sequences cannot remove the distortions completely.
For this reason, we proposed finding the perceptual MVDR
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Figure 8: Recognition accuracies for different features in various noise types of test set C of Aurora 2 task. RAS and PMCC refer to RAS-
MFCC and perceptual MVDR-based cepstral coefficients, respectively. PMSR and R-PMSR are the proposed robust features.

spectrum of this filtered autocorrelation sequence to further
reduce the noise residuals. This idea led to PMSR features
with a better performance than RAS-MFCC in all clean and
noisy cases. Moreover, we modified our previously suggested
weighting function for RPMCC features to not only adjust
it to the new proposed approach but also improve the rec-
ognition accuracies in both high and low SNRs. Increasing
the subband SNRs of the Mel-warped spectrum which was
caused by applying the RAS filter, was the inspiration for
suggesting the new flexible weighting function.Therefore, we
assigned larger weights to higher SNRs and smaller ones to
lower SNRs, compared to RPMCC case.This caused the com-
ponents of the input signal at the frequencies least affected by
noise, to pass with larger weights, while attenuating the noisy
and undesired components. In addition, this new proposed
function, which is more flexible to variations of SNR, could
provide the adaptation to the desired environment more
easily. The robustness of the proposed R-PMSR features was
achieved by this modified robust distortionless constraint of
the MVDR spectral estimation. Acquiring better recognition
accuracies in comparison with MFCC, RAS-MFCC, PMCC,
and RPMCC features, in most cases, even in clean environ-
ments, without employing complex enhancement techniques,
is another valuable advantage of the proposed robust feature
extraction approach.
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