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Based on the observed data from 51 meteorological stations during the period from 1958 to 2012 in Xinjiang, China, we investigated
the complexity of temperature dynamics from the temporal and spatial perspectives by using a comprehensive approach including
the correlation dimension (CD), classical statistics, and geostatistics.Themain conclusions are as follows (1)The integer CD values
indicate that the temperature dynamics are a complex and chaotic system, which is sensitive to the initial conditions. (2) The
complexity of temperature dynamics decreases along with the increase of temporal scale. To describe the temperature dynamics,
at least 3 independent variables are needed at daily scale, whereas at least 2 independent variables are needed at monthly, seasonal,
and annual scales. (3)The spatial patterns of CD values at different temporal scales indicate that the complex temperature dynamics
are derived from the complex landform.

1. Introduction

The Earth’s climate system is a complex, interconnected sys-
tem formed by the atmosphere, the oceans, and other bodies
of water, land surface, snow, and ice cover together with
all living organisms and linked by flows of energy andmatter.
To discover the complexity of climate change process, many
concepts and methods, such as entropy, fractal, nonlinearity,
chaos, wavelet, and artificial neural network, have been used
by scholars [1–6]. The climate models used in the research
on climate change have become more complex and are today
believed to be able to provide fairly reliable predictions of
future temperature ranges and climate developments. How-
ever, the models still do not cover a complete set of possible
mechanisms and they include considerable uncertainties.
Specifically, applying global scale simulation results to inter-
preting and predicting regional situations is challenging, and
in fact its applicability is questionable [7].

Studies have suggested that the climatic process is a
chaotic dynamic system, with nonlinearity as its basic charac-
teristic; nevertheless, there are still many open questions on
the complex system [3, 5, 8, 9] such as how to understand
the complexity of spatial and temporal scales of the regional
climatic system; the question has no satisfactory answer.

In the last 20 years, many studies have been conducted
to evaluate climatic change in the arid and semiarid regions
in northwestern China [10–14]. Some studies reached a
conclusion that there was a visible climatic transition in the
past half-century [15–18]. This transition was characterized
by a temperature increase trend. However, the conclusion
brought a question whether the increase trend is a regional
response to global warming or merely a rising stage in the
periodic dynamic process [19].

In order to understand the complexity of climatic dynam-
ics in Xinjiang, China, based on observed data at 51 meteoro-
logical stations during the period from 1958 to 2012, this study
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Figure 1: Elevation and locations of meteorological stations in the study area.

investigated the temperature dynamics frommultiple tempo-
ral scale and spatial perspectives by using a comprehensive
approach including the correlation dimension (CD), classical
statistics, and geostatistics.

2. Study Area and Data

2.1. Study Area. Located in the northwest of China, Xinjiang
is a typical semiarid and arid area. It extends between
73∘40󸀠–96∘23󸀠E and 34∘25󸀠–48∘10󸀠N and covers an area of
166.04 × 104 km2 (Figure 1). There are three mountain ranges
in Xinjiang. From south to north, they are Kunlun, Tianshan,
and Altay mountains. With their high elevations, these
mountains block atmospheric circulations and create two vast
desert basins in their rain-shadows between the mountains,
that is, the Tarim Basin in the south and the Junggar Basin
in the north. The Tianshan Mountain in the middle divides
Xinjiang into the northern and southern parts. Northern
Xinjiang has a continental arid and semiarid climate, with a
mean temperature of −13∘C in winter and 22.2∘C in summer.
Southern Xinjiang has a continental dry climate, with a
winter mean temperature of −5.7∘C and a summer mean
temperature of 24.4∘C. Annual precipitation is about 210mm
in northern Xinjiang while southern Xinjiang has less than
100mm. Because of the dry climate, evaporation in Xinjiang
is very strong with a mean annual pan evaporation between
1000 and 4500mm, which is 500–1000mm higher than other
places at the same latitude in China [11, 20].

2.2. Data. To ensure consistency and the longest continu-
ous observation, data from 51 ground-based meteorological
stations of the China Meteorological Administration (CMA)
were used in this study. In order to understand the complexity
of climate process from a multitemporal scale perspective,
the daily, monthly, seasonal, and annual air temperature data
from 1958 to 2012 were used for computation and analysis.

