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During the last few years, a great deal of attention has been focused on Lasso and Dantzig selector in high-dimensional linear
regression when the number of variables can be much larger than the sample size. Under a sparsity scenario, the authors (see,
e.g., Bickel et al., 2009, Bunea et al., 2007, Candes and Tao, 2007, Candès and Tao, 2007, Donoho et al., 2006, Koltchinskii, 2009,
Koltchinskii, 2009, Meinshausen and Yu, 2009, Rosenbaum and Tsybakov, 2010, Tsybakov, 2006, van de Geer, 2008, and Zhang and
Huang, 2008) discussed the relations between Lasso and Dantzig selector and derived sparsity oracle inequalities for the prediction
risk and bounds on the 𝐿𝑝 estimation loss. In this paper, we point out that some of the authors overemphasize the role of some
sparsity conditions, and the assumptions based on this sparsity condition may cause bad results. We give better assumptions and
the methods that avoid using the sparsity condition. As a comparison with the results by Bickel et al., 2009, more precise oracle
inequalities for the prediction risk and bounds on the 𝐿𝑝 estimation loss are derived when the number of variables can be much
larger than the sample size.

1. Introduction

During the last few years, a great deal of attention has been
focused on the 𝐿1 penalized least squares (Lasso) estimator
of parameters in high-dimensional linear regression when
the number of variables can be much larger than the sample
size (e.g., see [1–12]). Quite recently, Candes and Tao [13]
have proposed the Dantzig estimate for such linear models,
and other authors [1, 6, 14–22] have discussed the Dantzig
estimate and established the properties under a sparsity
scenario, that is, when the number of nonzero components
of the true vector of parameters is small.

Lasso estimators have also been studied in the nonpara-
metric regression setup (see [23–26]). In particular, Bunea
et al. [23, 24] obtain sparsity oracle inequalities for the
prediction loss in this context and point out the implications
forminimax estimation in classical nonparametric regression
settings as well as for the problem of aggregation of esti-
mators. Modified versions of Lasso estimators (nonquadratic
terms and/or penalties slightly different from 𝐿1) for non-
parametric regression with random design are suggested and

studied under prediction loss in Koltchinskii [27] and van
de Geer [28]. Sparsity oracle inequalities for the Dantzig
selector with random design are obtained by Koltchinskii
[29]. In linear fixed design regression, Meinshausen and Yu
[7] establish a bound on the 𝐿2 loss for the coefficients of
Lasso that are quite different from the bound on the same
loss for the Dantzig selector proven in Candes and Tao [13].
Bickel et al. [15] show that, under a sparsity scenario, the Lasso
and the Dantzig selector exhibit similar behavior, both for
linear regression and for nonparametric regression models,
for 𝐿2 prediction loss, and for 𝐿𝑝 loss in the coefficients for
1 ≤ 𝑝 ≤ 2. In the nonparametric regressionmodel, they prove
sparsity oracle inequalities for the Lasso and the Dantzig
selector. Moreover, the Lasso and the Dantzig selector are
approximately equivalent in terms of the prediction loss.
They develop geometrical assumptions that are considerably
weaker than those of Candes and Tao [13] for the Dantzig
selector and Bunea et al. [23] for the Lasso.

We give the assumptions equivalent with assumptions
by Bickel et al. [15] and derive oracle inequalities that are
more precise than Bickel et al.’s [15] for the prediction risk
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in the general nonparametric regression model and bounds
that are more precise than Bickel et al.’s [15] on the 𝐿𝑝
estimation loss in the linear model when the number of
variables can be much larger than the sample size. We
begin, in the next section, by defining the Lasso and Dantzig
procedures and the notation. In Section 3, we present our
key three assumptions and discuss the relations between
the assumptions and assumptions by Bickel et al. [15]. In
Section 4, we give some equivalent results and sparsity
oracle inequalities for the Lasso and Dantzig estimators in
the general nonparametric regression model and improve
corresponding results by Bickel et al. [15]. The concluding
remarks are given in Section 5.

