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We study a kind of nonlinear elliptic boundary value problems with generalized p-Laplacian
operator. The unique solution is proved to be existing and the relationship between this solution
and the zero point of a suitably defined nonlinear maximal monotone operator is investigated.
Moreover, an iterative scheme is constructed to be strongly convergent to the unique solution. The
work done in this paper is meaningful since it combines the knowledge of ranges for nonlinear
operators, zero point of nonlinear operators, iterative schemes, and boundary value problems
together. Some new techniques of constructing appropriate operators and decomposing the equa-
tions are employed, which extend and complement some of the previous work.

1. Introduction

The study on nonlinear boundary value problems with p-Laplacian operator, Δp, is a hot
topic since it has a close relationship with practical problems. Some significant work has been
done by us, see [1–8], and so forth.

Specifically, in 2004, we studied the following nonlinear elliptic boundary value
problem involving the generalized p-Laplacian operator:

−div
[(

C(x) + |∇u|2
)(p−2)/2∇u

]
+ |u|p−2u + g(x, u(x)) = f(x), a.e. in Ω

−
〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
= 0, a.e. on Γ.

(1.1)
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In Wei and Hou [4], we proved that under some conditions (1.1) has solutions in
L2(Ω), where 2 ≤ p < +∞. In [5, 6], we extended our work to the following problem:

−div
[(

C(x) + |∇u|2
)(p−2)/2∇u

]
+ |u|p−2u + g(x, u(x)) = f(x), a.e. in Ω

−
〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
∈ βx(u(x)), a.e. on Γ.

(1.2)

In Wei and Zhou [5], we established that (1.2) has solutions in Lp(Ω), where 2 ≤ p < +∞,
and in Wei [6] we proved that (1.2) has solutions in Ls(Ω), where max(N, 2) ≤ p ≤ s < +∞.
As the summary and extension of [5, 6], we studied the following nonlinear boundary value
problem:

−div
[(

C(x) + |∇u|2
)(p−2)/2∇u

]
+ ε|u|q−2u + g(x, u(x)) = f(x), a.e. in Ω

−
〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
∈ βx(u(x)), a.e. on Γ.

(1.3)

It was shown by Wei and Agarwal [7] that (1.3) had a solution in Ls(Ω), where 2N/
(N + 1) < p ≤ s < +∞, 1 ≤ q < +∞ if p ≥ N and 1 ≤ q ≤ Np/(N − p) if p < N, forN ≥ 1.

Clearly, if C(x) ≡ 0, then (1.1), (1.2), and (1.3) reduce the cases of involving p-
Laplacian operators.

It is worth to mention that all of the work done in [4–7] is based on a perturbation
result of the ranges of m-accretive mappings by Calvert and Gupta [9].

In this paper, we will study the following nonlinear elliptic boundary value problem:

−div
[(

C(x) + |∇u|2
)(p−2)/2∇u

]
+ ε|u|q−2u + g(x, u(x),∇u(x)) = f(x), a.e. in Ω

−
〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
∈ βx(u(x)), a.e. on Γ.

(1.4)

Necessary details of (1.4) will be provided in Section 3.
We may notice that the principal part of the concerned equation is almost the same

as those in (1.1), (1.2), and (1.3) while the nonlinear item g(x, u(x)) is replaced by the item
g(x, u(x),∇u(x)), which is rather general. It seems that the difference is minor; however, the
previous method cannot be employed. In this paper, we will use some perturbation results of
the ranges for maximal monotone operators by Pascali and Sburlan [10] to prove that (1.4)
has a unique solution in W1,p(Ω) and later we will prove that the unique solution is the zero
point of a suitably defined maximal monotone operator. Finally, we will employ an iterative
scheme to approximate strongly to the unique solution. Some new ideas of combining the
knowledge of the ranges of nonlinear operators, zero point of nonlinear operators, iterative
schemes, and the solution of nonlinear boundary value problems are demonstrated in this
paper.
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2. Preliminaries

Now, we list some of the knowledge we need in the sequel.
Let X be a real Banach space with a strictly convex dual space X∗. We use (·, ·) to

denote the generalized duality pairing between X and X∗. We use “→ ” to denote strong
convergence. Let “X ↪→ Y” denote the space X embedded continuously in space Y . For any
subset G of X, we denote by intG its interior.

