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We consider the regularity for nonadditive measures.We prove that the non-additive measures which satisfy Egoroff ’s theorem and
have pseudometric generating property possess Radon property (strong regularity) on a complete or a locally compact, separable
metric space.

1. Introduction

The relations of continuity and regularity of nonadditive
measures are considered in several papers [1–4]. In [5], Li
et al. investigated the regularity in nonadditive measures.
They proved that the null-additive fuzzy measures possess
a Radon property (strong regularity) on a complete metric
space. In [6], Kawabe also investigated the regularity in fuzzy
measures taking value in Riesz spaces. He proved that every
weakly null-additive Riesz space valued fuzzy measure on
a complete or a locally compact, separable metric space is
Radon, provided that the Riesz space has themultiple Egoroff
property.

On the other hand Li andMesiar [7] proved the regularity
of nonadditive monotone measures. They proved that the
equivalence condition of Egoroff ’s theorem implies regularity
for the nonadditivemeasures by using pseudometric generat-
ing property of a set function. For information on real valued
nonadditive measures, see [8–10].

In this paper, as notes, we prove that Egoroff ’s theorem
implies Radon property (strong regularity) for nonadditive
measures which have pseudometric generating property on a
complete or a locally compact, separable metric space.

2. Preliminaries

Let 𝑅 be the set of real numbers and 𝑁 the set of natural
numbers. In what follows, let (𝑋,F) be a measurable space.

Definition 1. A set function 𝜇 : F → 𝑅 is called a nonaddi-
tive measure if it satisfies the following two conditions:

(1) 𝜇(0) = 0,
(2) if 𝐴, 𝐵 ∈ F and 𝐴 ⊂ 𝐵, then 𝜇(𝐴) ≤ 𝜇(𝐵).

Definition 2. Let 𝜇 : F → 𝑅 be a nonadditive measure.

(1) 𝜇 is said to be continuous from above if for any {𝐴
𝑛
} ⊂

F and 𝐴 ∈ F satisfying 𝐴
𝑛
↘ 𝐴 and there exists 𝑛

0

with 𝜇(𝐴
𝑛0
) < ∞ it holds that lim

𝑛→∞
𝜇(𝐴
𝑛
) = 𝜇(𝐴).

(2) 𝜇 is said to be continuous frombelow if for any {𝐴
𝑛
} ⊂

F and 𝐴 ∈ F satisfying 𝐴
𝑛

↗ 𝐴 it holds that
lim
𝑛→∞

𝜇(𝐴
𝑛
) = 𝜇(𝐴).

(3) 𝜇 is said to be fuzzy measure if it is continuous from
above and below.

(4) 𝜇 is said to be strongly order continuous if it is
continuous from above at measurable sets of measure
0; that is, for any {𝐴

𝑛
} ⊂ F and 𝐴 ∈ F satisfying

𝐴
𝑛
↘ 𝐴 and 𝜇(𝐴) = 0 it holds that lim

𝑛→∞
𝜇(𝐴
𝑛
) =

0.
(5) 𝜇 is said to be weakly null-additive if 𝜇(𝐴 ∪ 𝐵) = 0

whenever 𝐴, 𝐵 ∈ F and 𝜇(𝐴) = 𝜇(𝐵) = 0.
(6) 𝜇 has property (𝑆) if for any sequence {𝐴

𝑛
} ⊂ F with

lim
𝑛→∞

𝜇(𝐴
𝑛
) = 0 there exists a subsequence {𝐴

𝑛𝑘
}

such that 𝜇(∩∞
𝑖=1

∪
∞

𝑘=𝑖
𝐴
𝑛𝑘
) = 0; see [11].
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(7) 𝜇 is said to be autocontinuous from above if
lim
𝑛→∞

𝜇(𝐴 ∪ 𝐵
𝑛
) = 𝜇(𝐴) for each 𝐴 ∈ F and

{𝐵
𝑛
} ⊂ F with lim

𝑛→∞
𝜇(𝐵
𝑛
) = 0.

(8) 𝜇 is said to be autocontinuous from below if
lim
𝑛→∞

𝜇(𝐴 \ 𝐵
𝑛
) = 𝜇(𝐴) for each 𝐴 ∈ F and

{𝐵
𝑛
} ⊂ F with lim

𝑛→∞
𝜇(𝐵
𝑛
) = 0.

(9) 𝜇 is said to be autocontinuous if it is autocontinuous
from above and below.

Definition 3. Let 𝜇 : F → 𝑅 be a nonadditive measure.