2. Definitions and Notations

Unless stated otherwise, all of our notations, definitions, and
terminologies follow Bickel et al. [15]. Let (𝑍1, 𝑌1), . . . , (𝑍𝑛,
𝑌𝑛) be a sample of independent random pairs with

𝑌𝑖 = 𝑓 (𝑍𝑖) + 𝑊𝑖, 𝑖 = 1, . . . , 𝑛, (1)

where 𝑓 : Z → R is an unknown regression function to be
estimated,Z is a Borel subset ofR𝑑, the𝑍𝑖’s are fixed elements
in Z, and the regression errors 𝑊𝑖 are Gaussian. Let 𝐹𝑀 =
{𝑓1, . . . , 𝑓𝑀} be a finite dictionary of functions 𝑓𝑗 : Z → R,
𝑗 = 1, . . . ,𝑀. We assume throughout that𝑀 ≥ 2.

Consider the matrix𝑋 = (𝑓𝑗(𝑍𝑖)), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . ,
𝑀 and the vectors y = (𝑌1, . . . , 𝑌𝑛)

𝑇, f = (𝑓(𝑍1), . . . , 𝑓(𝑍𝑛))
𝑇,

and w = (𝑊1, . . . ,𝑊𝑛)
𝑇. With the notation

y = f + w, (2)

we will write |𝑥|𝑝 for the 𝐿𝑝 norm of 𝑥 ∈ R𝑀, 1 ≤ 𝑝 ≤ ∞.
The notation ‖ ⋅ ‖𝑛 stands for the empirical norm

󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝑛
= √
1

𝑛

󵄨󵄨󵄨󵄨𝑔
󵄨󵄨󵄨󵄨

2

2
(3)

for any 𝑔 : Z → R. We suppose that ‖𝑓𝑗‖𝑛 ̸= 0, 𝑗 = 1, . . . ,𝑀.
Set

𝑓max = max
1≤𝑗≤𝑀

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝑛
, 𝑓min = min

1≤𝑗≤𝑀

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝑛
. (4)

For any 𝛽 = (𝛽1, . . . , 𝛽𝑀)
𝑇
∈ R𝑀 and 𝑍 ∈ Z, define

𝑓𝛽(𝑍) = ∑
𝑀

𝑗=1
𝛽𝑗𝑓𝑗(𝑍) and f𝛽 = (𝑓𝛽(𝑍1), . . . , 𝑓𝛽(𝑍𝑛))

𝑇
= 𝑋𝛽.

The estimates we consider are all of the form 𝑓
𝛽
(⋅), where 𝛽 is

data determined. Since we consider mainly sparse vectors 𝛽,
it will be convenient to define the following. Let

𝑀(𝛽) =

𝑀

∑

𝑗=1

𝐼{𝛽𝐽 ̸= 0}
=
󵄨󵄨󵄨󵄨𝐽 (𝛽)

󵄨󵄨󵄨󵄨 (5)

denote the number of nonzero coordinates of 𝛽, where 𝐼{⋅}
denotes the indicator function, 𝐽(𝛽) = {𝑗 ∈ {1, . . . ,𝑀} : 𝛽𝑗 ̸=
0}, and |𝐽| denotes the cardinality of 𝐽. For a vector 𝛿 ∈ R𝑀

and a subset 𝐽 ⊂ {1, . . . ,𝑀}, we denote by 𝛿𝐽 the vector inR
𝑀

that has the same coordinates as 𝛿 on 𝐽 and zero coordinates
on the complement 𝐽𝑐 of 𝐽.

Define the Lasso solution 𝛽𝐿 = (𝛽1,𝐿, . . . , 𝛽𝑀,𝐿)
𝑇 by

𝛽𝐿 = argmin
𝛽∈R𝑀

{

{

{

1

𝑛

󵄨󵄨󵄨󵄨𝑦 − 𝑋𝛽
󵄨󵄨󵄨󵄨

2

2
+ 2𝑟

𝑀

∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑓𝑗

󵄩󵄩󵄩󵄩󵄩𝑛

󵄨󵄨󵄨󵄨󵄨
𝛽𝑗

󵄨󵄨󵄨󵄨󵄨

}

}

}

, (6)

where 𝑟 > 0 is some tuning constant, and introduce the cor-
responding Lasso estimator

𝑓𝐿 (𝑍) = 𝑓𝛽𝐿
(𝑍) =

𝑀

∑

𝑗=1

𝛽𝑗,𝐿𝑓𝑗 (𝑍) . (7)

The Dantzig selector is defined by

𝛽𝐷 = argmin {󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨1
:
1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝐷
−1/2
𝑋
𝑇
(𝑦 − 𝑋𝛽)

