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Phenyl C
71

butyric acid methyl ester (PC
71
BM) has been adopted as electron acceptor materials in bulk heterojunction solar

cells with relatively higher power conversion efficiency. The understanding of the mechanism and performance for the devices
based upon PC

71
BM requires the information of conformations, electronic structures, optical properties, and so forth. Here, the

geometries, IR and Raman, electronic structures, polarizabilities, and hyperpolarizabilities of PC
71
BM isomers are studied by using

density functional theory (DFT); the absorption and excitation properties are investigated via time-dependent DFT with B3LYP,
PBE0, and CAM-B3LYP functionals. The calculated results show that [6,6]PC

71
BM is more stable than [5,6]PC

71
BM due to the

lower total energy. The vibrational modes of the isomers at IR and Raman peaks are quite similar. As to absorption properties,
CAM-B3LYP functional is the suitable functional for describing the excitations of PC

71
BM because the calculated results with

CAM-B3LYP functional agree well with that of the experiment. The analysis of transition configurations and molecular orbitals
demonstrated that the transitions at the absorption maxima in UV/Vis region are localized 𝜋-𝜋∗ transitions in fullerenes cages.
Furthermore, the larger isotropic polarizability of PC

71
BM indicates that the response of PC

71
BM to applied external electric field

is stronger than that of PC
61
BM, and therefore resulting into better nonlinear optical properties.

1. Introduction

The electronic devices based upon organic materials, such as
organic radiofrequency identification, light emitting diode,
memory devices, and solar cells, have attracted considerable
attention in the past decade due to their potential to be
lower-cost, light-weight, flexible, and large-area equipment.
These devices usually contain heterojunction formed by
electronic donor and acceptor materials. The properties of
materials in these devices, including chemical structures [1],
electronic structures [2], excited states [3], charge transfer,
and charge transport [4], are of particular importance for
their overall performance. To provide a better understanding
toward the higher performance of device, it is necessary to

investigate the electronic structures of the materials, as well
as the energy level alignment at the heterojunction interface
[5]. The discovery of ultrafast photoinduced charge/energy
transfer from a conjugated polymer to fullerene molecules
and introducing bulk heterojunction (BHJ) stimulated the
rapid development of organic photovoltaic (OPV) technology
[4, 6–11]. Also, some fullerene hybrids show good nonlinear
optical properties [12].

Among the fullerene derivatives in OPV, [6,6]-phenyl-
C
61

butyric acid methyl ester (PC
61
BM) as the soluble

electron acceptor was widely used to fabricate efficient BHJ
organic polymer solar cells (PSCs) [13]. For instance, Svens-
son et al. reported the PSC with open circuit voltage (𝑉oc)
1 V based on alternating copolymer PFDTBT blended with
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PC
61
BM [14]. Inganäs et al. performed a systematic study of

PSCs and found the efficiency about 2-3% using four different
fluorene copolymers through changing the length of the alkyl
side chains and chemical structures [15]. A series of highly
soluble fullerene derivatives with varying acceptor strengths
was applied in PSCs, and the𝑉oc of the corresponding devices
was found to correlate directly with the acceptor strength
of the fullerenes [16]. Unfortunately, PC

61
BM has very low

absorption coefficients in UV/Vis region [17], which limits
the light harvesting efficiency.

Phenyl C
71
butyric acid methyl ester (PC

71
BM), a higher

fullerene analogue of PC
61
BM, displays improved light

absorption in the visible region of spectrum [17, 18]. PC
71
BM

was adopted as electron acceptor in BHJ solar cells with
relatively higher power conversion efficiency (PCE) [19–25].
The substitution of PC

61
BM with PC

71
BM under the same

standard test conditions in PSC increased current densities
about 50% [26], as well as approached to 3.0% of PCE [17].
Recently, more than 10% PCE has been reported by PSCs of
PCDTBT:PC

71
BM system [27].

PC
71
BM has similar geometry to PC

61
BM, and the

fullerene cage of PC
71
BM contains ten C atoms more

than that of PC
61
BM, but the performances of them in

PSCs are quite different. The better understanding of the
mechanism and performance for the devices based upon
PC
71
BM requires the information of conformations, elec-

tronic structures, optical properties, and so forth. In this
work, taking into account two kinds of possible isomers of
phenyl C

71
butyric acid methyl esters, the geometries, elec-

tronic structures, vibrational properties, polarizabilities, and
hyperpolarizabilities are calculated using density functional
theory (DFT), and the absorption properties which relate
to the character of excited states are addressed with time-
dependent DFT (TDDFT) [28–34]; the comparative analyses
for the isomers are also reported.