(1) A double sequence {𝐴
𝑚,𝑛

} ⊂ F is said to be a 𝜇-
regulator if it satisfies the following two conditions:

(D1) 𝐴
𝑚,𝑛

⊃ 𝐴
𝑚,𝑛
󸀠 whenever 𝑛 ≤ 𝑛

󸀠,
(D2) 𝜇(∪

∞

𝑚=1
∩
∞

𝑛=1
𝐴
𝑚,𝑛

) = 0.

(2) 𝜇 satisfies the Egoroff condition if for any 𝜇-regulator
{𝐴
𝑚,𝑛

} and for every 𝜀 > 0 there exists a sequence {𝑛
𝑚
}

of natural numbers such that 𝜇(∪∞
𝑚=1

𝐴
𝑚,𝑛𝑚

) < 𝜀.

Remark 4. A nonadditive measure 𝜇 satisfies the Egoroff
condition if (and only if) for any double sequence {𝐴

𝑚,𝑛
} ⊂ F

satisfying (D2) and the following (D1
󸀠

) it holds that for every
𝜀 > 0 there exists a sequence {𝑛

𝑚
} of natural numbers such

that 𝜇(∪∞
𝑚=1

𝐴
𝑚,𝑛𝑚

) < 𝜀:

(D1󸀠) 𝐴
𝑚,𝑛

⊃ 𝐴
𝑚
󸀠
,𝑛
󸀠 whenever 𝑚 ≥ 𝑚

󸀠 and 𝑛 ≤ 𝑛
󸀠.

3. Compact Measure and Regularity of
Measure

In this section, we pick up several results for compact
nonadditive measures and regularity of measures.

Definition 5. Let 𝜇 : F → 𝑅 be a nonadditive measure.

(1) A nonempty family K of subsets of 𝑋 is called a
compact system if for any sequence {𝐾

𝑛
} ⊂ K with

∩
∞

𝑛=1
𝐾
𝑛
= 0 there is 𝑛

0
∈ 𝑁 such that ∩𝑛0

𝑛=1
𝐾
𝑛
= 0; see

[12].
(2) We say that 𝜇 is compact if there exists a compact

system K such that for each 𝐴 ∈ F there are
sequences {𝐾

𝑛
} ⊂ K and {𝐵

𝑛
} ⊂ F such that 𝐵

𝑛
⊂

𝐾
𝑛
⊂ 𝐴 for all 𝑛 ∈ 𝑁 and lim

𝑛→∞
𝜇(𝐴 \ 𝐵

𝑛
) = 0.

Remark 6. (1) The family of all compact subsets of a Haus-
dorff space is a compact system.

(2) The family of all finite unions of sets in a compact
system is also compact [13, Lemma 1.4]. Therefore, in (2)
of the above definition, the compact system K and the
sequences {𝐾

𝑛
} ⊂ K and {𝐵

𝑛
} ⊂ F may be chosen so that

K is closed for finite unions and both {𝐾
𝑛
} and {𝐵

𝑛
} are

increasing.

By [6, Theorem 1], the following result follows.

Theorem 7. Let 𝜇 : F → 𝑅 be a nonadditive measure. If 𝜇 is
compact and autocontinuous, then it is continuous from above
and below.

Proof. Since 𝜇 is compact and autocontinuous, by [6, Theo-
rem 1], the assertion follows.

In what follows, let (𝑋, 𝑑) be a metric space. Denote by
B(𝑋) the 𝜎-field of all Borel subsets of 𝑋, that is, the 𝜎-field
generated by the open subsets of 𝑋. A nonadditive measure
defined onB(𝑋) is called a nonadditive Borel measure on𝑋.

Definition 8. 𝜇 is said to have pseudometric generating
property if for each 𝜀 > 0 there exists 𝛿 > 0 such that for
any 𝐴, 𝐵 ∈ B(𝑋), 𝜇(𝐴) ∨ 𝜇(𝐵) < 𝛿 implies 𝜇(𝐴 ∪ 𝐵) < 𝜀.

Proposition 9. If 𝜇 satisfies pseudometric generating property,
then it is weakly null-additive.

Proof. It is easy to see from the definition.

Definition 10. Let 𝜇 : B(𝑋) → 𝑅 be a nonadditive Borel
measure on 𝑋.

𝜇 is called regular if for any 𝜀 > 0 and 𝐴 ∈ B(𝑋), there
exist a closed set 𝐹

𝜀
and an open set𝐺

𝜀
such that 𝐹

𝜀
⊂ 𝐴 ⊂ 𝐺

𝜀

and 𝜇(𝐺
𝜀
\ 𝐹
𝜀
) < 𝜀.

Li and Mesiar [7] also investigated the regularity on
monotone measures. The following follows.

