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Abstract. In this paper, we present a programming and runtime framework that enables the autonomic management of complex
application workflows on hybrid computing infrastructures. The framework is designed to address system and application het-
erogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system
and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating
different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework pre-
sented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.
The framework also monitors the system/application state and adapts the application and/or resources to respond to changing
requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow
used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances
of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can
be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned
resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage
of traditional high performance computing infrastructure.
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1. Introduction

The computing infrastructure available to applica-
tions is becoming increasingly heterogeneous, inte-
grating high-performance grids with computing clus-
ters and private/public clouds [8,13,27,34]. While such
a hybrid infrastructure can support new and potentially
more effective usage modes and enable new applica-
tion formulations, its inherent heterogeneity presents
significant challenges. For example, the different re-
source classes available in such a hybrid infrastructure
can vary significantly in their costs for usage, perfor-
mance, availability and the guarantees for quality of
service (QoS) they provide. High Performance Com-
puting (HPC) grids such as TeraGrid provide high-
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end computing capabilities to authorized users through
merit based allocations instead of direct costs, but the
amount and duration of usage can be limited and jobs
submitted to these resources can experience long queu-
ing times. On the other hand, public clouds such as
Amazon EC2 provide on-demand resource availability
with a pay-as-you-go pricing model; however, its re-
sources are not as powerful. Commodity clusters that
are often locally available typically lie in between these
two, both in cost and performance.

On the resource side we are faced with large varia-
tions in system capabilities, costs, configurations and
availability. On the application side we are faced with
dynamic requirements and constraints. Therefore, pro-
visioning an appropriate mix of resources for ap-
plications is non-trivial. For example, an user may
require results as soon as possible (or by a speci-
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fied deadline) irrespective of costs, or may provide
constraints on resources used due to limited budgets
or resource allocations. Furthermore, these require-
ments/constraints may change, due to, for example,
a failure or an application event. The above challenges
are further compounded due to these dynamic system
behaviors, changing application requirements, and the
need for dynamic system and/or application adapta-
tions. In fact, manually monitoring these dynamic be-
haviors and requirements and enforcing adaptation can
quickly become unfeasible, and autonomic manage-
ment approaches become attractive.

In this paper, we present a programming and runtime
framework that enables the autonomic management of
complex applications workflows on hybrid computing
infrastructures. The framework is designed to address
system and application heterogeneity as well as dy-
namics. It is also designed to ensure that application
objectives and constraints are satisfied. Specifically,
the autonomic management framework can provision
the appropriate mix of HPC grid and public/private
cloud resources based on application requirements
and constraints, monitor system/application state (e.g.,
workload, availability, delays) and adapt the applica-
tion and/or the resources (e.g., change algorithms used
or re-provision resources) to respond to changing ap-
plications requirements or system state.

Furthermore, to demonstrate the operation of the
framework and to evaluate its ability, we employ a
workflow used to characterize an oil reservoir execut-
ing on a hybrid infrastructure composed of TeraGrid
nodes and Amazon EC2 instances of various types.
The application workflow performs history matching
using an ensemble of reservoir simulations and an
ensemble Kalman filter application for analysis [12].
Specifically, we show how different application objec-
tives can be effectively achieved while satisfying dead-
line and budget constraints, using an appropriate mix
of the dynamically provisioned resources.

We consider three types of objectives in this paper:
(1) acceleration of application Time-To-Completion
(TTC) using hybrid resources, (2) conservation of
HPC resources by limiting the usage of CPU cores or
CPU time when using public clouds, and (3) resilience
to resource failure and unexpected delays. We con-
sider two classes of constraints imposed by the user:
(1) deadlines by which application tasks must be com-
pleted, and (2) budgets which must not be violated
while executing the task. Note that these objectives and
constraints can be combined resulting in complex man-
agement requirements for an application workflow. For

example, an application may have strict budget limits
and may request the maximum acceleration possible,
as long this budget is not violated. Requirements may
similarly combine acceleration and resilience or bud-
gets and deadlines.

We have implemented and deployed the autonomic
management framework on top of the CometCloud
[21] autonomic cloud federation engine, which sup-
ports autonomic cloud bursts (on-demand scale-up and
scale-out) and cloud bridging (on-the-fly integration of
computational infrastructures). In the evaluation pre-
sented in this paper using this deployment, we demon-
strate autonomic management behaviors for various
objectives and constraints. We experimentally develop
a model to estimate the runtime of application tasks
on various resource classes, and use this model for ini-
tial resource provisioning. We also continuously up-
date the model at runtime to ensure that user objec-
tives are not violated. Finally, we also demonstrate that
a public cloud (Amazon EC2) can be used to comple-
ment and reinforce more traditional high performance
computing infrastructure (TeraGrid).

The rest of this paper is organized as follows. Sec-
tion 2 describes the oil reservoir characterization ap-
plication workflow used in this paper and introduces
CometCloud. Section 3 describes the design of the
autonomic management framework and its implemen-
tation on top of CometCloud. The target hybrid com-
puting infrastructure, the different objectives and con-
straints addressed, and the operation of the autonomic
management framework are presented in Section 3.
Section 4 presents an evaluation of the framework. Re-
lated work is discussed in Section 5. Section 6 presents
a conclusion.