Function Φ is called a proper convex function on X [11] if Φ is defined from X to
(−∞,+∞], not identically +∞ such that Φ((1 − λ)x + λy) ≤ (1 − λ)Φ(x) + λΦ(y), whenever
x, y ∈ X and 0 ≤ λ ≤ 1.

Function Φ : X → (−∞,+∞] is said to be lower semicontinuous on X [11] if
lim infy→xΦ(y) ≥ Φ(x), for any x ∈ X.

Given a proper convex function Φ on X and a point x ∈ X, we denote by ∂Φ(x) the
set of all x∗ ∈ X∗ such that Φ(x) ≤ Φ(y) + (x − y, x∗), for every y ∈ X. Such elements x∗ are
called subgradients of Φ at x, and ∂Φ(x) is called the subdifferential of Φ at x [11].

A single-valued mapping T : D(T) = X → X∗ is said to be hemicontinuous [11] if
w − limt→ 0T(x + ty) = Tx, for any x, y ∈ X.

A multivalued mapping A : X → 2X
∗
is said to be monotone [10] if its graph G(A) is

a monotone subset of X ×X∗ in the sense that

(u1 − u2, w1 −w2) ≥ 0, (2.1)

for any [ui,wi] ∈ G(A), i = 1, 2. The mapping A is said to be strictly monotone if the equality
in (2.1) implies that u1 = u2. The monotone operator A is said to be maximal monotone
if G(A) is maximal among all monotone subsets of X × X∗ in the sense of inclusion. The
mapping A is said to be coercive [10] if limn→+∞(xn, x

∗
n)/‖xn‖ = +∞ for all [xn, x

∗
n] ∈ G(A)

such that limn→+∞‖xn‖ = +∞. A point x ∈ D(A) is said to be a zero point of A if 0 ∈ Ax, and
we denote by A−1(0) = {x ∈ X : 0 ∈ Ax} the set of zero points of A.

Lemma 2.1 (Adams [12]). LetΩ be a bounded conical domain inRN . Ifmp > N, thenWm,p(Ω) ↪→
CB(Ω); if mp < N and q = Np/(N −mp), then Wm,p(Ω) ↪→ Lq(Ω); if mp = N and p > 1, then
for 1 ≤ q < +∞, Wm,p(Ω) ↪→ Lq(Ω).

Lemma 2.2 (Pascali and Sburlan [10]). If B : X → 2X
∗
is an everywhere defined, monotone, and

hemicontinuous operator, then B is maximal monotone.

Lemma 2.3 (Pascali and Sburlan [10]). If Φ : X → (−∞,+∞] is a proper convex and lower
semicontinuous function, then ∂Φ is maximal monotone from X to X∗.

Lemma 2.4 (Pascali and Sburlan [10]). If B1 and B2 are two maximal monotone operators in X
such that (intD(B1))

⋂
D(B2)/= ∅, then B1 + B2 is maximal monotone.

Lemma 2.5 (Pascali and Sburlan [10]). If A : X → 2X
∗
is maximal monotone and coercive, then

R(A) = X∗.
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Definition 2.6 (Kamimura and Takahashi [13]). Let X be a real smooth Banach space. Then
the Lyapunov functional ϕ : X ×X → R+ is defined as follows:

ϕ
(
x, y

)
= ‖x‖2 − 2

(
x, Jy

)
+
∥∥y∥∥2

, ∀x, y ∈ X, (2.2)

where J : X → 2X
∗
is the duality mapping defined by Jx = {f ∈ X∗ : (x, f) = ‖x‖‖f‖, ‖f‖ =

‖x‖}, for x ∈ X.

Lemma 2.7 (Kamimura and Takahashi [13]). LetX be a real reflexive, strictly convex, and smooth
Banach space, let C be a nonempty closed and convex subset of X, and let x ∈ X. Then there exists a
unique element x0 ∈ C such that

ϕ(x0, x) = min
{
ϕ(z, x) : z ∈ C

}
. (2.3)

Define a mapping ΠC from X onto C by ΠCx = x0 for all x ∈ X. Then ΠC is called the
generalized projection mapping fromX onto C. It is easy to see thatΠC coincides with the metric
projection PC in a Hilbert space.