Lemma 11. Let 𝑋 be a metric space and 𝜇 : B(𝑋) → 𝑅 a
nonadditive Borel measure on𝑋. If 𝜇 has the Egoroff condition
and pseudometric generating property, then 𝜇 is regular.

Corollary 12. Let 𝑋 be a metric space and 𝜇 : B(𝑋) → 𝑅 a
nonadditive Borel measure on𝑋. If 𝜇 has property (S), is strong
order continuous, and is weakly null-additive, then 𝜇 is regular.

By Li and Yasuda [14, Theorem 1], we also have the
following.

Corollary 13. Let 𝑋 be a metric space. If 𝜇 : B(𝑋) → 𝑅

is weakly null-additive fuzzy Borel measure on 𝑋, then it is
regular. Moreover if 𝜇 is null-additive, we have

𝜇 (𝐴) = sup {𝜇 (𝐹) | 𝐹 ⊂ 𝐴, 𝐹 is closed set}

= inf {𝜇 (𝐺) | 𝐺 ⊃ 𝐴,𝐺 is open set} .
(1)

Corollary 13 above is a special case of [6, Theorem 5] and
[15, Theorem 3].

For more information on regularity of nonadditive mea-
sures, see [5, 6].

4. Radon Measure

In this section, as main results, if we assume that a nonad-
ditive Borel measure satisfies the equivalence condition of
Egoroff ’s theorem and pseudometric generating property on
a complete or a locally compact, separable metric space, then
it is Radon.

Definition 14. Let 𝜇 be a nonadditive Borel measure on 𝑋.
(1) 𝜇 is said to be Radon (strongly regular) if for each

𝐴 ∈ B(𝑋) there are sequences {𝐾
𝑛
}
𝑛∈𝑁

of compact
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sets and {𝐺
𝑛
}
𝑛∈𝑁

of open sets such that 𝐾
𝑛
⊂ 𝐴 ⊂ 𝐺

𝑛

for all 𝑛 ∈ 𝑁 and lim
𝑛→∞

𝜇(𝐺
𝑛
\ 𝐾
𝑛
) = 0.

(2) 𝜇 is said to be tight if there is a sequence {𝐾
𝑛
}
𝑛∈𝑁

of
compact sets such that lim

𝑛→∞
𝜇(𝑋 \ 𝐾

𝑛
) = 0.

Remark 15. Sequences of sets in the above definition may
be chosen so that {𝐺

𝑛
}
𝑛∈𝑁

is decreasing, while {𝐹
𝑛
}
𝑛∈𝑁

and
{𝐾
𝑛
}
𝑛∈𝑁

are increasing.

Proposition 16. Let 𝑋 be a Hausdorff space. Let 𝜇 be a non-
additive Borel measure on𝑋which is weakly null-additive and
strongly order continuous. Then, the following two conditions
are equivalent:

(i) 𝜇 is Radon (strongly regular),
(ii) 𝜇 is regular and tight.

Proof. See [6, Proposition 2].

It is known that every finite Borel measure on a complete
or a locally compact, separable metric space is Radon; see
[16, Theorem 3.2] and [17, Theorems 6 and 9, Chapter II,
Part I]. Its counterpart in nonadditive measure theory can
be found in [5, 9, Theorem 1, Lemma 2], which states that
every Borel fuzzy measure on a complete separable metric
space is tight, so that it is Radon if it is null-additive; see also
[3, Theorem 2.3]. The following two theorems contain those
previous results; see also [18, Theorem 12].

Theorem 17. Let 𝑋 be a complete separable metric space and
𝜇 : B(𝑋) → 𝑅 a nonadditive Borel measure on 𝑋. If 𝜇 is
weakly null-additive and satisfies the Egoroff condition, then it
is tight. Moreover, if 𝜇 has pseudometric generating property
and satisfies the Egoroff condition, then it is Radon.

To prove the theorem, we need the following; see [7,
Proposition 3.7].

Proposition 18. Let 𝜇 : F → 𝑅 be a nonadditive measure.
Then (i) implies (ii).

(i) 𝜇 is weakly null-additive and satisfies the Egoroff
condition.

(ii) For each 𝜀 > 0 and double sequence {𝐴
𝑚,𝑛

} ⊂ F
satisfying 𝐴

𝑚,𝑛
↘ 0 as 𝑛 → ∞ for each 𝑚 ∈ 𝑁,

there exists a sequence {𝑛
𝑚
} of natural numbers such

that 𝜇(∪∞
𝑚=1

𝐴
𝑚,𝑛𝑚

) < 𝜀.