2. Background

The software infrastructure in our experiments con-
sist of two layers. The first layer is the science layer
that is focused on the application. In our case the ap-
plication is a reservoir characterization study that uses
the ensemble Kalman filter. The second layer is the au-
tonomic computing engine, which manages the work-
flow and provisions resources.

2.1. Application description

Reservoir characterization is an umbrella term for
techniques that use direct and indirect information
about a reservoir to construct accurate reservoir mod-
els. One of those techniques is history matching.
History matching attempts to match actual reservoir
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production with simulated reservoir production by
modifying the models and therefore obtaining a more
accurate set of reservoir models.

Among history matching techniques, the automatic
history matching through Ensemble Kalman filters
(EnKF) technique represents a promising approach
that has gained a lot of popularity recently [15,16,18,
22]. In a typical EnKF study, an ensemble of models
(of varying size and duration) is run through a reser-
voir simulator and their results are analyzed. The anal-
ysis step modifies the models and they are run through
the reservoir simulator again. This process repeats in
stages of reservoir simulation followed by analysis un-
til no more reservoir data are available.

EnKeF is a recursive filter that can be used to handle
large, noisy data; the data in this case are the results
and parameters from an ensemble of reservoir models
that are sent through the filter to obtain the “true state”
of the data. Since the model varies from one ensem-
ble member to another, the run-time characteristics of
the ensemble simulation are irregular and hard to pre-
dict. Furthermore, during simulations, when real his-
torical data are available, all the data from the differ-
ent ensemble members at that simulation time must be
compared to the actual production data before the sim-
ulations are allowed to proceed. This translates into a
global synchronization point for all ensemble members
in any given stage.

The variation in computational requirements be-
tween individual tasks and stages can be large. As a
result, the efficient execution of large scale complex
reservoir characterization studies requires dynamic
runtime management to ensure effective resource uti-
lization and load-balancing. Furthermore, since the
computational requirements are not known a priori, the
application can potentially benefit from the elasticity
of cloud resources. The components used in the char-
acterization studies presented in this paper are:

o The Reservoir Simulator: The reservoir simula-
tor [12] solves the equations for multiphase fluid
flow through porous media, allowing us to sim-
ulate the movement of oil and gas in subsurface
formations. It is based on the Portable Extensible
Toolkit for Scientific Computing: PETSc [1].

e The Ensemble Kalman filter: The parallel EnKF
[12] computes the Kalman gain matrix and up-
dates the model parameters of the ensembles. The
Kalman filter uses production data from the reser-
voir for it to update the reservoir models in real-
time, and launch the subsequent long-term fore-
cast, enhanced oil recovery and CO, sequestra-
tion studies.

2.2. CometCloud

CometCloud [21] is an autonomic computing en-
gine that enables the dynamic and on-demand federa-
tion of clouds and grids as well as the deployment and
execution of applications on these federated environ-
ments. It supports highly heterogeneous and dynamic
cloud/grid infrastructures, enabling the integration of
public/private clouds and autonomic cloud bursts, i.e.,
dynamic scale-out to clouds to address dynamic work-
loads, spikes in demands, and other extreme require-
ments. Conceptually, CometCloud is composed of a
programming layer, service layer, and infrastructure
layer. The infrastructure layer uses the Chord self-
organizing overlay [32], and the Squid [29] informa-
tion discovery and content-based routing substrate that
is built on top of Chord. The routing engine supports
flexible content-based routing and complex querying
using partial keywords, wildcards, and ranges. It also
guarantees that all peer nodes with data elements that
match a query/message will be located.

The service layer provides a range of services to sup-
port autonomics at the programming and application
level. This layer supports a Linda-like [4] tuple space
coordination model, and provides a virtual shared-
space abstraction as well as associative access primi-
tives. The basic coordination primitives are the follow-
ing; (1) out(ts,t): a nonblocking operation that inserts
tuple ¢ into space ts, (2) in(ts, t'): a blocking operation
that removes a tuple ¢ matching template ¢’ from the
space ts and returns it, (3) rd(ts, t'): a blocking opera-
tion that returns a tuple ¢ matching template ¢’ from the
space ts without removing it from the space. Dynam-
ically constructed transient spaces are also supported
and enable applications to explicitly exploit context lo-
cality to improve system performance. Asynchronous
(publish/subscribe) messaging and event services are
also provided by this layer.

The programming layer provides the basic frame-
work for application development and management.
It supports a range of paradigms including the mas-
ter/worker/BOT. Masters generate tasks which are de-
scribed in XML and insert them into the Comet space
using out operation. Workers pick up tasks from the
space using in operation and consume them. Mas-
ters and workers can communicate via virtual shared
space or using a direct connection. Scheduling and
monitoring of tasks are supported by the applica-
tion framework. The task consistency service handles
lost/failed tasks. Other supported paradigms include
workflow-based applications as well as MapReduce/
Hadoop [10,17].
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Fig. 1. A conceptual overview of CometCloud. (Colors are visi-
ble in the online version of the article; http://dx.doi.org/10.3233/
SPR-2011-0319.)