3. Main Results

3.1. Notations and Assumptions of (1.4)

In the following of this paper, unless otherwise stated, we will assume that 2N/(N + 1) < p <
+∞, 1 ≤ q < +∞ if p ≥ N, and 1 ≤ q ≤ Np/(N − p) if p < N, for N ≥ 1. Let 1/p + 1/p′ = 1.
We use ‖ · ‖p, ‖ · ‖p′ , and ‖ · ‖1,p,Ω to denote the norm of spaces Lp(Ω), Lp′(Ω), and W1,p(Ω),
respectively.

In nonlinear boundary value problem (1.4), Ω is a bounded conical domain of an
Euclidean space RN with its boundary Γ ∈ C1 (see Wei and He [1]). We will assume that
Green’s formula is available. f(x) ∈ Lp′(Ω) is a given function. 0 ≤ C(x) ∈ Lp(Ω), ε is a
nonnegative constant and ϑ denotes the exterior normal derivative of Γ.

Let ϕ : Γ × R → R be a given function such that, for each x ∈ Γ, ϕx = ϕ(x, ·) : R → R
is a proper, convex, and lower semicontinuous function with ϕx(0) = 0. Let βx be the sub-
differential of ϕx, that is, βx ≡ ∂ϕx. Suppose that 0 ∈ βx(0) and for each t ∈ R, the function
x ∈ Γ → (I + λβx)

−1(t) ∈ R is measurable for λ > 0.
Suppose that g : Ω×RN+1 → R is a given function satisfying the following conditions,

which can be found in Zeidler [14].

(a) Carathéodory’s conditions:

x −→ g(x, r) is measurable on Ω ∀r ∈ RN+1,

r −→ g(x, r) is continuous on RN+1 for almost all x ∈ Ω.
(3.1)

(b) Growth condition:

g(x, r1, . . . , rN+1) ≤ h1(x) + b
N+1∑
i=1

|ri|p−1, (3.2)

where (r1, r2, . . . , rN+1) ∈ RN+1, h1(x) ∈ Lp(Ω) and b is a fixed positive constant.
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(c) Monotone condition: g is monotone with respect to r1, that is,

(
g(x, r1, . . . , rN+1) − g(x, t1, . . . , tN+1)

)
(r1 − t1) ≥ 0, (3.3)

for all x ∈ Ω and (r1, . . . , rN+1), (t1, . . . , tN+1) ∈ RN+1.

3.2. Existence and Uniqueness of the Solution of (1.4)

Lemma 3.1. Define the mapping Bp,q : W1,p(Ω) → (W1,p(Ω))∗ by

(
v, Bp,qu

)
=
∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇v

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)v(x)dx (3.4)

for any u, v ∈ W1,p(Ω). Then, Bp,q is everywhere defined, strictly monotone, hemicontinuous, and
coercive.

Moreover, Lemma 2.2 implies that Bp,q is maximal monotone.

Proof. From Lemma 3.2 by Wei and Agarwal [7], we know that Bp,q is everywhere defined,
monotone, hemicontinuous, and coercive. Then we only need to show that Bp,q is strictly
monotone.

In fact, for any u, v ∈ W1,p(Ω),

(
u − v, Bp,qu − Bp,qv

)

=
∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u −
(
C(x) + |∇v|2

)(p−2)/2∇v,∇u − ∇v

〉
dx

+ ε

∫
Ω

(
|u|q−2u − |v|q−2v

)
(u − v)dx

≥
∫
Ω

[(
C(x) + |∇u|2

)(p−2)/2
|∇u|2 −

(
C(x) + |∇u|2

)(p−2)/2
|∇u||∇v|

−
(
C(x) + |∇v|2

)(p−2)/2
|∇v||∇u| +

(
C(x) + |∇v|2

)(p−2)/2
|∇v|2

]
dx

+ ε

∫
Ω

(
|u|q − |u|q−1|v| − |v|q−1|u| + |v|q

)
dx

=
∫
Ω

[(
C(x) + |∇u|2

)(p−2)/2
|∇u| −

(
C(x) + |∇v|2

)(p−2)/2
|∇v|

]
(|∇u| − |∇v|)dx

+ ε

∫
Ω

(
|u|q−1 − |v|q−1

)
(|u| − |v|)dx.