2. Computational Methods

The computations of the geometries and vibrational prop-
erties have been performed with Becke’s three parameters
gradient-corrected exchange potential and the Lee-Yang-Parr
gradient-corrected correlation potential (B3LYP) [35–38],
since the comparison with the MP2 geometries of several
organic molecules confirmed the accuracy of B3LYP for the
geometry optimizations [39]. In order to get the reliable cal-
culations of absorption spectra and excited states, the hybrid
functionals B3LYP and PBE0 [40–42], as well as long-range-
corrected hybrid functional Coulomb attenuation method
CAM-B3LYP [43], are adopted in TDDFT calculations. The
comparison of absorption spectra between experiment and
calculations demonstrates the better performance of CAM-
B3LYP functional in describing the excited state properties of
PC
71
BM.Thus, the electronic structures, polarizabilities, and

hyperpolarizabilities are also analyzed using CAM-B3LYP
functional. The nonequilibrium version of the polarizable
continuum model (PCM) [44] is employed to take account
of the solvent effects of toluene solution. The polarized split-
valence 6-31G(d,p) basis sets are sufficient for calculating

[6,6]PC71BM [5,6]PC71BM

Figure 1:The optimized geometrical structures of [6,6]PC
71
BMand

[5,6]PC
71
BM in gas phase (gray circles: C red circles: O; light gray

circles: H).

the excitation of organic molecules [45], and introducing
additional diffuse functions in basis sets generates negligible
effects on the electron density and hence on the accuracy
of DFT and TDDFT results [39]. All calculations were
performed with 6-31G(d,p) basis sets without any symmetry
constraints using the Gaussian 09 package [46].

3. Results and Discussion

3.1. Geometrical Structures. C
70

fullerene is composed of 12
five-C rings and 25 six-C rings with𝐷

5ℎ
symmetry. However,

when the C atom in the side chain of butyric acidmethyl ester
connects to C

70
cage, two possible isomers can be formed

since the C atom can connect to not only the most “polar”
carbon-carbon double bonds in C

70
(the adjacent edge of

six-C rings), but also the carbon-carbon single bond in C
70

(the adjacent edge between five-C rings and six-C rings),
and these two structures were denoted as [6,6]PC

71
BM and

[5,6]PC
71
BM, respectively. The isomerization is similar to

other fullerene derivatives [47].
The optimized geometries of [6,6]PC

71
BM and

[5,6]PC
71
BM at the B3LYP/6-31G(d,p) level in gas

phase are shown in Figure 1. The calculated total energy
of [6,6]PC

71
BM is about 0.54 eV lower than that of

[5,6]PC
71
BM. The NMR spectrum confirmed the stability of

[6,6]PC
71
BM isomer [17]. The selected bond lengths, bond

angles, and dihedral angles are listed in Tables s1 and s2 in
Supplementary Material available online at http://dx.doi.org/
10.1155/2013/612153. The calculated average bond lengths
of single and double bonds in fullerene cage of PC

71
BM

isomers are about 0.145 and 0.141 nm, respectively, which are
very close to the corresponding values (0.145 and 0.140 nm)
of C
70

fullerene obtained from the same level of theoretical
calculation.The bond character of C5–C15 was changed from
double bond (0.140 nm) in pure C

70
fullerene to single bond

(0.163 nm) in [6,6]PC
71
BM due to forming a carbon trigon

(C5–C15–C71) through the changes of orbital hybridization,
and the change of C5–C15 bond length is similar to the cases
of C
60
-TPA [48] and N-methyl-3,4-fulleropyrrolidine [49],

while, in [5,6]PC
71
BM, the atomic distance between C14 and

C15 is about 0.213 nm, which far exceeds the typical C–C
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Figure 2:The IR and Raman spectra of [6,6]PC
71
BM and [5,6]PC

71
BM.The top panel is IR spectra, while the bottom panel is Raman spectra.

single bond length (0.154 nm). Therefore, the single bond of
C14–C15 is broken in the isomer. This is the main difference
between the two isomers and it may affect electronic and
optical properties. The other corresponding geometrical
parameters of these isomers are very similar because of the
localized character of chemical bonds.