The CometCloud master/worker/BOT layer sup-
ports the dynamic addition or removal of master and/or
worker nodes from any of the federated environ-
ments (i.e., clouds, grids, local clusters, etc.) to en-
able on-demand scale up/down or out/in. It supports
two classes of workers as shown in Fig. 1. Secure
workers can access and possibly host part of the vir-
tual shared space coordination infrastructure, while
unsecured workers only provide computational cy-
cles. CometCloud uses a pull-based task consumption
model, i.e., workers pull tasks whenever they become
idle. We can control the order in which the tasks are
consumed by the workers by specifying the condition
in the task tuples. For example, workers can pull a
first come task first, a shorter deadline task first, or
tasks satisfying a specific query condition, as well as
any task regardless of values by range query. Also, we
can support even push-based task consumption model
by specifying worker to consume the task in its task
tuple and then each worker can pull the tasks which
are allocated to it. This model is well suited for cases
where the capabilities of the workers and/or the com-
putational requirements of the tasks are heterogeneous.
The virtual shared space is used to host application
tasks and possibly data associated with the tasks if it
is small. Secure workers can connect to the space and
pull task from the space. Unsecured works can only
connect to the space through a proxy. CometCloud also
provides autonomic management services and supports
autonomic cloudburst driven by user-defined policies
[19,20].

3. Autonomic workflow management

This section describes the autonomic management
of the EnKF workflows using CometCloud. We first
describe the target hybrid computing infrastructure.
We then define the user objectives and underlying
constraints that drive the autonomic management and
the architecture of autonomic workflow manager. Fi-
nally, we describe the autonomic workflow manage-
ment process including resource provisioning and re-
source adaptation.

3.1. Hybrid computing infrastructure

Computing infrastructures are getting increasingly
hybrid, integrating different types of resource classes
such as public/private clouds and grids from distributed
locations [23,27,34]. In this work, we target such a fed-
erated hybrid computing infrastructure. As the infras-
tructure is dynamic and can contain a wide array of
resource classes with different characteristics and ca-
pabilities, it is important to be able to dynamically pro-
vision the appropriate mix of resources based on appli-
cations objectives and requirements. Furthermore, ap-
plication requirements and resource state may change,
for example, due to workload surges, system failures
or emergency system maintenance, and as a result, it
is necessary to adapt the provisioning to match these
changes in resource and application workload.

3.2. Autonomic management — objectives and
constraints

Autonomic workflow management in the context of
the hybrid and dynamic computing infrastructure de-
scribed above can be decomposed into two aspects,
resource provisioning and resource adaptation.In re-
source provisioning, the most appropriate mix of
resource classes and the number of nodes of each re-
source class are estimated so as to match the require-
ments of the application and to ensure that the user
objectives (e.g., throughput) and constraints (e.g., pre-
cision) are satisfied. Note that re-provisioning can be
expensive in terms of time and other costs, and as a
result, identifying the best possible initial provision-
ing is important. For example, if the initial estimate
of required resources is not sufficient, additional nodes
can be launched. However, this would involve addi-
tional delays due to, for example, time spent to create
and configure new instances. In case of Amazon EC2
instances, our experience shows that this delay varies
with image size and tends to be around 3 or 4 min. With
different systems, for example FutureGrid [14], this



H. Kim et al. / Autonomic management of application workflows on hybrid computing infrastructure 79

delay can be much higher. At runtime, delays can be
caused by, for example, queue wait time variation, fail-
ures, premature job termination, performance fluctua-
tion, performance degradation due to increasing user
requests, etc. As a result, it is necessary to continuously
monitor application execution and adapt resources to
ensure that user objectives and constraints are satisfied.

The scheduling decision during resource provision-
ing and resource adaptation depends on the user objec-
tives and the constraints. In this paper, we use the three
objectives described below. However, additional objec-
tives such as the energy-efficiency, minimized commu-
nication, etc, can also be used:

e Acceleration: This use case explores how clouds
can be used as accelerators to reduce the applica-
tion TTC by, for example, using cloud resources
to exploit an additional level of parallelism by
offloading appropriate tasks to cloud resources,
given budget constraints.

e Conservation: This use case investigates how
clouds can be used to conserve HPC grid alloca-
tions, within the appropriate runtime and budget
constraints.

® Resilience: This use case investigates how clouds
can be used to handle unexpected situations such
as an unanticipated HPC Grid downtime, inade-
quate allocations, unanticipated queue delays or
failures of working nodes. Additional cloud re-
sources can be requested to alleviate the impact
of the unexpected situations and meet user objec-
tives.

To achieve the above user objectives, several con-
straints can be defined. In this paper, we consider two
constraints:

e Deadline: The scheduling decision is to select the
fastest resource class for each task and to decide
the number of nodes per resource class based on
the deadline. If the deadline can be achieved with
a single node, then only one node will be allo-
cated. When an application needs to be completed
as soon as possible, regardless of cost and budget,
the largest useful number of nodes is allocated.

e Budget: When a budget is enforced on the ap-
plication, the number of allocatable nodes is re-
stricted by the budget. If the budget is violated
with the fastest resource class, then the next
fastest and cheaper resource class is selected until
the expected cost falls within the budget limit.

One or more constraints can be applied simultane-
ously. For example, we define economical deadline

where resource class can be defined as the cheaper but
slower resource class that can be allocated to save cost
unless the deadline is violated. Also, multiple objec-
tives can be combined as needed. An obvious example
is combining an acceleration objective with a resilience
objective.