(3.5)

Define h(t) = (k + t2)(p−2)/2t, for all t > 0, where k is a nonnegative constant.

Case 1. If p ≥ 2, then h′(t) = (p − 2)(k + t2)p/2−2t2 + (k + t2)p/2−1 > 0, for all t > 0. That is,
h : R → R is strictly increasing. Thus we can see from (3.5) that if (u − v, Bp,qu − Bp,qv) = 0,
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then u(x) = v(x) and ∂u/∂xi = ∂v/∂xi (i = 1, 2, . . . ,N), a.e. in Ω, which implies that u(x) =
v(x) inW1,p(Ω). Therefore, Bp,q is strictly monotone.

Case 2. If 2N/(N + 1) < p < 2, then for all t > 0,

h′(t) =
(
p − 2

)(
k + t2

)p/2−2
t2 +

(
k + t2

)p/2−1

=
(
p − 2

)(
k + t2

)p/2−1 − (
p − 2

)(
k + t2

)p/2−2
k +

(
k + t2

)p/2−1

=
(
p − 1

)(
k + t2

)p/2−1 − (
p − 2

)(
k + t2

)p/2−2
k

=
(
p − 1

)(
k + t2

)p/2−1
+
(
2 − p

)(
k + t2

)p/2−2
k > 0,

(3.6)

which implies that h : R → R is also strictly increasing. In the same way as Case 1, we know
that Bp,q is strictly monotone.

This completes the proof.

Lemma 3.2 (see Wei and Agarwal [7]). The mapping Φp : W1,p(Ω) → R defined by Φp(u) =∫
Γ ϕx(u|Γ(x))dΓ(x), for any u ∈ W1,p(Ω), is proper, convex, and lower semicontinuous onW1,p(Ω).

Therefore, ∂Φp is maximal monotone in view of Lemma 2.3.

Lemma 3.3. Define the mapping F : W1,p(Ω) → (W1,p(Ω))∗ by

(v, Fu(x)) =
∫
Ω
g(x, u(x),∇u(x))v(x)dx, (3.7)

for all u, v ∈ W1,p(Ω); then F is everywhere defined, monotone, and hemicontinuous onW1,p(Ω).

Moreover, Lemma 2.2 implies that F is maximal monotone.

Proof. We split our proof into four steps.

Step 1. For u ∈ W1,p(Ω), x → g(x, u(x),∇u(x)) is measurable on Ω.
From the facts that u(x), ∂u/∂xi ∈ Lp(Ω), i = 1, 2, . . . ,N, we know that x →

(u(x), ∂u/∂x1, . . . , ∂u/∂xN) is measurable on Ω. Combining with the fact that g satisfies
Carathéodory’s conditions, we know that x → g(x, u(x),∇u(x)) is measurable on Ω.

Step 2. F is everywhere defined.
From Lemma 2.1, we know that W1,p(Ω) ↪→ CB(Ω), when p > N, and W1,p(Ω) ↪→

Lp′(Ω), when p = N. Thus, for all w ∈ W1,p(Ω),

‖w‖p′ ≤ k‖w‖1,p,Ω, (3.8)

where k > 0 is a constant.
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When p < N, we know from Lemma 2.1 thatW1,p(Ω) ↪→ LNp/(N−p)(Ω). Since 2N/(N+
1) < p < +∞, then Np/(N − p) > p′ and LNp/(N−p)(Ω) ↪→ Lp′(Ω), which implies that (3.8) is
still true.