3. Methods

In order to understand the complexity of temperature
dynamics in Xinjiang, China, this paper conducted an inte-
grative approach combining the correlation dimension (CD),
classical statistics, and geostatistics method. Firstly, the CD
value was computed to show the chaotic and fractal charac-
teristics of temperature dynamics at different temporal scales.
Secondly, correlations between the CD value with geograph-
ical location and elevation was showed by the correlation
analysis and stepwise regression. Finally, the variogram and
cokriging methods were used to reveal the spatial pattern of
the CD values.

3.1. Correlation Dimension. The correlation dimension (CD)
is usually applied to analyze a time series and determine if it
exhibits a chaotic dynamic characteristic [21, 22]. Consider
𝑥(𝑡), the time series of annual runoff, and suppose that it is
generated by a nonlinear dynamic system with 𝑚 degrees of
freedom. To restore the dynamic characteristic of the original
system, it is necessary to construct an appropriate series
of state vectors, 𝑋(𝑚)(𝑡), with delay coordinates in the 𝑚-
dimensional phase space according to the basic ideas initiated
by Grassberger and Procaccia [23]:

𝑋
(𝑚)

(𝑡) = {𝑥 (𝑡) , 𝑥 (𝑡 + 𝜏) , . . . , 𝑥 (𝑡 + (𝑚 − 1) 𝜏)} , (1)

where𝑚 is the embedding dimension and 𝜏 is an appropriate
time delay.

The trajectory in the phase space is defined as a sequence
of 𝑚-dimensional vectors. If the dynamics of the system can
be reduced to a set of deterministic laws, the trajectories of the
system converge toward a subset of the phase space, which is
called an “attractor.” Many natural systems do not conform
with time to a cyclic trajectory. Some nonlinear dissipative
dynamic systems tend to shift toward the attractors for which
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the motion is chaotic, that is, not periodic and unpredictable
over long times. The attractors of such systems are called
strange attractors. For the set of points on the attractor, using
the G-P method [23], the correlation-integrals are defined to
distinguish between stochastic and chaotic behaviors.

The correlation-integrals can be defined as follows:
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where 𝑟 is the surveyor’s rod for distance, 𝑁
𝑅
is the number

of reference points taken from 𝑁, and 𝑁 is the number of
points, 𝑋(𝑚)(𝑡). The relationship between𝑁 and𝑁

𝑅
is𝑁
𝑅
=

𝑁−(𝑚−1)𝜏.Θ(𝑥) is the Heaviside function, which is defined
as

Θ (𝑥) = {

0 𝑥 ≤ 0

1 𝑥 > 0.

(3)

The expression counts the number of points in the dataset
that are closer than the radius, 𝑟, within a hypersphere of the
radius, 𝑟, and then divides this value by the square of the total
number of points (because of normalization). As 𝑟 → 0, the
correlation exponent, 𝑑, is defined as

𝐶 (𝑟) ∝ 𝑟
𝑑

. (4)

It is apparent that the correlation exponent, 𝑑, is given by
the slope coefficient of ln𝐶(𝑟) versus ln 𝑟. According to (ln 𝑟,
ln𝐶(𝑟)),𝑑 can be obtained by the least squaresmethod (LSM)
using a log-log grid (as shown in Figure 2).

To detect the chaotic behavior of the system, the cor-
relation exponent has to be plotted as a function of the
embedding dimension (as shown in Figure 3).

If the system is purely random (e.g., white noise), the
correlation exponent increases as the embedding dimension
increases, without reaching the saturation value. If there
are deterministic dynamics in the system, the correlation
exponent reaches the saturation value, which means that it
remains approximately constant as the embedding dimension
increases. The saturated correlation exponent is called the
correlation dimension (CD) of the attractor. The CD belongs
to the invariants of the motion on the attractor. It is generally
assumed that the CD equals the number of degrees of
freedomof the system, and higher embedding dimensions are
therefore redundant. For example, to describe the position
of the point on the plane (two-dimensional system), the
third dimension is not necessary because it is redundant.
In addition, the CD value is often fractal and represented
as a nonintegral dimension, which is typical for chaotic
dynamical systems that are very sensitive to initial conditions.

The CD value provides the information regarding the
dimension of the phase-space required for embedding the
attractor. It is important for determining the number of
dimensions necessary to embed the attractor and the number
of variables present in the evolution of the process.

We used the previous correlation dimension method to
analyze the chaotic and fractal characteristics for the temper-
ature dynamics in this study.
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Figure 2: A plot of ln𝐶(𝑟) versus ln (𝑟).
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Figure 3: The correlation exponent (𝑑) versus embedding dimen-
sion (𝑚).