The overall process for autonomic management con-
sists of the following steps: (1) Initial benchmarks to
estimate task runtime and projected TTC, (2) Initial
resource scheduling and provisioning, (3) Resource
monitoring and adaptation.

Initial benchmarks and estimation: The resource
provisioning starts with small but representative
benchmarks to estimate the runtime of all tasks on all
resource classes. After we gather the benchmarks re-
sults from all resource classes, the best resource class
for each task to achieve the user objective is selected
based on the estimated runtime and the calculated costs
for the estimated usage.

Scheduling and provisioning: Every task is mapped
to the resource class most fitting to accommodate the
user objectives. Should the user require the short-
est possible TTC, i.e., acceleration, all tasks will be
mapped to the resource class that provides the abso-
lute best performance and the largest usable number of
nodes will be allocated. Should acceleration be a pri-
mary objective within the confines of a budget (sec-
ondary objective), tasks will be mapped to the least
costly resource class and the minimum required num-
ber of nodes required to meet the acceleration objective
will be allocated. Tasks are grouped by the scheduled
resource class and the number of nodes per resource
class is decided. If we have enough resources so as to
allocate a single node for a single task, then it can be
one possible schedule to complete tasks most rapidly.
However, this greedy schedule wastes resources espe-
cially when tasks are heterogeneous because the total
runtime, or TTC, is decided by the longest task. For
example, let us assume that three tasks (77,75, T3) are
mapped to EC2 and their estimated runtime are 3¢, 1¢
and 2t, respectively. Then, it is a better schedule to al-
locate two nodes and map 77 to one node and map
T and T3 to another node instead of allocating three
nodes mapping one task to a node. Total runtime is 3¢
for both schedules.

Monitor and adaptation: After the initial resource
provisioning, the allocated resources and tasks are
monitored. The autonomic framework continually up-
dates the projected time of individual tasks and the
TTC. If the user objective might be violated (for exam-
ple, the updated TTC from results is larger than the ini-
tially estimated TTC or the updated cost is larger than
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Fig. 2. The architecture of the autonomic management. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/

SPR-2011-0319.)

the initially estimated cost), then additional, possibly
different, resources will be provisioned and remaining
tasks will be rescheduled.

Figure 2 shows the architecture of the autonomic
manager. Each job has its own user objective that the
framework seeks to honor. CometCloud supports mas-
ter/worker, workflow and MapReduce/Hadoop appli-
cation paradigms; however, in this paper we use the
workflow based master/worker framework exclusively.
The master generates tasks as XML tuples and inserts
them into the CometCloud tuple space. Afterwards, the
workers located in grids and public/private clouds pull
tasks, execute them and send their results to the mas-
ter. The agent of each grid and cloud helps pull tasks
appropriately based on the job submission mechanism
of resource classes. For example, TeraGrid has a batch
queuing system where jobs should be inserted into the
pilot job and workers pull tasks when they are ready
by coming out from the queue. However, EC2 work-
ers can start pulling tasks immediately once they are
launched. The agent also manages its local resource
view which includes node availability, failure, etc. The
autonomic manager is responsible for managing work-
flows, estimating runtime and scheduling tasks at the
beginning of every stage based on the resource view
provided by the agents. In each stage, the adaptiv-
ity manger monitors tasks runtimes through results,
handles the changes of application workloads and re-
source availability, and adapts resource provisioning if

required. The detailed autonomic manager and adap-
tivity manager are described in the following subsec-
tions.

3.3. Resource provisioning

The autonomic manager is responsible for task
scheduling, resource provisioning and application
workflow management. It has the following four com-
ponents for the resource provisioning.

Workflow manager: The workflow manager is re-
sponsible for coordinating the execution of the overall
application workflow, based on the user objectives and
the constraints.

Runtime estimator: The runtime estimator estimates
the computational runtime and the cost of each task.
This estimate can be obtained through a computa-
tional complexity model or through quick, represen-
tative benchmarks. Since performance is strongly af-
fected by the underlying infrastructure (clouds or HPC
grids) it is more effective to use benchmarks to obtain
runtime and cost estimates.

Autonomic scheduler: The autonomic scheduler uses
the information from the estimator modules and de-
termines the optimal initial hybrid mix of HPC grids/
clouds/clusters resources based on user/system-defined
objectives, policies and constraints.

Grids/Clouds/Clusters agents: The grids and pub-
lic/private clouds agents are responsible for provision-
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ing the resources on their specific platforms, config-
uring workers as execution agents on these resources,
and appropriately assigning tasks to these workers.
CometCloud primarily supports a pull-based model for
task allocation, where workers directly pull tasks from
the CometCloud shared space. However, on typical
HPC grid resources with a batch queue system, a com-
bined push—pull model is used, where we insert “pilot-
jobs” [33] containing workers into the batch queues
and the workers then pull tasks from the space when
they are scheduled to run.

3.4. Resource adaptation

The resource status can change during the run
through application or resource performance degrada-
tion, increases in queue wait times, etc. Therefore, re-
source adaptation is necessary to prevent the violation
of the user objective. The adaptivity manager is respon-
sible for the resource adaptation and consists of the fol-
lowing components.

