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The purpose of this paper is to give some arithmatic identities for the Bernoulli and Euler numbers.
These identities are derived from the several p-adic integral equations on Zp.

1. Introduction

Let p be a fixed odd prime number. Throughout this paper, Zp, Qp, and Cp will denote the
ring of p-adic rational integers, the field of p-adic rational numbers, and the completion of
algebraic closure of Qp, respectively. The p-adic norm is normalized so that |p|p = 1/p. Let N

be the set of natural numbers and Z+ = N ∪ {0}.
Let UD(Zp) be the space of uniformly differentiable functions on Zp. For f ∈ UD(Zp),

the bosonic p-adic integral on Zp is defined by

I
(
f
)
=
∫

Zp

f(x)dμ(x) = lim
N→∞

pN−1∑

x=0

f(x)μ
(
x + pNZp

)
= lim

N→∞
1
pN

pN−1∑

x=0

f(x), (1.1)

and the fermionic p-adic integral on Zp is defined by Kim as follows (see [1–8]):

I−1
(
f
)
=
∫

Zp

f(x)dμ−1(x) = lim
N→∞

pN−1∑

x=0

f(x)(−1)x. (1.2)
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The Euler polynomials, En(x), are defined by the generating function as follows (see
[1–16]):

FE(t, x) =
2

et + 1
ext =

∞∑

n=0

En(x)
tn

n!
. (1.3)

In the special case, x = 0, En(0) = En is called the nth Euler number.
By (1.3) and the definition of Euler numbers, we easily see that

En(x) =
n∑

l=0

(
n
l

)
Elx

n−l = (E + x)n, (1.4)

with the usual convention about replacing El by El (see [10]). Thus, by (1.3) and (1.4), we
have

E0 = 1, (E + 1)n + En = 2δ0,n, (1.5)

where δk,n is the Kronecker symbol (see [9, 10, 17–19]).
From (1.2), we can also derive the following integral equation for the fermionic p-adic

integral on Zp as follows:

I−1
(
f1
)
= −I−1

(
f
)
+ 2f(0), (1.6)

see [1, 2]. By (1.3) and (1.6), we get

∫

Zp

e(x+y)tdμ−1
(
y
)
=

2
et + 1

ext =
∞∑

n=0

En(x)
tn

n!
. (1.7)

Thus, by (1.7), we have

∫

Zp

(
x + y

)n
dμ−1

(
y
)
= En(x), (1.8)

see [1–8, 13–16].
The Bernoulli polynomials, Bn(x), are defined by the generating function as follows:

FB(t, x) =
t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
, (1.9)

see [18]. In the special case, x = 0, Bn(0) = Bn is called the nth Bernoulli number. From (1.9)
and the definition of Bernoulli numbers, we note that

Bn(x) =
n∑

l=0

(
n
l

)
xn−lBl = (B + x)n, (1.10)
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see [1–19], with the usual convention about replacing Bl by Bl. By (1.9) and (1.10), we easily
see that

B0 = 1, (B + 1)n − Bn = δ1,n, (1.11)

see [13].
From (1.1), we can derive the following integral equation on Zp:

I
(
f1
)
= I

(
f
)
+ f ′(0), (1.12)

where f1(x) = f(x + 1) and f ′(0) = (df(x)/dx)|x=0.
By (1.12), we have

∫

Zp

e(x+y)tdμ
(
y
)
=

t

et − 1
ext =

∞∑

n=0

Bn(x)
tn

n!
. (1.13)

Thus, by (1.13), we can derive the following Witt’s formula for the Bernoulli polynomials:

∫

Zp

(
x + y

)n
dμ

(
y
)
= Bn(x), for n ∈ Z+. (1.14)

In [19], it is known that for k,m ∈ Z+,

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
Bk+m+1−j(x)
k +m + 1 − j

= xk(x − 1)m +
(−1)m+1

(k +m + 1)
(
k+m
k

) , (1.15)

where
(

k
j

)
= 0 if j < 0 or j > k.

The purpose of this paper is to give some arithmetic identities involving Bernoulli and
Euler numbers. To derive our identities, we use the properties of p-adic integral equations on
Zp.