Now, for u, v ∈ W1,p(Ω), we have from (3.8) that

|(v, Fu)| ≤
∫
Ω
|h1(x)||v|dx + b

∫
Ω
|u|p−1|v|dx + b

N∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi

∣∣∣∣
p−1

|v|dx

≤ ‖h1(x)‖p‖v‖p′ + b‖u‖p/p′p ‖v‖p + b
N∑
i=1

∥∥∥∥ ∂u

∂xi

∥∥∥∥
p/p′

p

‖v‖p

≤ ‖h1(x)‖p‖v‖1,p,Ω + b(N + 1)‖u‖p/p′1,p,Ω‖v‖1,p,Ω,

(3.9)

which implies that F is everywhere defined.

Step 3. F is monotone.
Since g(x, r1, . . . , rN+1) is monotone with respect to r1, then F is monotone.

Step 4. F is hemicontinuous.
In fact, it suffices to show that, for any u, v,w ∈ W1,p(Ω) and t ∈ [0, 1], (w,F(u + tv) −

Fu) → 0, as t → 0.
Noticing the facts that g is measurable onΩ and g satisfies Carathéodory’s conditions,

by using Lebesque’s dominated convergence theorem, we have

0 ≤ lim
t→ 0

|(w,F(u + tv) − Fu)|

≤
∫
Ω
lim
t→ 0

∣∣g(x, u(x) + tv(x),∇u + t∇v) − g(x, u,∇u)
∣∣|w|dx = 0,

(3.10)

and hence F is hemicontinuous.
This completes the proof.

In view of Lemma 2.4, we can easily obtain the following result.

Lemma 3.4. Bp,q + F + ∂Φp : W1,p(Ω) → (W1,p(Ω))∗ is maximal monotone.

Lemma 3.5. Define the mapping S : Lp(Γ) → Lp′(Γ) by Su = βx(u(x)), for any u ∈ Lp(Γ). Define
the mapping K : W1,p(Ω) → Lp(Γ) by Kv = v|Γ for any v ∈ W1,p(Ω). Then K∗SK = ∂Φp, where
Φp is the same as that in Lemma 3.2.

Proof. We will prove the result under the additional condition |βx(u)| ≤ a|u|p/p′ + b(x), where
b(x) ∈ Lp′(Γ) and a ∈ R. Refer to the result of Brezis [15] for the general case.

It is obvious that S is continuous. For all u(x), v(x) ∈ Lp(Γ), since βx is monotone, then
(u − v, Su − Sv) =

∫
Γ(βx(u(x)) − βx(v(x)))(u(x) − v(x))dΓ(x) ≥ 0, which implies that S is

monotone. Thus, S : Lp(Γ) → Lp′(Γ) is maximal monotone in view of Lemma 2.2.
Define Ψ : Lp(Γ) → R by Ψ(u) =

∫
Γ ϕx(u(x))dΓ(x), for all u(x) ∈ Lp(Γ); then it is easy

to see thatΨ is a proper, convex, and lower semicontinuous function on Lp(Γ), which implies
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that ∂Ψ : Lp(Γ) → Lp′(Γ) is maximal monotone. Since Ψ(u) − Ψ(v) =
∫
Γ[ϕx(u(x)) −

ϕx(v(x))]dΓ(x) ≥ ∫
Γ βx(v(x))(u(x) − v(x))dΓ(x) = (Sv, u − v), for all u(x), v(x) ∈ Lp(Γ),

then Bv ∈ ∂Ψ(v). So S = ∂Ψ.
Now clearly,K∗SK : W1,p(Ω) → (W1,p(Ω))∗ is maximal monotone since bothK,S are

continuous. Finally, for any u, v ∈ W1,p(Ω), we have

Φp(v) −Φp(u) = Ψ(Kv) −Ψ(Ku)

=
∫
Γ

[
ϕx(v|Γ(x)) − ϕx(u|Γ(x))

]
dΓ(x)

≥
∫
Γ
βx(u|Γ(x))(v|Γ(x) − u|Γ(x))dΓ(x)

= (SKu,Kv −Ku) = (K∗SKu, v − u).

(3.11)

Hence we get K∗SK ⊂ ∂Φp and so K∗SK = ∂Φp.
This completes the proof.

Lemma 3.6. One has R(Bp,q + F + ∂Φp) = (W1,p(Ω))∗.