3.2. Correlation Analysis and Stepwise Regression. Correla-
tion and regression analyses are the two commonly useful
methods in various disciplines of geography [24], which were
used to check the correlations between the CD value with
geographical location and elevation in this study.

The correlation analysis is one of the most useful classical
statistics, which is a statistical measurement of the correla-
tionship between two variables. Possible correlations range
from +1 to –1. A zero correlation indicates that there is no
relationship between the variables. A negative correlation
indicates that as one variable goes up, the other goes down.
A positive correlation indicates that both variables move in
the same direction together.

For the two variables, 𝑥 and 𝑦, the correlation coefficient
is calculated as

𝑟
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=
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, (5)
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where 𝑛 is the sample number; 𝑥
𝑖
represents the value of 𝑥

for the sample 𝑖; 𝑦
𝑖
represents the value of 𝑦 for the sample 𝑖;

𝑥 is the mean for all 𝑥
𝑖
; 𝑦 is the mean for all 𝑦

𝑖
. Commonly,

testing the significance of the correlation coefficient employs
the 𝑡 distribution.

Stepwise regression can be achieved either by trying out
one independent variable at a time and including it in the
regression model if it is statistically significant, or by includ-
ing all potential independent variables in the model and
eliminating those that are not statistically significant, or by a
combination of both methods.Themultiple linear regression
equation (MLRE) is as follows:

𝑌 = 𝑎
0
+ 𝑎
1
𝑋
1
+ 𝑎
2
𝑋
2
+ ⋅ ⋅ ⋅ + 𝑎

𝑘
𝑋
𝑘
, (6)

where 𝑌 is dependent variable and 𝑎
𝑖
is the coefficient of

the independent variables 𝑋
𝑖
(𝑖 = 1, 2, . . . , 𝑘). In this study,

the dependent variable is the CD value and the independent
variables are elevation, latitude, and longitude.

3.3. Geostatistics. Studies have shown that the parameters
of temperature dynamics are typical regionalized variables,
which are structural as well as stochastic [25, 26]. So its spatial
variability can be analyzed by the geostatistics method [27,
28].

3.3.1. The Variogram. The regionalized variable is regarded
as the value of a variable at a location 𝑥 as a realization of a
stochastic 𝑍(𝑥). This stochastic is assumed to be intrinsically
stationary.Thefirst is that the expected value of the stochastic,
𝐸 [𝑍(𝑥)], is constant for all 𝑥. Secondly, the variance of the
differences between the values of the variable at two different
locations depends only on the lag vector separating the two
locations and not on the absolute locations. In general, this
variance may be a function of both the direction and length
of the lag vector. If the regionalized variable is isotropic, the
variogram is purely a function of the length of the vector
which we denote by ℎ. Thus the relationship between values
from different locations is described by the variogram as
follows [27, 28]:

𝛾 (ℎ) =

1

2

𝐸 [(𝑍 (𝑥) − 𝑍 (𝑥 + ℎ))
2

] . (7)

The variogram is estimated from variable values observed
at sampled points, 𝑥

𝑠
, 𝑠 = 1, . . . , 𝑛. The method of estimator

is the average of squared differences between observations
separated by distance ℎ as follows:
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where 𝑍(𝑥
𝑖
) indicates the magnitude of regionalized variable

and 𝑁(ℎ) is the total number of pairs of attributes that are
separated by a distance ℎ.

3.3.2. Kriging and Cokriging Methods. Based on the vari-
ogram, Kriging and cokriging can be used to estimate the
values of regionalized variable at unsampled locations [29,
30].

Ordinary Kriging canmathematically be defined as given
in the following:
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weights are calculated to ensure that the estimator is unbiased
and the estimation variance is a minimum. The nonbias
condition requires that
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where 𝛾(𝑋
𝑖
, 𝑋
𝑗
) is the variogram between sampled point 𝑖

and point 𝑗, 𝛾(𝑋
𝑖
, 𝑋
∗

) is the variogram between sampled
point and estimated point, and 𝜇 is the Lagrange multiplier
of minimum condition.