󵄨󵄨󵄨󵄨󵄨∞
≤ 𝑟} , (8)

where𝐷 is the diagonal matrix

𝐷 = diag {󵄩󵄩󵄩󵄩𝑓1
󵄩󵄩󵄩󵄩

2

𝑛
,
󵄩󵄩󵄩󵄩𝑓2
󵄩󵄩󵄩󵄩

2

𝑛
, . . . ,
󵄩󵄩󵄩󵄩𝑓𝑀
󵄩󵄩󵄩󵄩

2

𝑛
} . (9)

The Dantzig estimator is defined by

𝑓𝐷 (𝑍) = 𝑓𝛽𝐷
(𝑍) =

𝑀

∑

𝑗=1

𝛽𝑗,𝐷𝑓𝑗 (𝑍) , (10)

where 𝛽𝐷 = (𝛽1,𝐷, . . . , 𝛽𝑀,𝐷)
𝑇 is the Dantzig selector.

We refer to Bickel et al. [15] for detailed discussion of the
Dantzig constraint and the constraint that the Lasso selector
satisfies.

Finally, for any 𝑛 ≥ 1, 𝑀 ≥ 2, we consider the Gram
matrix

Ψ𝑛 =
1

𝑛
𝑋
𝑇
𝑋 = (

1

𝑛

𝑛

∑

𝑖=1

𝑓𝑗 (𝑍𝑖) 𝑓𝑘 (𝑍𝑖)) , 1 ≤ 𝑗, 𝑘 ≤ 𝑀,

(11)

and let 𝜙max denote the maximal eigenvalue of Ψ𝑛.

3. Discussion of the Assumptions

Under the sparsity scenario, we are typically interested in
the case where 𝑀 > 𝑛 and even 𝑀 ≫ 𝑛. Here, sparsity
specifies that the high-dimensional vector 𝛽 has coefficients
that are mostly 0. Clearly, the matrix Ψ𝑛 is degenerate, and
ordinary least squares do not work in this case, since the
require positive definiteness of Ψ𝑛. That is,

min
𝛿∈R𝑀,𝛿 ̸= 0

|𝑋𝛿|2

√𝑛|𝛿|2

> 0. (12)

It turns out that the Lasso and Dantzig selector require much
weaker assumptions. The idea by Bickel et al. [15] is that
the minimum in (12) be replaced by the minimum over a
restricted set of vectors, and the norm |𝛿|2 in the denomi-
nator of the condition be replaced by the 𝐿2 norm of only
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a part of 𝛿. This is feasible. Because for the linear regression
model, the residuals 𝛿 = 𝛽𝐿 − 𝛽 and 𝛿 = 𝛽𝐷 − 𝛽 satisfy

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽𝑐
0

󵄨󵄨󵄨󵄨󵄨1
≤ 𝑐0

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
(13)

with 𝑐0 = 1 by Candes and Tao [13] and 𝑐0 = 3 by Bickel et al.
[15], respectively, where 𝑐0 > 0 and 𝐽0 = 𝐽(𝛽) is the set of
nonzero coefficients of the true parameter 𝛽 of the model;
therefore, for any 𝛿 satisfying (13), we have

𝛿
𝑇
Ψ𝑛𝛿

|𝛿|
2

2

≥
𝛿
𝑇
Ψ𝛿

|𝛿|
2

2

− 𝜀𝑛(1 + 𝑐0)
2 󵄨󵄨󵄨󵄨𝐽0
󵄨󵄨󵄨󵄨 , (14)

whereΨ is a positive definitematrix and 𝜀𝑛 = max |(Ψ𝑛−Ψ)𝑖𝑗|.
Thus, we have a kind of “restricted” positive definiteness if
𝜀𝑛|𝐽0| is small enough. This results in the following restricted
eigenvalue (RE) assumption.

Assumption RE(𝑠, 𝑐0) (Bickel et al. [15]). For some integer 𝑠
such that 1 ≤ 𝑠 ≤ 𝑀 and a positive number 𝑐0, the following
condition holds:

𝜅 (𝑠, 𝑐0) ≜ min
𝐽0⊆{1,2,...,𝑀},|𝐽0|≤𝑠

min
𝛿 ̸= 0,
󵄨󵄨󵄨󵄨󵄨󵄨
𝛿𝑐
𝐽0

󵄨󵄨󵄨󵄨󵄨󵄨1
≤𝑐0
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

|𝑋𝛿|2

√𝑛
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨2

> 0. (15)

The purpose of giving this assumption may be in order to
facilitate the use of |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
since they frequently use

it in the proofs of their theorems and so do Candes and Tao
[13].