Proof. From Lemma 3.5, we know that for all u ∈ W1,p(Ω),

(
u, ∂Φp(u)

)
=
∫
Γ
βx(u|Γ(x))u|Γ(x)dΓ(x). (3.12)

Since 0 ∈ βx(0), then for all u ∈ W1,p(Ω), (u, ∂Φp(u)) ≥ 0.
Since F is monotone, then (u, Fu − F0) ≥ 0. Moreover, in view of (3.8), we have

|(u, F0)|
‖u‖1,p,Ω

≤
∫
Ω|h1(x)||u(x)|dx

‖u‖1,p,Ω

≤ ‖h1(x)‖p
‖u‖p′

‖u‖1,p,Ω
≤ k‖h1(x)‖p < +∞.

(3.13)

Then by using Lemma 3.1, we have

(
u, Bp,qu + Fu + ∂Φp(u)

)
‖u‖1,p,Ω

≥
(
u, Bp,qu

)
‖u‖1,p,Ω

+
(u, F0)
‖u‖1,p,Ω

−→ +∞, (3.14)

as ‖u‖1,p,Ω → +∞, which implies that Bp,q + F + ∂Φp is coercive. Then Lemmas 3.4 and 2.5
ensure that the result is true.

This completes the proof.
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Theorem 3.7. For f ∈ Lp′(Ω), nonlinear boundary value problem (1.4) has a unique solution u ∈
W1,p(Ω).

Proof. From Lemma 3.6, we know that for f ∈ Lp′(Ω), there exists u ∈ W1,p(Ω) such that

f = Bp,qu + ∂Φp(u) + Fu. (3.15)

Now, we will show that this u is unique.
Otherwise, there exists v ∈ W1,p(Ω) satisfying (3.15). Then notice the facts that Bp,q,

∂Φp and F are all monotone, we have

0 ≤ (
u − v, Bp,qu − Bp,qv

)
=
(
u − v, f − Fu − ∂Φp(u) − f + Fv + ∂Φp(v)

)
= (u − v, Fv − Fu) +

(
u − v, ∂Φp(v) − ∂Φp(u)

) ≤ 0.

(3.16)

Since Bp,q is strictly monotone, then u = v.
Next, we will show that this u is the solution of (1.4).
SinceΦp(u+ϕ) = Φp(u) for any u ∈ W1,p(Ω) and ϕ ∈ C∞

0 (Ω), where 2N/(N + 1) < p <
+∞ andN ≥ 1, we have (ϕ, ∂Φ(u)) = 0. Since f −Fu = Bp,qu+∂Φp(u), then for all ϕ ∈ C∞

0 (Ω),

∫
Ω

(
f − g(x, u(x),∇u(x))

)
ϕdx

=
∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇ϕ

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)ϕ(x)dx

= −
∫
Ω
div

[(
C(x) + |∇u|2

)(p−2)/2∇u

]
ϕdx + ε

∫
Ω
|u(x)|q−2u(x)ϕdx,

(3.17)

which implies that the result

−div
[(

C(x) + |∇u|2
)(p−2)/2∇u

]
+ ε|u|q−2u + g(x, u(x),∇u(x)) = f(x) a.e. x ∈ Ω

(3.18)

is true.
From (3.18), we know that f(x) = −div[(C(x) + |∇u|2)(p−2)/2∇u] + ε|u|q−2u+ g(x, u(x),

∇u(x)) ∈ Lp′(Ω). By using Green’s formula, we have that for any v ∈ W1,p(Ω),

∫
Γ

〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
v|ΓdΓ(x)

=
∫
Ω
div

[(
C(x) + |∇u|2

)(p−2)/2∇u

]
vdx +

∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇v

〉
dx.

(3.19)
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Then −〈ϑ, (C(x)+ |∇u|2)(p−2)/2∇u〉 ∈ W−1/p,p′(Γ) = (W1/p,p(Γ))∗, whereW1/p,p(Γ) is the
space of the traces ofW1,p(Ω).