The general form of cokriging equations is

V
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(11)

where 𝑢 and V are the primary and covariate (secondary)
variables, respectively. In the cokriging method, the 𝑢 and
V are cross-correlated and the covariate contributes to the
estimation of the primary variable. Generally, measuring the
covariate is simpler thanmeasuring the primary variable. For
cokriging analysis, the cross variogram (or cross-variogram)
should be determined in prior. Provided that there are points
where both 𝑢 and V have beenmeasured, the cross-variogram
is estimated by

𝛾
𝑢V (ℎ) =

1

2𝑁 (ℎ)

𝑁(ℎ)

∑

𝑖=1

[𝑍
𝑢
(𝑋
𝑖
) − 𝑍
𝑢
(𝑋
𝑖
+ ℎ)]

× [𝑍V (𝑋𝑖) − 𝑍V (𝑋𝑖 + ℎ)] .

(12)

4. Results and Discussion

4.1. The Chaotic Dynamic Process. Based on the meteoro-
logical data, we analyzed the chaotic dynamics with fractal
characteristic for the temperature dynamics by using the G-P
method [23].

Firstly, we randomly selected the time series of monthly
data from 7 meteorological stations (i.e., Altay, Tacheng,
Karamay, Urumqi, Turpan, Korla, and Hotan station) for
a pilot study. The plots of correlation exponent (𝑑) versus
embedding dimension (𝑚) were drawn as Figure 4.



The Scientific World Journal 5

Table 1: CD values at daily, monthly, seasonal, and annual scales for
51 meteorological stations.

Station Temporal scale
Annual Seasonal Monthly Daily

Habahe 1.3399 1.2538 1.7895 2.6373
Jeminay 1.4376 1.2197 1.7828 2.7597
Fuhai 1.2639 1.2245 1.6791 2.1925
Fuyun 1.3165 1.1562 1.7068 2.5836
Tacheng 1.4476 1.6813 1.8233 2.6653
Qinghe 1.2545 1.3797 1.7050 2.5283
Karamay 1.2587 1.4392 1.6682 2.4932
Beitashan 1.3605 1.4794 1.6964 2.7709
Wenquan 1.0238 1.6663 1.6578 2.5968
Jinghe 1.4741 1.4956 1.6771 2.4513
Wusu 1.4652 1.3343 1.6392 2.5162
Shihezi 1.2473 1.3688 1.6659 2.5461
Caijiahu 1.2623 1.3639 1.5986 2.4569
Yining 1.4580 1.4899 1.7926 2.6267
Zhaosu 1.4339 1.2854 1.7921 2.7418
Urumqi 1.4037 1.5881 1.7196 2.6578
Balguntay 1.0261 1.5104 1.6349 2.6119
Dabancheng 1.2890 1.5776 1.6765 2.5897
Shisanjianfang 1.2165 1.3803 1.6418 2.5630
Kumishi 1.0826 1.2733 1.5108 2.4163
Bayinbuluke 1.3018 1.8288 1.7219 2.5775
Yanqi 1.3682 1.4965 1.5582 2.4040
Turpan 1.3872 1.3478 1.4744 2.4458
Akzo 1.3614 1.3917 1.5661 2.4937
Baicheng 1.1443 1.2759 1.5931 2.4353
Luntai 1.0844 1.3784 1.5369 2.3993
Kuche 1.1113 1.3517 1.5945 2.5045
Torugart 1.4475 1.2478 1.7755 2.6989
Wuqia 1.2710 1.2497 1.7606 2.6237
Kashgar 1.4516 1.2459 1.6445 2.4876
Bachu 1.0044 1.2648 1.5567 2.4941
Kalpin 1.2194 1.3801 1.5522 2.4987
Tieganlike 1.3480 1.5565 1.4824 2.5297
Ruoqiang 1.3782 1.6542 1.4764 2.5498
Tashkuergan 1.4328 1.5879 1.8265 2.6284
Shache 1.4771 1.3357 1.5625 2.5330
Pishan 1.3998 1.6722 1.6570 2.5574
Khotan 1.3830 1.4586 1.6318 2.5564
Minfeng 1.1925 1.2186 1.5654 2.5446
Qiemo 1.4022 1.7546 1.5209 2.0532
Yutian 1.4214 1.5872 1.5632 2.5299
Barkol 1.0545 1.5801 1.6959 2.6697
Hami 1.4728 1.1299 1.5723 2.5422
Hongliuhe 1.0456 1.2998 1.6512 2.1780
Altay 1.5126 1.6475 1.7613 2.6203
Qitai 1.4519 1.3791 1.6876 2.5112
Korla 1.3495 1.2753 1.5945 2.5238

Table 1: Continued.