3.2. IR and Raman. In order to investigate the IR and Raman
properties of PC

71
BM, the vibrational analyses are performed

based upon the optimized structures of isomers. The IR
and Raman spectra of [6,6]PC

71
BM and [5,6]PC

71
BM are

shown in Figure 2. The calculated vibrational data indicates
that there are no imaginary frequencies. This means that
the optimized isomer structures are the minima of potential
energy surface indeed.

The vibrational frequency ranges of [6,6]PC
71
BM and

[5,6]PC
71
BM are 10∼3210 cm−1 and 13∼3209 cm−1, respec-

tively. For [6,6]PC
71
BM, the strongest IR peaks at about 1219

and 1203 cm−1 correspond to the C–H bond-bending vibra-
tional modes in butyric acid methyl ester group, while the IR
peak at about 1826 cm−1 comes from stretch mode of C–O
bond in carbonyl group. As to [5,6]PC

71
BM, the vibrational

modes of the strongest peaks at about 1222 and 1826 cm−1 are

very similar to those of [6,6]PC
71
BM, whereas to Raman, for

[6,6]PC
71
BM, the peak at about 1609 cm−1 comes from the

stretching mode of C–C bonds in the fullerene cage, and the
peak at about 3210 cm−1 relates to the stretching mode of C–
H bonds in phenyl group. Again, the vibrational modes of
peaks at about 1608 and 3209 cm−1 for [5,6]PC

71
BM are very

similar to those of [6,6]PC
71
BM. Furthermore, the strengths

of IR and Raman at the strongest peaks of [6,6]PC
71
BM are

slightly larger than those of [5,6]PC
71
BM due to its larger

dipole moment. The vibrational modes at the IR and Raman
peaks of PC

71
BM are very similar to those of PC

61
BM [50]

due to the same moiety and the similarity of fullerene cages.

3.3. Absorption Spectra andElectronic Structures. TheUV/Vis
absorption of PC

71
BM was measured in toluene solution,

and the absorption peaks locate at about 462 and 372 nm,
respectively [17]. Also, the experiment demonstrated that
the absorption coefficient of PC

71
BM is significantly higher

than that of PC
61
BM in the visible region [17]. The better

absorption properties of PC
71
BM are favorable for improving

light harvesting efficiency in OPV. In order to select a suitable
functional for the excitations of PC

71
BM, the B3LYP, PBE0,

and CAM-B3LYP functionals are adopted in computing
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Figure 3: The simulated absorption spectra for [6,6]PC
71
BM and

[5,6]PC
71
BM based upon TD-DFT results calculated with different

functionals. The 0.15 eV of half-width at half-maximum was applied
for simulating absorption spectra.

the absorption spectra of the isomers in toluene solution.
The simulated absorption spectra for the two isomers of
PC
71
BM are presented in Figure 3. Apparently, the excitation

energies calculated with CAM-B3LYP are larger than the
corresponding values calculated with PBE0 and B3LYP func-
tionals due to the differentmethods for dealingwith exchange
and correlation energies. Comparing with the experimental
results, we found that the CAM-B3LYP functional results
agree well with the experimental data.

The excitation properties for the first excited state S
1

and the excited states at absorption peaks in UV-Vis region
for [6,6]PC

71
BM and [5,6]PC

71
BM in toluene are listed

in Table 1, which includes the excitation energies (eV),
wavelength (nm), oscillator strengths (𝑓) and the transition

MOs

HOMO-3

HOMO-2

HOMO-1

HOMO

LUMO

LUMO + 1

LUMO + 2

LUMO + 3

[6,6]PC71BM [5,6]PC71BM

Figure 4: Isodensity plots (isodensity contour = 0.02 a.u.) of the
frontier molecular orbitals of [6,6]PC

71
BM and [5,6]PC

71
BM with

CAM-B3LYP functional.

configurations with coefficients larger than 10%. The results
indicate that the excitation energies at the absorptionmaxima
for the isomers are very close, and the excited states include
several transition configurations. To understand the tran-
sition character, the molecular orbitals involved transitions
in Table 1 are presented in Figure 4. The HOMOs are 𝜋
orbitals between C–C bonds in fullerene cage, while the
LUMOs are 𝜋∗ orbitals in fullerene. Thus, the transitions
in Table 1 are localized 𝜋-𝜋∗ transitions in fullerenes cages.
This is different from that of PC