Monitor: The monitor observes the tasks runtimes
which workers report to the master in the results.
If the time difference between the estimated run-
time and the task runtime on a resource is large, it
could be that the runtime estimator under-estimated or
over-estimated the task requirements, or the applica-
tion/resource performance has changed. We can dis-
tinguish between those cases (estimation error versus
performance change) if all of the tasks running on the
resource in question show the same tendency. How-
ever, if the time difference between the estimated run-
time and the task runtime on the resource increases af-
ter a certain point for most tasks running on the re-
source, then we can evaluate that the performance of
the resource is becoming degraded. The monitor makes
a function call to the analyzer to check if the changing
resource status still meets the user objective when the
time difference becomes larger than a certain thresh-
old.

Analyzer: The analyzer is responsible for re-estimat-
ing the runtime of remaining tasks based on the his-
torical data gathered from the results and evaluating
the expected TTC of the application and total cost. If
the analyzer observes the possibility for violating the
user objective, then it calls for task rescheduling by the
Adaptor.

Adaptor: When the adaptor receives a request for
rescheduling, it calls the autonomic manager, in par-
ticular the autonomic scheduler, and retrieves a new
schedule for the remaining tasks. The adaptor is re-
sponsible for launching more workers or terminating
existing workers based on the new schedule.

4. Experiment

In this section, we describe the experimental envi-
ronments and show the baseline results without apply-
ing the autonomic management to compare the perfor-
mance of resource classes. Then we show the results
with the autonomic management using the defined user
objectives and the constraints.

4.1. Experimental environment

We implemented the autonomic and adaptivity man-
ager in the CometCloud using Java. We ran with unse-
cured workers that do not share the CometCloud space
based on the assumption that clouds and grids are not
secure enough to manage private data. We used a local
secure cluster (or a private cloud) to host the Comet-
Cloud management task, tuples and data. CometCloud
worker tasks were run on the Ranger system as part
of TeraGrid. We ran a proxy to redirect task requests
from the unsecured workers to a request handler. The
request handler picks up tasks from the CometCloud
space and sends tasks to unsecured workers.

The request handler retrieve tasks from the space
based on the enforced scheduling policy. The policy
we employ is simple: TeraGrid workers are allowed
to pull the largest tasks first, while EC2 workers pull
the smallest tasks. As the number of tasks remaining
in the space decreases, if there are TeraGrid resources
still available, the autonomic scheduler may decide to
throttle (i.e., lower the priority) EC2 workers to pre-
vent them from becoming the bottleneck, since EC2
nodes are much slower than TeraGrid compute nodes.
While this policy is not optimal, it was sufficient for
our study.

We built a hybrid infrastructure with TeraGrid and
5 instance types of Amazon EC2. Each instance type
is considered as a resource class. The number of cores
on TeraGrid was set to 16. Detailed information about
EC2 resource classes is described in Table 1.

The reservoir characterization workflow applica-
tion launches ensembles of simulations in consecutive
stages. In every stage, each ensemble member can have
a unique size and duration. The output files from en-
semble members of a stage are the input files of the
next stage. Moving files across distributed resources is
not a bottleneck at the moment; however, it might lead
to future complications once data files become suffi-
ciently large. We run a file server on Ranger to send
input files to workers and collect their output. The en-
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EC2 instance types used in the experiments

Instance type Mem (GB) ECU Virtual cores Storage (GB) Platform (bit) 10 Linux cost ($/hour)
m1.small 1.7 1 1 160 32 Moderate 0.10
ml.large 7.5 2 850 64 High 0.34
ml.xlarge 15 4 1690 64 High 0.68
cl.medium 1.7 2 350 32 Moderate 0.17
cl.xlarge 7 20 8 1690 64 High 0.68
400 25
stage3-EnKF run
350 4 Ostage3-Ensemble run
stage2-EnKF run 120
300 | Ostage2-Ensemble run
—_ M stage1-EnKF run
£ 250 | Ostage1-Ensemble run {52
£ M Launching/Queuing delay o136 g
£ 200 - : =
o 1 1)0.88 17
£ 150 T8
|—
100 1 0§44 0§44 5
50 + 1272
0 {t \ | 0
TeraGrid EC2- EC2- EC2- EC2- EC2-
(16cores) m1.small m1.large m1.xarge cl.medium c1.xarge
(16ECU) (32ECU) (32ECU) (40ECU) (40ECU)

Resource classes

Fig. 3. Baseline results for TTC and the cost of using EC2 without using autonomic management. In each experiment, all ensemble tasks and
Kalman filters were run on one type of resource class. The experiment run on EC2 cl.medium had the lowest time to completion (under 100 min)
and the lowest cost among EC2 experiments. (Colors are visible in the online version of the article; http://dx.doi.org/10.3233/SPR-2011-0319.)

semble Kalman filter application is also run on Ranger
to reduce file transfer overhead.

In this paper, we fixed the number of stages to 3
and the number of ensemble members to 128 tasks
of varying size and duration. The individual ensem-
ble members and the EnKF application both use MPI
on TeraGrid and EC2 instances. The types of EC2 in-
stances used are: m1l.large, m1.xlarge, cl.medium and
cl.xlarge.