Combining with the results of Lemma 3.5, (3.18), and (3.19), we have

∫
Γ

〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
v|ΓdΓ(x)

=
(
v, ε|u(x)|q−2u(x) + g(x, u(x),∇u(x)) − f

)
+
(
v, Bpu − ε|u(x)|q−2u(x)

)

=
(
v, Bpu + Fu − f

)
=
(
v,−∂Φp(u)

)
= (v,−K∗SKu) = −(Kv, SKu)

= −
∫
Γ
βx(u|Γ(x))v|Γ(x)dΓ(x).

(3.20)

Then

−
〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
∈ βx(u(x)), a.e. on Γ. (3.21)

From (3.19) and (3.21) we know that u is the solution of (1.4).
This completes the proof.

3.3. Iterative Construction of the Solution of (1.4)

Lemma 3.8 (Wei and Zhou [16]). Suppose that X is a real smooth and uniformly convex Banach
space and A : X → 2X

∗
is a maximal monotone operator with A−1(0)/= ∅. Let {xn} be a sequence

generated by the following iterative scheme:

x1 ∈ X, r1 > 0,

xn+1 = J−1
[
βnJx1 +

(
1 − βn

)
J(J + rnA)−1Jxn

]
, ∀n ≥ 1.

(3.22)

If {rn} ⊂ (0,+∞) with limn→∞rn = +∞, {βn} ⊂ [0, 1] with
∑∞

n=1 βn = +∞, and βn → 0
as n → ∞, then {xn} converges strongly to ΠA−1(0)(x1), where ΠA−1(0) is the generalized projection
operator from X onto A−1(0).

Definition 3.9. Define the mapping Cp,q : W1,p(Ω) → (W1,p(Ω))∗ by

(
v,Cp,qu

)
=

∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇v

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)v(x)dx

−
∫
Ω
f(x)v(x)dx +

∫
Ω
g(x, u(x),∇u(x))v(x)dx +

(
v, ∂Φp(u)

) (3.23)

for any u, v ∈ W1,p(Ω), where f ∈ Lp′(Ω) is the same as that in (1.4).

Similarly to Lemma 3.4, we know that Cp,q is also a maximal monotone operator.
Moreover, we can easily get the following result.
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Lemma 3.10. u ∈ W1,p(Ω) is the solution of (1.4) if and only if u ∈ W1,p(Ω) is the zero point of
Cp,q.

Proof. Let u(x) be the solution of (1.4), then for all v ∈ W1,p(Ω), by using Green’s formula
and Lemma 3.5, we have

(
v,Cp,qu

)
=

∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇v

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)v(x)dx

−
∫
Ω
f(x)v(x)dx +

∫
Ω
g(x, u(x),∇u(x))v(x)dx +

(
v, ∂Φp(u)

)

= −
∫
Ω
div

[(
C(x) + |∇u|2

)(p−2)/2∇u

]
vdx

+
∫
Γ

〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
v|ΓdΓ(x)

+ ε

∫
Ω
|u(x)|q−2u(x)v(x)dx −

∫
Ω
f(x)v(x)dx

+
∫
Ω
g(x, u(x),∇u(x))v(x)dx + (v,K∗SKu)

=
∫
Γ

〈
ϑ,

(
C(x) + |∇u|2

)(p−2)/2∇u

〉
v|ΓdΓ(x) + (v,K∗SKu)

= −
∫
Γ
βx(u|Γ)v|ΓdΓ(x) +

∫
Γ
βx(u|Γ)v|ΓdΓ(x) = 0.

(3.24)

Thus u ∈ C−1
p,q(0).

If u ∈ C−1
p,q(0), then for all ϕ ∈ C∞

0 (Ω),

0 =
∫
Ω

〈(
C(x) + |∇u|2

)(p−2)/2∇u,∇ϕ

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)ϕ(x)dx

−
∫
Ω
fϕdx +

∫
Ω
g(x, u(x),∇u(x))ϕdx,

(3.25)

which implies the result −div[(C(x) + |∇u|2)(p−2)/2∇u] + ε|u(x)|q−2u(x) + g(x, u(x),
∇u(x)) = f(x), a.e. x ∈ Ω is true.