Note that the role of |𝛿𝐽𝑐
0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
is only to restrict set

of vectors; that is, {𝛿 ∈ R𝑀 : 𝛿 ̸= 0} restricts to {𝛿 ∈ R𝑀 : 𝛿 ̸=
0, |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
}. Therefore, it is not necessary that the

norm |𝛿|2 in the denominator of (12) be replaced by the 𝐿2
norm of only a part of 𝛿. We give the following assumptions.

Assumption RE𝜏1(𝑠, 𝑐0). For some integer 𝑠 such that 1 ≤ 𝑠 ≤
𝑀 and a positive number 𝑐0, the following condition holds:

𝜏1 (𝑠, 𝑐0) ≜ min
𝐽0⊆{1,2,...,𝑀},|𝐽0|≤𝑠

min
𝛿 ̸= 0,
󵄨󵄨󵄨󵄨󵄨󵄨
𝛿𝑐
𝐽0

󵄨󵄨󵄨󵄨󵄨󵄨1
≤𝑐0
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

|𝑋𝛿|2

√𝑛
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

> 0. (16)

Assumption RE𝜏2(𝑠, 𝑐0). For some integer 𝑠 such that 1 ≤ 𝑠 ≤
𝑀 and a positive number 𝑐0, the following condition holds:

𝜏2 (𝑠, 𝑐0) ≜ min
𝐽0⊆{1,2,...,𝑀},|𝐽0|≤𝑠

min
𝛿 ̸= 0,
󵄨󵄨󵄨󵄨󵄨󵄨
𝛿𝑐
𝐽0

󵄨󵄨󵄨󵄨󵄨󵄨1
≤𝑐0
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

|𝑋𝛿|2

√𝑛|𝛿|1

> 0. (17)

Assumption RE𝜏3(𝑠, 𝑐0). For some integer 𝑠 such that 1 ≤ 𝑠 ≤
𝑀 and a positive number 𝑐0, the following condition holds:

𝜏3 (𝑠, 𝑐0) ≜ min
𝐽0⊆{1,2,...,𝑀},|𝐽0|≤𝑠

min
𝛿 ̸= 0,
󵄨󵄨󵄨󵄨󵄨󵄨
𝛿𝑐
𝐽0

󵄨󵄨󵄨󵄨󵄨󵄨1
≤𝑐0
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

|𝑋𝛿|2

√𝑛|𝛿|2

> 0. (18)

Note that 𝜏2(𝑠, 𝑐0) ≤ 𝜏1(𝑠, 𝑐0) ≤ 𝜅(𝑠, 𝑐0) and 𝜏2(𝑠, 𝑐0) ≤
𝜏3(𝑠, 𝑐0) ≤ 𝜅(𝑠, 𝑐0) since |𝛿𝐽0 |2 ≤ |𝛿𝐽0 |1 ≤ |𝛿|1 and |𝛿𝐽0 |2 ≤
|𝛿|2 ≤ |𝛿|1. Moreover, it is easy to see that for fixed 𝑛, the four

assumptions are equivalent, and those assumptions 1–5 by
Bickel et al. [15] are all sufficient conditions for assumptions
RE𝜏1(𝑠, 𝑐0), RE𝜏2(𝑠, 𝑐0), and RE𝜏3(𝑠, 𝑐0).

In Section 4, we will see that RE𝜏1(𝑠, 𝑐0) and RE𝜏2(𝑠, 𝑐0)
are all better than 𝜅(𝑠, 𝑐0) since they use |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1

and |𝛿𝐽0 |1 ≤ |𝐽0|
1/2
|𝛿𝐽0
|
2
as little as possible. Therefore, the

inequalities given are more precise.

4. Comparisons with the Results by
Bickel et al.

In the following, we give a bound of the prediction losses
‖𝑓𝐿 − 𝑓‖

2

𝑛
with respect to ‖𝑓𝐷 − 𝑓‖

2

𝑛
when the number of

nonzero components of the Lasso or the Dantzig selector is
small as compared to the sample size.