4.2. Baseline without Autonomics

To compare TTC and cost between resource classes,
we ran the application with 16 cores of a single re-
source class without applying autonomics. As shown
in Table 1, an EC2 core is a virtual core and the number
of EC2 compute Units (ECU) forming a virtual core
is different from instance types. We ran 16, 8, 4, §, 2
nodes for ml.small, ml.large, m1.xlarge, cl.medium
and cl.xlarge, respectively. Figure 3 shows the baseline

result. It shows the whole three stages including en-
semble runs and EnKF runs including EC2 launching
delay or TeraGrid waiting queue delay. The m1.small
and m1.large show similar TTC even though the num-
ber ECU of m1.1arge is twice as large as m1.small. This
is due to the fact that the number of nodes for m1.large
is half less than m1.small.

On the other hand, m1.xlarge shows larger TTC than
ml.large even though they have the same number of
ECUs. This is due to the fact that the number of nodes
for m1.xlarge is less than m1.large. Interestingly, c1 in-
stance types show better performance than m1 instance
types because cl instances are high CPU instances.
Of particular interest is cl.medium which exhibits the
least TTC among EC2 instances while spending the
least cost.

The types cl.medium and cl.xlarge have the same
number of ECUs but cl.xlarge exhibits a larger TTC.
The number of nodes for cl.xlarge is 2 while the num-
ber of nodes for cl.medium is 8. The larger the num-
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ber of simultaneous instances the more distributed the
application is.

4.3. Autonomics with Objective 1: Acceleration

To accelerate the HPC application runtime, some
tasks need to be offloaded to cloud resources regarding
the accelerated runtime. We define three constraints to
achieve acceleration: (1) The Greedy Deadline, (2) The
Economical Deadline and (3) The Budget Limit. In
greedy deadline, the offloaded tasks are scheduled to
the fastest resource class regardless of the cost. This
can guarantee the application deadline more safely.
Economical deadline can be used if the user would like
to spend budget economically avoiding choosing the
expensive resource class for the fastest runtime but al-
lowing to select less expensive resource class if it can
achieve the application deadline closely. This can save
budget but it might violate the application deadline
slightly. If budget constraints are in effect, the sched-
uler allocates cloud nodes within the budget and the
acceleration is achieved as much as the budget allows.
Nodes are allocated at startup and terminated right be-
fore the one hour mark. This is due to the fact that EC2
instances are billed on an hourly basis. If there are re-
maining tasks after the budget is consumed, then they
run on the HPC resource class.

Figure 4 shows the results of acceleration; us-
ing (a) greedy deadline, (b) economical deadline and
(c) budget limit. A deadline of 99 min means there is no
acceleration using EC2 (which means all members run
on TeraGrid). Based on the TTC of ensemble members
without acceleration, we change the deadline to 90, 78
60 and 21 min corresponding to 10, 20, 40 and 80%
acceleration, respectively. The figures on the left show
the overall TTC and EC2 cost for all stages and the
right figures show the detailed runtime of each stage.
Greedy deadline shows faster overall TTC than eco-
nomical deadline but at a much higher cost. This is
because the resource class of cl.xlarge is selected for
greedy deadline where the estimated runtime of each
task is the fastest but cl.medium is selected for eco-
nomical deadline since it has the least cost while still
meeting the deadline. In this configuration of econom-
ical deadline, it is more likely that we violate the per-
formance deadline than in the greedy deadline case be-
cause it schedules tasks tightly close to the application
deadline. The detailed schedule per stage is described
in Table 2.

After the start of each stage, the time to comple-
tion of each task is monitored. If the gap between the

required task time to completion (to meet the dead-
line) and the estimated task time to completion remains
large for a certain number of tasks, the adaptivity man-
ager adjusts the schedule. In these experiments, we ad-
just the schedule only when the number of EC2 work-
ers needs to be increased since EC2 bills hourly once
instances start. The number of added nodes is decided
by the remaining time up to the target deadline and
the remaining number of tasks. In Fig. 4(a), the greedy
deadline of 21 min is slightly violated and its TTC
is even larger than that of economical deadline. This
is because the stage 1 takes pretty long time (around
15 min) compared with other stages as shown in right
figure and this increases the whole application TTC.
At 21 min deadline in stage 1, we start with 14 nodes
of cl.xlarge for the greedy deadline case and 17 of
cl.medium for the economical deadline case. After we
observed some tasks with a runtime that was higher
than the estimated runtime, the adaptivity manager de-
cided to increase the number of nodes with an addi-
tional 5 and 19 nodes for greedy deadline and econom-
ical deadline respectively, placing the total at the end
of stage 1 to 19 and 36. Since the rescheduling deci-
sion of greedy deadline was made slightly later than
that of economical deadline and the launching delay of
cl.xlarge was larger than that of cl.medium, the time
when resource adaptation is applied and all new nodes
were ready to work was 8.40 min for greedy deadline
and 5.98 min for economical deadline. The deadline
was set for each stage (7 min per stage), hence apply-
ing resource adaptation for greedy deadline happened
a little late. Figure 4(c) shows the results when the bud-
get limit is applied. With a larger budget, the TTC for
all stages decreases. The runtime of stage 3 at the $1
budget limit is larger than other stages because all EC2
instances are terminated during stage 3 after spending
one hour. The detailed schedule for the budget limit is
also included in Table 2.