61
BM, which has several

intramolecular charge transfer transitions [50].
The exciton binding energy (EBE), an important quantity

for the efficiency of excitonic solar cells, determines the
charge separation in solar cells [51].TheEBE can be calculated
as the difference between the electronic and optical band
gap energies [52]. The electronic band gap is calculated as
the energy difference between the HOMO and LUMO levels,
while the first excitation energy is adopted as the optical gap
[51, 53]. The molecular orbital energy levels and HOMO-
LUMO gaps of PC

71
BM isomers are shown in Figure 5.

The HOMO-LUMO gap of [6,6]PC
71
BM is about 4.34 eV,

which is about 0.09 eV smaller than that of [5,6]PC
71
BM.The

calculated EBE for [6,6]PC
71
BM and [5,6]PC

71
BM are 2.08
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Table 1:The excitation energies (eV), wavelength (nm), oscillator strengths (𝑓), and the transition configurations with coefficients larger than
10% for the first excited state S1 and the excited states at absorption peaks in UV/Vis region for [6,6]PC71BM and [5,6]PC71BM in toluene.

States Transition configurations 𝐸 (nm/eV) 𝑓
[6,6]PC71BM

CAM-B3LYP
S1 H→ L (56%); H→ L + 1 (19%); H − 2 → L + 1 (13%) 548/2.26 0.0077
S7 H − 2→ L + 1 (56%); H→ L + 1 (10%) 456/2.72 0.0770
S22 H→ L + 3 (27%); H − 3→ L + 1 (17%); H − 2→ L + 3 (14%); H − 7→ L + 2 (12%); H − 3→ L (10%) 372/3.33 0.2047

B3LYP
S1 H→ L + 1 (73%); H→ L (26%) 621/2.00 0.0020
S8 H − 2→ L + 1 (69%) 530/2.34 0.0635
S25 H − 5→ L + 2 (32%); H − 8→ L (25%); H→ L + 3 (16%); H − 3→ L + 1 (10%) 444/2.79 0.0690

PBE0
S1 H→ L + 1 (89%) 597/2.08 0.0003
S8 H − 2→ L + 1 (69%) 512/2.43 0.0660
S25 H − 5→ L + 2 (24%); H − 7→ L + 2 (12%); H − 4→ L + 2 (11%) 425/2.92 0.0817

[5,6]PC71BM

CAM-B3LYP
S1 H→ L + 2 (28%); H − 1→ L (22%); H − 2→ L + 1 (15%); H − 1→ L + 2 (12%); H→ L (11%) 535/2.32 0.0003
S5 H→ L (29%); H − 1→ L (25%); H − 2→ L (18%) 478/2.60 0.0864
S29 H − 3→ L + 2 (26%); H→ L + 3 (23%); H − 1→ L + 3 (19%) 365/3.39 0.1991

B3LYP
S1 H→ L (87%) 608/2.04 0.0002
S8 H→ L + 2 (39%); H − 2→ L (19%); H − 4→ L (13%) 544/2.28 0.0709
S26 H − 7→ L + 1 (29%); H − 6→ L (22%); H − 7→ L + 2 (14%) 458/2.71 0.0738

PBE0
S1 H→ L (81%) 586/2.12 0.0003
S9 H − 1→ L + 2 (44%); H − 2→ L + 1 (23%); H − 4→ L + 1 (10%) 526/2.36 0.0537
S26 H − 6→ L (26%); H − 7→ L + 1 (25%); H − 7→ L + 2 (11%) 438/2.83 0.0828
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Figure 5: The calculated frontier molecular orbital energies and
HOMO-LUMO gaps (in eV) at the CAM-B3LYP/6-31G(d,p) level
in toluene solvent.

and 2.11 eV, respectively. The smaller EBE of [6,6]PC
71
BM is

favorable for exciton dissociation in heterojunction.

3.4. Polarizabilities and Hyperpolarizabilities. Polarizabilities
and hyperpolarizabilities characterize the response of a sys-
tem in an applied electric field in some extent [54], such
as the strength of molecular interactions, the cross sections

of scattering, collision processes, and the nonlinear optical
properties of the system [55, 56]. The definition for the
isotropic polarizability is

𝛼 =

1

3

(𝛼
𝑋𝑋
+ 𝛼
𝑌𝑌
+ 𝛼
𝑍𝑍
) , (1)

the polarizability anisotropy invariant is

Δ𝛼 = [

(𝛼
𝑋𝑋
− 𝛼
𝑌𝑌
)
2

+ (𝛼
𝑌𝑌
− 𝛼
𝑍𝑍
)
2

+ (𝛼
𝑍𝑍
− 𝛼
𝑋𝑋
)
2

2

]