Proof of Theorem 17. Since 𝜇 satisfies the Egoroff condition,
by [19, Proposition 3], it is strongly order continuous. By
Proposition 16 and Lemma 11, we have only to prove that 𝜇

is tight. Let {𝑠
𝑖
}
𝑖∈𝑁

be a countable dense subset of𝑋. For each
𝑚, 𝑖 ∈ 𝑁, denote by 𝐵

𝑚
(𝑠
𝑖
) the closed ball with center 𝑠

𝑖
and

radius 1/𝑚. For each 𝑚, 𝑛 ∈ 𝑁, put 𝐴
𝑚,𝑛

:= 𝑋 \ ∪
𝑛

𝑖=1
𝐵
𝑚
(𝑠
𝑖
).

Then, for any 𝜀 > 0 and 𝑚 ∈ 𝑁, we have 𝐴
𝑚,𝑛

↘ 0, so
that by Proposition 18, there exists a sequence {𝑛

𝑚
} of natural

numbers such that

𝜇 (∪
∞

𝑚=1
𝐴
𝑚,𝑛𝑚

) < 𝜀. (2)

Put 𝑃
𝜀
:= ∩
∞

𝑚=1
∪
𝑛𝑚

𝑖=1
𝐵
𝑚
(𝑠
𝑖
). Then, each 𝑃

𝜀
is closed and totally

bounded, so that it is compact. Since 𝑋 \ 𝑃
𝜀
= ∪
∞

𝑚=1
𝐴
𝑚,𝑛𝑚

, it
follows from (2) that 𝜇(𝑋 \ 𝑃

𝜀
) < 𝜀. Thus 𝜇 is tight.

Corollary 19. Let𝑋 be a complete separable metric space and
𝜇 : B(𝑋) → 𝑅 a nonadditive Borel measure on 𝑋. If
𝜇 is weakly null-additive, strongly order continuous, and has
property (S), then it is Radon.

Proof. It follows from Theorem 17 since 𝜇 has pseudometric
generating property [7, Proposition 5.1] and satisfies the
Egoroff condition [19, Proposition 2].

Corollary 20. Let𝑋 be a complete separable metric space and
𝜇 : B(𝑋) → 𝑅 a fuzzy measure on 𝑋. If 𝜇 is weakly null-
additive, then it is Radon.

Proof. It follows fromTheorem 17 since 𝜇 satisfies the Egoroff
condition [7, Proposition 3.1] and it is regular [14, Theorem
1].

Remark 21. Corollary 20 above is a special case of [6, Theo-
rem 5] and [15, Theorem 3].

Theorem 22. Let 𝑋 be a locally compact, separable metric
space and 𝜇 : B(𝑋) → 𝑅 a nonadditive Borel measure on 𝑋.
If 𝜇 is weakly null-additive and satisfies the Egoroff condition,
then it is tight. Moreover, if 𝜇 has pseudometric generating
property and satisfies Egoroff condition, then it is Radon.

Proof. By Lemma 11 and Proposition 16, we have only to
prove the tightness of 𝜇. Denote by H the family of all open
and relatively compact subsets of 𝑋. The local compactness
of𝑋 implies thatH is an open cover of𝑋. Since𝑋 is strongly
Lindelöf, that is, every open cover of any open subset of 𝑋

has a countable subcover [17, Proposition 3 and Theorem 6,
Chapter II, Part I], there is a sequence {𝐻

𝑚
}
𝑚∈𝑁

⊂ H such
that 𝑋 = ∪

∞

𝑚=1
𝐻
𝑚
. Put 𝐾

𝑛
:= ∪
𝑛

𝑚=1
𝐻
𝑚

for all 𝑛 ∈ 𝑁,
where 𝐴 denotes the closure of a set 𝐴. Then 𝐾

𝑛
is compact

and 𝑋 \ 𝐾
𝑛

↘ 0. Since 𝜇 is strongly order continuous [19,
Proposition 3], lim

𝑛→∞
𝜇(𝑋 \ 𝐾

𝑛
) = 0. Thus 𝜇 is tight.

Corollary 23. Let X be a locally compact, separable metric
space and 𝜇 : B(𝑋) → 𝑅 a nonadditive Borel measure on
𝑋. If 𝜇 is weakly-null-additive, strongly order continuous, and
has property (𝑆), then 𝜇 is Radon.

Corollary 24. Let 𝑋 be a locally compact, separable metric
space and 𝜇 : B(𝑋) → 𝑅 a fuzzy Borel measure on 𝑋. If
𝜇 is weaklly null-additive, then 𝜇 is Radon.

Remark 25. Corollary 24 above is a special case of [6, Theo-
rem 6] and [15, Theorem 4].
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