4.4. Autonomics with Objective 2: Conservation

In this scenario, we assume that the CPU time us-
age of TeraGrid is limited. The application deadline
is set to 33 min which is the application TTC when
all tasks run on TeraGrid. Our goal in this scenario is
to accomplish the same deadline even when we have
the limited TeraGrid CPU usage. Figure 5 shows the
overall TTC and EC2 cost as well as the schedule for
stage 1 varying the time of TeraGrid CPU usage. EC2
cl.medium is selected as a cloud resource class be-
cause we use economical deadline to save budget usage
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Fig. 4. Objective 1: Acceleration. The figures on the left show the overall TTC and EC2 cost and the right figures show the detailed TTC for each
stage of (a) the greedy deadline to aggressively meet the deadline, (b) the economical deadline to meet the deadline within budget, and (c) the
acceleration within the available budget. The autonomic management framework is able to honor the constraints in all three usage modes: meet
the deadline at any cost, meet the deadline within budget and use as much of the budget as possible to reduce the deadline.
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Table 2

85

The number of running workers at the end of each stage for Objective 1: Acceleration

Deadline or budget Num of workers Resource class
Stage 1 Stage 2 Stage 3
Greedy deadline 90 min 1 1 1 cl.xlarge
78 min 2 2 4 cl.xlarge
60 min 5 5 5 cl.xlarge
21 min 19 19 19 cl.xlarge
Economical deadline 90 min 2 2 2 cl.medium
78 min 3 3 3 cl.medium
60 min 6 5 5 cl.medium
21 min 36 36 36 cl.medium
Budget limit 1 USD 5 5 0 cl.medium
1 1 0 ml.small
2 USD 11 11 11 cl.medium
1 1 1 ml.small
3 USD 17 17 17 cl.medium
1 1 1 m1.small
4 USD 23 23 23 cl.medium
Overall TTC and EC2 cost for all stages and cl.med.ium. shows fast runtime even with low 'cos't.
35 - - 14 As shown in Fig. 5(a), all runs are completed within
[—Jtotal Time-to-Completion . . T .
o — the deadline which means the user objective is not vi-
30 4 rog.19 total EC2 cost 112 )
AR olated. Interestingly, the TTC decreases when we can
251 N + 10 use more TeraGrid CPU time except at 30 min CPU
£ 23 usage. If EC2 executes more tasks then the total run-
2 20 - - +08 48 . . )
£ "0 0.68 = time can increase because EC2 takes longer time than
e 15 ' + 0.6 § TeraGrid to complete a task (the average runtime of
F 10 . 04 tasks on EC2 is 2 min while that on TeraGrid is only
’ 15 s). Furthermore, since EC2 workers consume small
5 | o o171 02 tasks first in the experiment, the more tasks EC2 work-
ers consume, the longer tasks they take. This is why the
0 0.0 TTC at 20 min CPU usage is faster than at 5 min CPU
. 5 L 10 . 20 _30 usage. If TeraGrid consumes most of tasks, the TTC
Time limit of TeraGrid CPU usage (minute) .. . .
becomes close to the application deadline, 33 min. At
(a) TTC and EC2 cost 30 min time limit of TeraGrid CPU usage, one EC2
worker is allocated and it consumes only 16 tasks. Ter-
Test1 Test2 Test3 Test4 aGrid consumes most of tasks and this causes the TTC
CPU usage limit (min) 5 10 20 30 becomes close to the deadline.
Num of scheduled 7 6 4 1
VMs (EC2) 45 A L o
.5. Autonomics with Objective 3: Resilience
Num of expected tasks 111 92 54 14 J
consumed by EC2 Resili . £ elasti f
Consumed tasks by EC2 109 89 49 16 esilience is a measure of e astic recovery from un-
expected failure or delays that would otherwise violate
(b) Schedule the user objective. We consider TeraGrid failure (or de-

Fig. 5. Objective 2: Conservation. EC2 takes the place of TeraGrid
to accomplish the target deadline. (a) shows the application TTC and
EC2 cost varying the CPU usage limit of TeraGrid and (b) shows the
scheduled nodes, tasks and the consumed tasks for EC2.

layed starts) as well as EC2 failure and conducted the
experiment for stage 1. Figure 6 shows the changing
number of consumed tasks and the number of running
nodes on each resource class. The plots show the whole
run including TeraGrid waiting time in the queue, EC2
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Fig. 6. Objective 3: Resilience. (a) The CPU time limit of TeraGrid is changed from 30 to 10 min (the deadline is set to 33 min). (b) Two EC2
instances are failed at 8 min (the deadline is set to 20 min). (c) The waiting time in the queue of TeraGrid is increased and one EC2 instance is

failed at 15 min (the deadline is set to 26 min).

launching delay, the application runtime and instance
termination. Note that the deadline is applied as a con-
straint and is considered for the ensemble runs. The
first scenario is as follows: the user would like to com-
plete all tasks in 33 min and initially the CPU time
usage of TeraGrid is limited to 30 min; however, af-