Copying the last part of Theorem 3.7, we can obtain (3.21), which implies that u is the
solution of (1.4).

This completes the proof.

Remark 3.11. From Lemma 3.10 we can see that C−1
p,q(0)/= ∅. It is a good example to show that

the assumption that A−1(0)/= ∅ in Lemma 3.8 is valid.
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Lemma 3.12 (Takahashi [17]). Let X be a Banach space and J a duality mapping defined on X. If J
is single valued, then X is smooth.

Based on the facts of Lemmas 3.8, 3.10, and 3.12, we can construct an iterative sequence
to approximate strongly to the solution of (1.4).

Theorem 3.13. Let {un(x)} be a sequence generated by the following iterative scheme:

u1(x) ∈ W1,p(Ω), r1 > 0, chosen arbitrarily,

un+1(x) = J−1
[
βnJu1(x) +

(
1 − βn

)
J
(
J + rnCp,q

)−1
Jun(x)

]
, ∀n ≥ 1.

(3.26)

If {rn} ⊂ (0,+∞) with limn→∞rn = +∞, {βn} ⊂ [0, 1] with
∑∞

n=1 βn = +∞, and βn → 0 as
n → ∞, then {un(x)} converges strongly toΠC−1

p,q(0)(u1(x)).

Remark 3.14. Theorem 3.13 not only tells us that the sequence {un(x)} generated by (3.26)
converges strongly to the solution of (1.4), but also tells us that the unique solution of (1.4) is
the generalized projection of the initial function u1(x) onto C−1

p,q(0).

Remark 3.15. Compared to the work done in [8], we may find that different techniques are
employed to show the existence and uniqueness of the solution of the desired equation
because the nonlinear item g(x, u(x),∇u(x)) is involved.

Remark 3.16. We can get the following special cases in our paper.

Corollary 3.17. For f ∈ L2(Ω), the following equation has a unique solution inH1(Ω):

−Δu + ε|u|q−2u + g(x, u(x),∇u(x)) = f(x), a.e. in Ω,

−∂u

∂ϑ
∈ βx(u(x)), a.e. on Γ.

(3.27)

Corollary 3.18. Let {un(x)} be a sequence generated by

u1(x) ∈ H1(Ω), r1 > 0, chosen arbitrarily,

un+1(x) = βnu1(x) +
(
1 − βn

)(
I + rnC2,q

)−1
un(x), ∀n ≥ 1,

(3.28)

where C2,q is a special case of Cp,q defined in Definition 3.9 if p ≡ 2.
If {rn} ⊂ (0,+∞) with limn→∞rn = +∞, {βn} ⊂ [0, 1] with

∑∞
n=1 βn = +∞, and βn → 0 as

n → ∞, then {un(x)} converges strongly to PC−1
2,q(0)

(u1(x)), where PC−1
2,q(0)

(u1(x)) denotes the metric

projection from H1(Ω) onto C−1
2,q(0). And, PC−1

2,q(0)
(u1(x)) is the unique solution of (3.27).

Corollary 3.19. For f ∈ Lp′(Ω), the following equation has a unique solution inW1,p(Ω):

−Δpu + ε|u|q−2u + g(x, u(x),∇u(x)) = f(x), a.e. in Ω,

−
〈
ϑ, |∇u|p−2∇u

〉
∈ βx(u(x)), a.e. on Γ.

(3.29)
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Corollary 3.20. Let {un(x)} be a sequence generated by (3.26), where Cp,q : W1,p(Ω) →
(W1,p(Ω))∗ is defined by

(
v,Cp,qu

)
=

∫
Ω

〈
|∇u|p−2∇u,∇v

〉
dx + ε

∫
Ω
|u(x)|q−2u(x)v(x)dx

−
∫
Ω
f(x)v(x)dx +

∫
Ω
g (x, u(x),∇u(x))v(x)dx +

(
v, ∂Φp(u)

)
,

(3.30)

for u(x), v(x) ∈ W1,p(Ω).

Then under the conditions of Theorem 3.13, we know that {un(x)} converges strongly
to both the unique solution of (3.29) and the zero point of Cp,q.
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