2. Arithmetic Identities for Bernoulli and Euler Numbers

Let us take the bosonic p-adic integral on Zp in (1.15) as follows:

I1 =
∫

Zp

xk(x − 1)mdμ(x) +
(−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(
m
l

)
(−1)l

∫

Zp

xk+m−ldμ(x) +
(−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(
m
l

)
(−1)lBk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.1)
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On the other hand, we get

I1 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

∫

Zp

Bk+m+1−j(x)dμ(x)

=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lBl.

(2.2)

By (2.1) and (2.2), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

=
m∑

l=0

(−1)l
(
m
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.3)

Therefore, by (2.3), we obtain the following theorem.

Theorem 2.1. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl − (−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Bk+m−l.

(2.4)

Now we consider the fermionic p-adic integral on Zp in (1.15) as follows:

I2 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

k+m+1−j∑

l=0

(
k +m + 1 − j

l

)

× Bk+m+1−j−l

∫

Zp

xldμ−1(x)
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=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

k+m+1−j∑

l=0

(
k +m + 1 − j

l

)

× Bk+m+1−j−lEl.

(2.5)

On the other hand, we get

I2 =
m∑

l=0

(−1)l
(
m
l

)∫

Zp

xm−l+kdμ−1(x) +
(−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.6)

By (2.5) and (2.6), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.7)

Therefore, by (2.7), we obtain the following theorem.

Theorem 2.2. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl − (−1)m+1

(k +m + 1)
(
k+m
k

)

=
m∑

l=0

(−1)l
(
m
l

)
Ek+m−l.

(2.8)

Replacing x by (1 − x) in (1.15), we have the identity:

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
Bk+m+1−j(1 − x)
k +m + 1 − j

= (−1)k+mxm(1 − x)k +
(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.9)
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Let us take the bosonic p-adic integral on Zp in (2.9) as follows:

I3 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

∫

Zp

(1 − x)ldμ(x)

=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−ll

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lδ1,l

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl

+
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
(
2Bk+m−j + δ1,(k+m−j)

)

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max(k,m)∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1

)
.

(2.10)
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On the other hand, we see that

I3 = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) . (2.11)

By (2.10) and (2.11), we get

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1

)

= (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) .

(2.12)

Therefore, by (2.12), we obtain the following theorem.

Theorem 2.3. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lBl + 2

max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]

× Bk+m−j +
(

k
k +m − 1

)
+ (−1)k+m

(
m

k +m − 1

)
− (−1)m+1

(k +m + 1)
(
k+m
k

)

= (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Bk+m−l.

(2.13)

We consider the fermionic p-adic integral on Zp in (2.9) as follows:

I4 =
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

∫

Zp

(1 − x)ldμ−1(x)
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=
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lEl

+ 2
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−l

− 2
max{k,m}∑

j=1

[(
k
j

)
+ (−1)j+1

(
m
j

)]
1

k +m + 1 − j

×
k+m+1−j∑

l=0

(
k +m + 1 − j

l

)
Bk+m+1−j−lδ0,l

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lEl

+ 2
max{k,m}∑

j=1

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]
δ1,(k+m+1−j)

=
max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)]

×
(
k +m + 1 − j

l

)
Bk+m+1−j−lEl + 2

[(
k

k +m

)
+ (−1)k+m+1

(
m

k +m

)]
.

(2.14)

On the other hand, we get

I4 = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Ek+m−l +

(−1)m+1

(k +m + 1)
(
k+m
k

) . (2.15)

By (2.14) and (2.15), we obtain the following theorem.
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Theorem 2.4. For k,m ∈ Z+, one has

max{k,m}∑

j=1

k+m+1−j∑

l=0

1
k +m + 1 − j

[(
k
j

)
+ (−1)j+1

(
m
j

)](
k +m + 1 − j

l

)

× Bk+m+1−j−lEl + 2
[(

k
k +m

)
+ (−1)k+m+1

(
m

k +m

)]

− (−1)m+1

(k +m + 1)
(
k+m
k

) = (−1)k+m
k∑

l=0

(−1)l
(
k
l

)
Ek+m−l.

(2.16)
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