Station Temporal scale
Annual Seasonal Monthly Daily

Aheqi 1.4504 1.5167 1.6792 2.6041
Alar 1.0457 1.3586 1.4358 2.4821
Andehe 1.2264 1.3956 1.4202 2.6490
Yiwu 1.0170 1.1602 1.6505 2.5685
MCD 1.2995 1.4156 1.6397 2.5353
Note: MCD is the mean of correlation dimensions for all meteorological
stations.
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Figure 4: The plots of correlation exponent (𝑑) versus embedding
dimension (𝑚) for the time series of monthly data from the selected
7 meteorological stations.

Each plot in Figure 4 showed the gradual saturation pro-
cess of the correlation exponent. It is evident that the correla-
tion exponent increases with embedding dimension, 𝑚, and
a saturated correlation exponent, the correlation dimension
of attractor, that is, CD, was obtained when𝑚 ≥ 20.

Then, we repeated the previous process for the time series
of daily, monthly, seasonal, and annual data in each meteoro-
logical station, and the results revealed that the correlation
exponent reached the saturation value, which demonstrated
that there is correlation dimension of the attractor in the
temperature process at the each temporal scale (i.e., daily,
monthly, seasonal, and annual scales).

Table 1 showed the correlation dimensions, that is, CD
values, at daily, monthly, seasonal, and annual scales for 51
meteorological stations.

Because none of the CD values in Table 1 is integer, this
indicated that the temperature process at each temporal scale
is chaotic dynamic system with a fractal characteristic and is
sensitive to the initial conditions.

4.2.The Complexity of Temporal Scale. The last row in Table 1
showed the mean of CD values for every meteorological
station at daily, monthly, seasonal, and annual scales.



6 The Scientific World Journal

The order of the MCD (2.5353 > 1.6397 > 1.4156 > 1.2995)
reveals the complex order of the temperature dynamics
at daily, monthly, seasonal, and annual scales; that is, the
complexity of temperature dynamics decreases alongwith the
increase of temporal scale. We think that the results accord
with the facts, because the daily data series contains more
details, and then followed by monthly data series, seasonal
data series, and annual daily data series, respectively.Thus, we
conclude that the temperature process at a smaller temporal
scale is more complex than that at a larger temporal scale.

TheMCD values also provided the information about the
dimension of the phase-space required for embedding the
attractor. Because all the CD values at daily scale are above 2,
at least 3 independent variables are needed at to describe
the dynamics of temperature process at daily scale. The same
reason tells us that at least 2 independent variables are needed
to describe the dynamics of temperature process at monthly,
seasonal, and annual scales.

4.3.The Effect of Geographical Location and Elevation. Table 1
showed that the CD values at different sites (the sites of
meteorological station) are different at a same temporal scale
(i.e., daily, monthly, seasonal, and annual scales). Maybe their
spatial patterns are affected by the geographical location and
elevation.

To reveal the correlation of the CD value with geograph-
ical location and elevation, we computed the correlation
coefficients as in Table 2.

Table 2 showed that on the daily scale, the CD value
positively correlates with elevation at the significant level of
0.05, whereas on the monthly scale, the CD value positively
correlates both with elevation and latitude at the significant
levels of 0.05 and 0.01, respectively. To verify the correlation,
we used the stepwise regression analysis method to fit the
multiple linear regression equations (MLREs) between the
CD value with geographical location and elevation at daily
and monthly scales, which are as in Table 3.

Table 3 told us that on the daily and monthly scales, the
CD values are well explained by the geographical location
and elevation at the significant levels of 0.006 and 0.000.
The MLREs in Table 3 indicate that the site with higher
elevation and latitude has a higher CD value. That is to say,
the temperature dynamics at the site with higher elevation
and latitude are of much higher complexity.

Though the MLREs in Table 3 well explained the relation
between CD value with geographical location and elevation
at daily and monthly scales, the CD value has no significant
correlation with elevation, latitude, and longitude at the
seasonal and annual scales. What is the reason for this?

Actually, beside the structural factor such as atmospheric
circulation, the local temperature dynamics are also affected
by the location, elevation, and other stochastic factors.There-
fore, the CD value of temperature dynamic is a typical region-
alized variable and its spatial pattern should be described by
the variogram.

By using the aforementionedmethod for computing vari-
ogram, we fitted two variograms to describe the spatial vari-
ability of CD value at the seasonal and annual scales.