Theorem 1. Let𝑊𝑖 be independent𝑁(0, 𝜎2) random variables
with 𝜎2 > 0. Fix 𝑛 ≥ 1,𝑀 ≥ 2. Let assumption RE(𝑠, 𝑐0) or
RE𝜏1(𝑠, 𝑐0) be satisfied with 1 ≤ 𝑠 ≤ 𝑀, where 𝑐0 > 0, and
let ‖𝑓𝑗‖𝑛 = 1, 𝑗 = 1, . . . ,𝑀. Consider the Lasso estimator 𝑓𝐿
defined by (6)-(7) with

𝑟 = 𝐴𝜎√
log𝑀
𝑛
, (19)

where𝐴 > 2√2, and consider theDantzig estimator𝑓𝐷 defined
by (10)with the same 𝑟. If𝑀(𝛽𝐷) ≤ 𝑠, then, with probability at
least 1 −𝑀1−𝐴

2
/8, one has

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 9𝐴
2 𝜎
2

𝑛

log𝑀
𝜏
2
1
(𝑠, 𝑐0)

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 9𝐴
2
𝑀(𝛽𝐷) 𝜎

2

𝑛

log𝑀
𝜅2 (𝑠, 𝑐0)

.

(20)

Proof. Set 𝛿 = 𝛽𝐿−𝛽𝐷.We apply (B.1) by Bickel et al. [15] with
𝛽 = 𝛽𝐷, which yields that, with probability at least 1−𝑀

1−𝐴
2
/8,

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 4𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
− 𝑟|𝛿|1, (21)

where 𝐽0 = 𝐽(𝛽𝐷). From (B.16) by Bickel et al. [15], we have
󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 3𝑟|𝛿|1 −

1

𝑛
|𝑋𝛿|
2

2
. (22)

Then,
󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 3𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
−
1

4𝑛
|𝑋𝛿|
2

2
.

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ (3𝑟

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

√𝑛

|𝑋𝛿|2

)

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑟
2

𝜏
2
1
(𝑠, 𝑐0)

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+

9𝑟
2
𝑀(𝛽𝐷)

𝜅2 (𝑠, 𝑐0)
.

(23)
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Corollary 2. Let the conditions of Theorem 1 hold, but with
RE(𝑠, 5) in place of RE(𝑠, 𝑐0). If𝑀(𝛽𝐷) ≤ 𝑠, then, with proba-
bility at least 1 −𝑀1−𝐴

2
/8, one has

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 9𝐴
2
𝑀(𝛽𝐷) 𝜎

2

𝑛

log𝑀
𝜅2 (𝑠, 5)

. (24)

This corollary greatly improves Theorem 5.2 by Bickel
et al. [15]. The right-hand side of the inequality of Theorem
5.2 is

10
󵄩󵄩󵄩󵄩󵄩
𝑓𝐷 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 81𝐴

2
𝑀(𝛽𝐷) 𝜎

2

𝑛

log𝑀
𝜅2 (𝑠, 5)

. (25)

A general discussion of sparsity oracle inequalities can
be found in Tsybakov [30]. Here, we prove a sparsity oracle
inequality for the prediction loss of the Lasso estimators. Such
inequalities have been recently obtained for the Lasso-type
estimators in a number of settings, see [15, 23, 24, 27, 28].

Theorem3. Let𝑊𝑖 be independent𝑁(0, 𝜎2) random variables
with 𝜎2 > 0. Fix integers 𝑛 ≥ 1, 𝑀 ≥ 2, 1 ≤ 𝑠 ≤ 𝑀. Let
assumption RE(𝑠, 𝑐0) or RE𝜏1(𝑠, 𝑐0) be satisfied, where 𝑐0 > 0.
Consider the Lasso estimator 𝑓𝐿 defined by (6)-(7) with

𝑟 = 𝐴𝜎√
log𝑀
𝑛

(26)

for some𝐴 > 2√2. Then, with probability at least 1 −𝑀1−𝐴
2
/8,

one has

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑓
2

max𝐴
2
𝜎
2

𝜏
2
1
(𝑠, 𝑐0)

log𝑀
𝑛

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑓
2

max𝐴
2
𝜎
2

𝜅2 (𝑠, 𝑐0)

𝑀 (𝛽) log𝑀
𝑛

.