1/2

,

(2)

and the average hyperpolarizability is

𝛽
‖
=

1

5

∑

𝑖

(𝛽
𝑖𝑖𝑍
+ 𝛽
𝑖𝑍𝑖
+ 𝛽
𝑍𝑖𝑖
) , (3)

where 𝛼
𝑋𝑋

, 𝛼
𝑌𝑌
, and 𝛼

𝑍𝑍
are tensor components of polar-

izability; 𝛽
𝑖𝑖𝑍
, 𝛽
𝑖𝑍𝑖
, and 𝛽

𝑍𝑖𝑖
(𝑖 from 𝑋 to 𝑍) are tensor

components of hyperpolarizability. For [6, 6]PC
71
BM, the

calculated 𝛼
𝑋𝑋

, 𝛼
𝑌𝑌
, and 𝛼

𝑍𝑍
are 818.5, 699.3, and 638.9 a.u.,

respectively, and the computed 𝛽
𝑋𝑋𝑍

, 𝛽
𝑌𝑌𝑍

, and 𝛽
𝑍𝑍𝑍

are
67.0, −28.6, and −98.8 a.u., respectively. For [5,6]PC

71
BM,

the corresponding tensor components are 817.1, 711.7, and
614.4 a.u., respectively, and the calculated 𝛽

𝑋𝑋𝑍
, 𝛽
𝑌𝑌𝑍

, and
𝛽
𝑍𝑍𝑍

are −26.7, −2.4, and −108.4 a.u., respectively. In addition
to the individual tensor components of the polarizabilities
and the first hyperpolarizabilities, the calculated isotropic
polarizability, polarizability anisotropy invariant, and average
hyperpolarizability for [6,6]PC

71
BM are 𝛼 = 718.9 a.u.,

Δ𝛼 = 158.3 a.u., and 𝛽
‖
= −36.2 a.u., respectively, and
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the corresponding values for [5,6]PC
71
BM are 723.4, 153.2,

and −82.5 a.u., respectively. The values are larger than that of
PC
61
BM (𝛼 = 577.7 a.u., Δ𝛼 = 96.9 a.u., and 𝛽

‖
= −22.8 a.u.

(B3LYP/3-21G∗)) [50] due to the C
70

fullerene cage. This
means that PC

71
BM has stronger response of external field

and better nonlinear optical properties than that of PC
61
BM.

4. Conclusions

In this work, the geometries, IR and Raman, electronic struc-
tures, polarizabilities, and hyperpolarizabilities of PC

71
BM

isomers are studied by using DFT; the absorption and excita-
tion properties are addressed via TDDFT with B3LYP, PBE0,
and CAM-B3LYP functionals. Based upon the calculated
results, we found the following: the lower total energy of
[6,6]PC

71
BM suggests that [6,6]PC

71
BM is more stable than

[5,6]PC
71
BM.The geometrical characters reveal that the C–C

bond at the edge of six-C rings is changed from double bond
in pure C

70
fullerene to single bond in [6,6]PC

71
BM, while

the C–C bond at the edge between five-C and six-C rings
is broken in [5,6]PC

71
BM. The wave numbers of strongest

IR peaks of [6,6]PC
71
BM and [5,6]PC

71
BM are 1219 and

1222 cm−1, respectively. The Raman peaks of [6,6]PC
71
BM

and [5,6]PC
71
BM locate at about 1609 and 1608 cm−1,

respectively. The vibrational modes of [6,6]PC
71
BM and

[5,6]PC
71
BM at IR and Raman peaks are quite similar and

also very similar to that of PC
61
BM. Compared with the

experimental absorption properties, it can be found that the
CAM-B3LYP functional is the most suitable functional for
describing excitations of PC

71
BM. The analysis of transition

configurations and MOs demonstrated that the transitions
at the absorption maxima in UV/Vis region are localized
𝜋-𝜋∗ transitions in fullerenes cages. The calculated EBE
for [6,6]PC

71
BM and [5,6]PC

71
BM are 2.08 and 2.11 eV,

respectively. The smaller EBE of [6,6]PC
71
BM is favorable

for exciton dissociation in heterojunction. Furthermore, the
larger isotropic polarizability of PC

71
BM indicates that the

response of PC
71
BM to applied external electric field is

stronger than that of PC
61
BM, and therefore resulting into

better nonlinear optical properties.
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