At seasonal scale, the spatial variability of CD value was
well described by the variogramofGaussianmodel as follows:

𝛾 (ℎ) = {

0 ℎ = 0

0.0013049 + 0.00013166 (1 − 𝑒
−ℎ

2
/6.93

2

) ℎ > 0,

(13)

where 𝛾(ℎ) is the value of variogram, and ℎ is distance. The
mean error and average standard error for model (13) are
−0.0008275988 and 0.1726933, respectively.

At annual scale, the variogram of Gaussian model well
described the spatial variability of CD value as follows:

𝛾 (ℎ) = {

0 ℎ = 0

0.025911 + 0.0000042869 (1 − 𝑒
−ℎ

2
/6.99

2

) ℎ > 0,

(14)

where 𝛾(ℎ) and ℎ have the same meaning as in formula (13).
Themean error and average standard error for model (14) are
0.0001671542 and 0.1709583, respectively.

Based on the previous models of variogram (13) and (14),
choosing elevation and latitude as the two covariate variables,
we used the aforementioned cokriging method to compute
the interpolating of CD values at seasonal and annual scales.

Figure 5 presented the spatial pattern of CD values at
seasonal scale, which showed that all the CD values are
between 1.13 and 1.83. The higher values mainly distribute in
the Tianshan, Kunlun, and AltunMountains, which indicates
that the temperature dynamics in these mountain areas are
more complicated than other areas. The lower values mainly
distribute in the Tarim Basin and the Hami Basin, which
indicates that the complexity of the temperature dynamics in
these basin areas is comparatively lower than other areas.

Figure 6 presented the spatial pattern of CD values at
seasonal scale, which showed that all the CD values are
between 1 and 1.51. Comparing it with Figure 5, the pattern
of spatial distribution is a little different. The higher values
mainly distribute in the Junggar Basin and part of the Altan,
Kunlun, and Altun Mountains, whereas the lower values
mainly distribute in the Tarim Basin, the Turpan Basin, and
the Hami Basin.

Summarizing the results of Section 4.3, we came to the
results at seasonal and annual scales as that the higher CD
valuesmainly distribute on complex landform such asmoun-
tain areas, whereas the lower CD values mainly distribute on
the comparative flat landform such as basin area. The results
indicate that the complex temperature dynamics are derived
from the complex landform.

5. Conclusion

Summarizing the previous results, we elicited the conclusions
as follows.

(1) The integer CD values indicate that the temperature
dynamics are a complex and chaotic system, which is
sensitive to the initial conditions.

(2) The order of the MCD (2.5353 > 1.6397 > 1.4156 >
1.2995) reveals the complex order of the temperature
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Figure 5: The spatial pattern of CD values at seasonal scale.

CD value (annual scale)
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Figure 6: The spatial pattern of CD values at annual scale.

Table 2: The correlation coefficients between CD values with geographical location and elevation.

CD
Annual Seasonal Monthly Daily

Elevation −0.0590 0.1145 0.2927∗ 0.2854∗

Latitude 0.0287 −0.1101 0.5002∗∗ 0.1786
Longitude −0.2242 −0.0824 −0.0999 −0.1589
Notes: ∗∗correlated at significance level of 0.01; ∗correlated at significance level of 0.05.
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Table 3: MLREs between the CD values with geographical location and elevation at daily and monthly scales.

Temporal scale Regression equation 𝐹 Significant level
Daily CD = 0.008919𝑥

1

+ 0.016𝑥
2

+ 1.752 5.667 0.006
Monthly CD = 0.009517𝑥

1

+ 0.029776𝑥
2

+ 0.450 30.722 0.000
Note: CD is the value of correlation dimension; 𝑥

1
is elevation (102 m); 𝑥

2
is latitude (∘C).

dynamics at daily, monthly, seasonal, and annual
scales, that is, the complexity of temperature dynam-
ics decreases along with the increase of temporal
scale. To describe the temperature dynamics, at least
3 independent variables are needed at daily scale,
whereas at least 2 independent variables are needed
at monthly, seasonal, and annual scales.

(3) The MLREs at the daily and monthly scales show
that the site with higher elevation and latitude has a
higherCDvalue,which indicates that the temperature
dynamics at the site with higher elevation and latitude
are of much higher complexity.

(4) The results of the interpolating from cokriging
method based on the variogram at seasonal and
annual scales show that the higher CD values mainly
distribute on complex landform such as mountain
area, while the lower CD values mainly distribute
on the comparative flat landform such as basin area.
The results indicate that the complex temperature
dynamics come from the complex landform.
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