(27)

Proof. Fix an arbitrary 𝛽 ∈ R𝑀 with 𝑀(𝛽) ≤ 𝑠. Set 𝛿 =
𝐷
1/2
(𝛽𝐿 − 𝛽), 𝐽0 = 𝐽(𝛽), where 𝐷

1/2
= diag{||𝑓1||𝑛, . . . ,

||𝑓𝑀||𝑛}. On the event 𝐴 in p1723 by Bickel et al. [15], we get,
from the first line in (B.1) by Bickel et al. [15], that

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 4𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
− 𝑟|𝛿|1. (28)

Since
󵄨󵄨󵄨󵄨󵄨
𝑓 − 𝑋𝛽𝐿

󵄨󵄨󵄨󵄨󵄨

2

2

=
󵄨󵄨󵄨󵄨𝑓 − 𝑋𝛽

󵄨󵄨󵄨󵄨

2

2
− 2𝛿
𝑇
𝐷
−1/2
𝑋
𝑇
(𝑓 − 𝑋𝛽𝐿) −

󵄨󵄨󵄨󵄨󵄨
𝑋𝐷
−1/2
𝛿
󵄨󵄨󵄨󵄨󵄨

2

2
,

(29)

then
󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛

+
2

𝑛
|𝛿|1

󵄨󵄨󵄨󵄨󵄨
𝐷
−1/2
𝑋
𝑇
(𝑓 − 𝑋𝛽𝐿)

󵄨󵄨󵄨󵄨󵄨∞
−
1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋𝐷
−1/2
𝛿
󵄨󵄨󵄨󵄨󵄨

2

2
.

(30)

From (8) and (B.5) by Bickel et al. [15], we have

1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝐷
−1/2
𝑋
𝑇
(𝑓 − 𝑋𝛽𝐿)

󵄨󵄨󵄨󵄨󵄨∞
≤
3𝑟

2
,

1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋𝐷
−1/2
𝛿
󵄨󵄨󵄨󵄨󵄨

2

2
=
1

𝑛
𝛿
𝑇
𝐷
−1/2
𝑋
𝑇
𝑋𝐷
−1/2
𝛿 ≥

1

𝑛𝑓2max
|𝑋𝛿|
2

2
.

(31)

Thus,

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 3𝑟|𝛿|1 −

1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋𝐷
−1/2
𝛿
󵄨󵄨󵄨󵄨󵄨

2

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 3𝑟|𝛿|1 −

1

𝑛𝑓2max
|𝑋𝛿|
2

2
.

(32)

From (28) and (32), we have

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ 3𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
−

1

4𝑛𝑓2max
|𝑋𝛿|
2

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+ (3𝑟

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1

√𝑛𝑓max
|𝑋𝛿|2

)

2

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑟
2
𝑓
2

max
𝜏
2
1
(𝑠, 𝑐0)

≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑟
2
𝑓
2

max
𝜅2 (𝑠, 𝑐0)

𝑀 (𝛽) .

(33)

Corollary 4. Let the conditions of Theorem 3 hold, but with
RE(𝑠, 3 + 4/𝜀) in place of RE(𝑠, 𝑐0). Then, with probability at
least 1 −𝑀1−𝐴

2
/8, one has

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
≤
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
+
9𝑓
2

max𝐴
2
𝜎
2

𝜅2 (𝑠, 3 + 4/𝜀)

𝑀 (𝛽) log𝑀
𝑛

. (34)

This corollary greatly improves Theorem 6.1 by Bickel
et al. [15]. The right-hand side of the inequality of Theorem
6.1 is

(1 + 𝜀) inf
𝛽∈R𝑀,

𝑀(𝛽)≤𝑠

{
󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛

+
𝐶 (𝜀) 𝑓

2

max𝐴
2
𝜎
2

𝜅2 (𝑠, 3 + 4/𝜀)

𝑀 (𝛽) log𝑀
𝑛

} ,

(35)

where (1 + 𝜀)𝐶(𝜀) = 4(𝜀 + 2)2/𝜀 > 9.
In the following, we assume that the vector of observa-

tions y = (𝑌1, . . . , 𝑌𝑛)
𝑇 is of the form

y = 𝑋𝛽∗ + w, (36)

where 𝑋 is an 𝑛 × 𝑀 deterministic matrix, 𝛽∗ ∈ R𝑀, and
w = (𝑊1, . . . ,𝑊𝑛)

𝑇. We consider dimension 𝑀 that can be
of order 𝑛 and even much larger. Then, 𝛽∗ is, in general, not
uniquely defined. For𝑀 > 𝑛, if (36) is satisfied for 𝛽∗ = 𝛽0,
then there exists an affine space 𝑈 = {𝛽∗ : 𝑋𝛽∗ = 𝑋𝛽0} of
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vectors satisfying (36). The Lasso estimator of 𝛽∗ in (36) is
defined by