ter 5 min, the limit is curtailed to 10 min. Figure 6(a)
shows how clouds cover the situation. At the beginning
of the run, only one EC2 VM is scheduled based on
the initial TeraGrid time limit and the number of con-
sumed tasks by EC2 is slowly increasing. After 5 min
of the application (around 8 min in the graph) 5 more
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instances are scheduled to achieve the deadline based
on the changed TeraGrid time limit and the new nodes
start running at 10—11 min. After 10 min, the Tera-
Grid worker does not consume tasks any more while
EC2 nodes keep consuming tasks. Figure 6 (b) shows
the second scenario which is two EC2 instances suffer
induced catastrophic failure during the run at around
8 min. The deadline is set to 20 min. Initially 6 EC2 in-
stances are scheduled to achieve a 20 minute-deadline
and three more instances are added after two instances
suffer induced failure. This decision is made based on
the remaining time to the deadline and the number of
remaining tasks. In the last scenario, the deadline is
set to 26 min and one EC2 instance is forcibly ter-
minated during the run around 15 min from startup.
(Fig. 6(c)). Furthermore, the TeraGrid worker suffers a
10 min delay in the queue. Hence, the adaptivity man-
ager decides to add 7 nodes to cover the EC2 worker
failure and the TeraGrid queue delay. Our results estab-
lish that adaptive resource provisioning can compen-
sate for worker failure and honor the application dead-
line. Note that we do not include EC2 initial launching
delay in the application TTC.

5. Related work

InterGrid [9] and metaschedulers [2] interconnect
different grids for example, however, there are efforts
to include clouds such as Amazon EC2 into their in-
tegrated computing infrastructures because the current
public clouds use VM-based on-demand resource pro-
visioning which enables customized and isolated com-
puting environments and it makes public clouds attrac-
tive. Buyya et al. [8] described an approach of extend-
ing a local cluster to cloud resources using schedulers
applying different strategies. They simulated the ap-
proach and did not include the real run of cloud re-
sources. The research in [27,34] implied the elastic
growth of grids to clouds. Vazquez et al. [34] pro-
posed the architecture for an elastic grid infrastruc-
ture using GridWay metascheduler and extended grid
resources to Globus Nimbus [13]. They experimented
with a NAS Grid Benchmark suite and all resource
classes were based on Globus (no VM). Ostermann
et al. [27] extended a grid workflow application devel-
opment and computing infrastructure to include cloud
resources and experimented with Austrian Grid and an
academic cloud installation of Eucalyptus using a sci-
entific workflow application.

Our previous works also considered a hybrid com-
puting infrastructure where we deployed Value-at-Risk
financial application on Rutgers cluster and Amazon
EC2 in [21] and medical image registration on a com-
bination of private clouds at Rutgers University and
the Cancer Institute of New Jersey and EC2 in [19].
Also, we built a hybrid infrastructure with TeraGrid
and Amazon EC2 and deployed EnKF application with
various workloads in [20]. In these works, on-demand
autonomic cloudbursts were enabled using Comet-
Cloud [6]. Compared with the above related works
which use specific grid based job schedulers and/or re-
source managers, our work does not depend on any
specific type of resource class and therefore can in-
tegrate various resource classes such as public/private
clouds, grids of desktops, mobile computing environ-
ments and so on.

Several economic models for resource scheduling
on Grids have been proposed. Recently, a combinato-
rial auction model [28] was proposed for both grids
and clouds. A cost model based on economic schedul-
ing heuristics [24] was investigated for cloud-based
streams. An adaptive scheduling mechanism [25] used
economic tools such as market, bidding, pricing, etc.
on an elastic grid utilizing virtual nodes from clouds.
In that case, GridARM [7] and GLARE [30] were used
as the resource management systems. However, there
are very few economic models for hybrid computing
infrastructure.

Some of scheduling techniques developed for grid
environment have been applied for virtual machine
based cloud environment. OpenNebula [26] uses ad-
vance reservation in the Haizea lease manager and
Buyya et al. [3] extended SLA management policies
for grids to clouds. Adaptive scheduling was proposed
in [31] where different loads and resource availabil-
ity were considered to reshape jobs and resize VMs.
Chunlin et al. [5] proposed a cross-layer QoS opti-
mization policy for computational grid because there
are different QoS metrics at different layers to be
achieved.

An on-demand resource provisioning mechanism
based on load was presented in [11]. In contrast, the
framework we proposed is based on the user defined
objective and constraints which can be defined widely
including workloads, time constraints and budget lim-
its. The autonomic scheduler decides on the mix of re-
source classes and the number of nodes over the hybrid
infrastructure depending on the user objectives, the es-
timated runtime of tasks and the cost calculated from
the runtime.



88 H. Kim et al. / Autonomic management of application workflows on hybrid computing infrastructure

6. Conclusion

In this paper, we proposed a framework for auto-
nomic management of workflow applications on hy-
brid computing infrastructure. The autonomic man-
ager estimates runtime using a computational model
or benchmarks and schedules tasks to achieve the user
objectives within the constraints. The adaptivity man-
ager monitors the resources and adjusts the sched-
ules to honor the user objectives. We defined several
user objectives such as acceleration of the HPC time-
to-completion, conservation of HPC CPU usage, and
resilience of grids/clouds nodes using public clouds.
We also defined greedy deadline, economical dead-
line and available budget limit as constraints to achieve
the user objectives. We built a hybrid infrastructure
with TeraGrid and several instance types of Amazon
EC2. We conducted experiments on the hybrid com-
puting infrastructure with varying user objectives and
constraints. The results show how public clouds can
be used to achieve user performance and cost objec-
tives and recover from unexpected delays and failures.
We also showed that the proposed autonomic man-
agement framework can support application workflows
that consist of heterogeneous tasks with varying com-
putational requirements.
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