𝛽𝐿 = argmin
𝛽∈R𝑀

{
1

𝑛

󵄨󵄨󵄨󵄨y − 𝑋𝛽
󵄨󵄨󵄨󵄨

2

2
+ 2𝑟
󵄨󵄨󵄨󵄨𝛽
󵄨󵄨󵄨󵄨1
} . (37)

The correspondence between the notation here and that of
the previous is

󵄩󵄩󵄩󵄩󵄩
𝑓𝛽

󵄩󵄩󵄩󵄩󵄩

2

𝑛
=
1

𝑛

󵄨󵄨󵄨󵄨𝑋𝛽
󵄨󵄨󵄨󵄨

2

2
,

󵄩󵄩󵄩󵄩󵄩
𝑓𝛽 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
=
1

𝑛

󵄨󵄨󵄨󵄨𝑋(𝛽 − 𝛽
∗
)
󵄨󵄨󵄨󵄨

2

2
,

󵄩󵄩󵄩󵄩󵄩
𝑓𝐿 − 𝑓

󵄩󵄩󵄩󵄩󵄩

2

𝑛
=
1

𝑛

󵄨󵄨󵄨󵄨󵄨
𝑋(𝛽𝐿 − 𝛽

∗
)
󵄨󵄨󵄨󵄨󵄨

2

2
.

(38)

Theorem5. Let𝑊𝑖 be independent𝑁(0, 𝜎2) random variables
with 𝜎2 > 0. Let all the diagonal elements of the matrix𝑋𝑇𝑋/𝑛
be equal to 1, and let 𝑀(𝛽∗) ≤ 𝑠, where 1 ≤ 𝑠 ≤ 𝑀, 𝑛 ≥
1,𝑀 ≥ 2. Let assumption RE(𝑠, 𝑐0) or RE𝜏1(𝑠, 𝑐0) be satisfied,
where 𝑐0 > 0. Consider the Lasso estimator 𝛽𝐿 defined by (37)
with

𝑟 = 𝐴𝜎√
log𝑀
𝑛

(39)

and 𝐴 > 2√2. Then, with probability at least 1 −𝑀1−𝐴
2
/8, one

has

󵄨󵄨󵄨󵄨󵄨
𝛽𝐿 − 𝛽

∗󵄨󵄨󵄨󵄨󵄨1
≤

4𝐴

𝜏
2
1
(𝑠, 𝑐0)

𝜎√
log𝑀
𝑛
≤

4𝐴

𝜅2 (𝑠, 𝑐0)
𝜎𝑠√

log𝑀
𝑛
,

(40)

󵄨󵄨󵄨󵄨󵄨
𝑋(𝛽𝐿 − 𝛽

∗
)
󵄨󵄨󵄨󵄨󵄨

2

2

≤
144𝐴
2

25𝜏
2
1
(𝑠, 𝑐0)

𝜎
2 log𝑀 ≤ 144𝐴

2

25𝜅2 (𝑠, 𝑐0)
𝜎
2
𝑠 log𝑀,

(41)

𝑀(𝛽𝐿) ≤
576𝜙max
25𝜏
2
1
(𝑠, 𝑐0)

≤
576𝜙max
25𝜅2 (𝑠, 𝑐0)

𝑠. (42)

Proof. Set 𝛿 = 𝛽𝐿 − 𝛽∗and 𝐽0 = 𝐽(𝛽∗). Using (B.1) and
(B.2) by Bickel et al. [15], where we put 𝛽 = 𝛽∗, 𝑟𝑛,𝑗 ≡ 𝑟,
and ‖𝑓𝛽 − 𝑓‖𝑛 = 0, we get that, on the event 𝐴 (i.e., with
probability at least 1 −𝑀1−𝐴

2
/8),

1

𝑛
|𝑋𝛿|
2

2
≤ 4𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
− 𝑟|𝛿|1. (43)

From (B.16) by Bickel et al. [15], we have
2

𝑛
|𝑋𝛿|
2

2
≤ 3𝑟|𝛿|1. (44)

Then,
1

𝑛
|𝑋𝛿|
2

2
≤
12

5
𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
. (45)

By assumption RE(𝑠, 𝑐0) or RE𝜏1(𝑠, 𝑐0), we obtain that, on 𝐴,

𝜏
2

1
(𝑠, 𝑐0)

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨

2

1
≤
1

𝑛
|𝑋𝛿|
2

2
≤
12

5
𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
. (46)

Thus,

󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨2
≤
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
≤

12

5𝜏
2
1
(𝑠, 𝑐0)

𝑟 ≤
12

5𝜅2 (𝑠, 𝑐0)
𝑟√𝑠,

1

𝑛
|𝑋𝛿|
2

2
≤

144

25𝜏
2
1
(𝑠, 𝑐0)

𝑟
2
≤

144

25𝜅2 (𝑠, 𝑐0)
𝑟
2
𝑠.

(47)

From (43), we have

𝑟|𝛿|1 ≤ 4𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
−
1

𝑛
|𝑋𝛿|
2

2

≤ (

2𝑟
󵄨󵄨󵄨󵄨󵄨
𝛿𝐽0

󵄨󵄨󵄨󵄨󵄨1
√𝑛

|𝑋𝛿|2

)

2

≤
4𝑟
2

𝜏
2
1
(𝑠, 𝑐0)

≤
4𝑠𝑟
2

𝜅2 (𝑠, 𝑐0)
.

(48)

Thus,

|𝛿|1 ≤
4𝑟

𝜏
2
1
(𝑠, 𝑐0)

≤
4𝑠𝑟

𝜅2 (𝑠, 𝑐0)
. (49)

The inequalities (49) and (47) coincide with (40) and (41),
respectively. Next, (42) follows immediately from (B.3) in
Bickel et al. [15] and (41).

Corollary 6. Let the conditions of Theorem 5 hold, but with
RE(𝑠, 3) in place of RE(𝑠, 𝑐0). Then, with probability at least 1−
𝑀
1−𝐴
2
/8, one has

󵄨󵄨󵄨󵄨󵄨
𝛽𝐿 − 𝛽

∗󵄨󵄨󵄨󵄨󵄨1
≤
4𝐴

𝜅2 (𝑠, 3)
𝜎𝑠√

log𝑀
𝑛
, (50)

󵄨󵄨󵄨󵄨󵄨
𝑋(𝛽𝐿 − 𝛽

∗
)
󵄨󵄨󵄨󵄨󵄨

2

2
≤
144𝐴
2

25𝜅2 (𝑠, 3)
𝜎
2
𝑠 log𝑀, (51)

𝑀(𝛽𝐿) ≤
576𝜙max
25𝜅2 (𝑠, 𝑐0)

𝑠. (52)

This corollary improves Theorem 7.2 by Bickel et al. [15].
The right-hand sides of the inequalities of Theorem 7.2 are

16𝐴

𝜅2 (𝑠, 3)
𝜎𝑠√

log𝑀
𝑛
,

16𝐴
2

𝜅2 (𝑠, 3)
𝜎
2
𝑠 log𝑀,

64𝜙max
𝜅2 (𝑠, 3)

𝑠,

(53)

respectively. That is, they are 4, 25/9, and 25/9 times as large
as (50)–(52), respectively.

5. Conclusions

We point out that |𝛿𝐽𝑐
0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
with 𝑐0 = 1 by Candes and

Tao [13] and 𝑐0 = 3 by Bickel et al. [15] are only the sufficient
condition of Lasso and Dantzig selector. Their role should
not be overemphasized. That is, |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
should not

be deliberately used in any case for solving inequality. We
should use |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
as little as possible when proving

inequalities.
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In fact, the corresponding results have been enlarged due
to the use of |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
when solving the problems

of Lasso and Dantzig selector. When proving sparsity oracle
inequalities for the prediction loss and bounds on the 𝐿𝑝
estimation loss, using again |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
must be to enlarge

the inequalities again and to result in reduced accuracy.
We have seen that RE𝜏1(𝑠, 𝑐0) and RE𝜏2(𝑠, 𝑐0) are all much

better than 𝜅(𝑠, 𝑐0) since in RE𝜏1(𝑠, 𝑐0) and RE𝜏2(𝑠, 𝑐0) the use
of |𝛿𝐽𝑐

0
|
1
≤ 𝑐0|𝛿𝐽0

|
1
and |𝛿𝐽0 |1 ≤ |𝐽0|

1/2
|𝛿𝐽0
|
2
is less. Therefore,

the inequalities given are more precise.
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