
Eur. Phys. J. C (2015) 75:27
DOI 10.1140/epjc/s10052-014-3249-9

Special Article - Tools for Experiment and Theory

CHIRON: a package for ChPT numerical results at two loops

Johan Bijnensa

Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, 223-62 Lund, Sweden

Received: 3 December 2014 / Accepted: 22 December 2014 / Published online: 24 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract This document describes the package CHIRON
which includes two libraries,chiron itself andjbnumlib.
chiron is a set of routines useful for two-loop numerical
results in chiral perturbation theory (ChPT). It includes pro-
grams for the needed one- and two-loop integrals as well as
routines to deal with the ChPT parameters. The present ver-
sion includes everything needed for the masses, decay con-
stants and quark-antiquark vacuum-expectation-values. An
added routine calculates consistent values for the masses and
decay constants when the pion and kaon masses are varied.
In addition a number of finite volume results are included:
one-loop tadpole integrals, two-loop sunset integrals and the
results for masses and decay constants. The numerical rou-
tine library jbnumlib contains the numerical routines used
in chiron. Many are to a large extent simple C++ ver-
sions of routines in the CERNLIB numerical library. Notable
exceptions are the dilogarithm and the Jacobi theta function
implementations. This paper describes what is included in
CHIRON v0.50.
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1 Introduction

Chiral perturbation theory (ChPT) is the low-energy effec-
tive field theory of QCD. It was introduced by Weinberg,
Gasser and Leutwyler [1–3] and the present state of the art
are calculations performed at two-loop level. A review is [4]
but many more exists. The long term goal of this project is to
make available all these calculations with a consistent inter-
face in C++. Many of the original programs were written in
FORTRAN77 and are available on request from the authors,
but they are not always consistent in the interfaces and the
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use of common blocks for moving parameters around has
occasionally lead to difficult to find errors.

A general knowledge of C++ is assumed throughout this
paper. The routines are at present not guaranteed to be thread-
safe, some global variables inside the various files are used for
the loop functions and integration routines. These are how-
ever never used for setting outside the files, there are always
functions provided for this. It is recommended to always use
these. The routines return double precision types if not indi-
cated directly.

Kheiron, Xειρων, or Chiron, was the eldest and wisest of
the Centaurs, half-horse men of Greek mythology. His name
is derived from the Greek word for hand (Kheir) which also
formed the basis of the word chiral which is why his name
was chosen for this package [5].

The license chosen is the General Public License v2 or
later from the Free Software Foundation [6].

The chiron routines have mainly been tested against the
FORTRAN codes of the original publications. These were in
turn implemented in at least two independent versions orig-
inally. The jbnumlib routines have their output compared
with the original CERNLIB routines in case they were simple
translations to C++. In the other cases, the tests are described
in the relevant sections.

This paper describes what is included in CHIRON v0.50.
The package itself is available from [7]. The included files
and how to install it is described in Sect. 2. The numerical
routines included in jbnumlib are described in Sect. 3.
Some short comments on ChPT notation are in Sect. 4. The
main part describing the contents of chiron are Sects. 5 to
8. Section 5 contains the objects implemented to deal with
input data for the ChPT calculations. A large part of the work
is in implementing the relavant loop integrals, especially
those at finite volume. This is the content of Sect. 6. The
simplest quantities are masses, decay constants and vacuum-
expectation-values. The functions for these are discussed in
Sect. 7 and the finite volume extensions for masses and decay
constants in Sect. 8. Some comments about errors, some
warnings about the use of the routines and definitions in
ChPT as well as a number of planned/possible extensions
are discussed in Sect. 9. A short summary is given in the
final section.

2 Files and setup

The package is delivered as a gzipped tarred file
(chironvvvv.tar.gz), where vvvv is version informa-
tion. Untarring it creates a directory chironvvvv, which
is referred to as the root directory below.

The package has a number of subdirectories when deliv-
ered. The root directory contains a Makefile and files
COPYING, INSTRUCTIONS and GUIDELINES. The main

instructions to produce CHIRON are to do first “make libjb-
numlib.a” to produce the numerical library and then “make
libchiron.a” to produce the main library or simply “make” to
do both. The latter also puts the newly produced library ver-
sions in the subdirectory lib. To install, put the two library
files and the content of the include directory somewhere
where they can be linked to and included. Linking should
be indicated on the compile line with the options “-lchiron
-ljbnumlib”.

The subdirectory doc contains this manuscript, a filelist
and possibly more files in future versions. The subdirectory
src contains the source files and include the various
header files. The subdirectory test contains a number of
testing programs where the names “testyyy.cc” indicates a
program testing the code in the source file “yyy.cc”. A test-
ing program can be compiled using “make testyyy” in the
root directory. The program “a.out” should then produce the
output as shown in the file “testyyy.dat” in the subdirectory
testoutputs. The test subdirectory contains in addition
the file LiCiBE14.dat with the latest determination of the
LECs [8].

3 jbnumlib

The functions in this section are included to make the
program collection self-contained. They are mainly imple-
mentations of well known programs in C++ and in par-
ticular many of the routines are a port to C++ from the
CERNLIB [9] FORTRAN routines. Some, as mentioned in
the respective texts, are fully original. The definitions are all
in jbnumlib.h and contained in libjbnumlib.a. The
implementations are in the files mentioned in each subsection
below. In order to avoid conflict with other implementations
all routines in this section have names starting with jb. The
exact interface is best checked by looking in the include file
jbnumlib.h.

3.1 Special functions

3.1.1 Dilogarithm or Li2(x): jbdli2(x)

The way the vertex integrals are implemented requires a
Spence or Li2 function which returns complex values for
all possible complex inputs. The routine implemented uses
the algorithm given in [10], Appendix A up to Bernouilly
number B28. Defined in jbdli2.cc. For real numbers the
output has been compared to that of the CERNLIB routine
DDILOG. It has also been checked that the function satis-
fies a number of the relations between values with different
arguments that were not used in its evaluation.
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3.1.2 Bessel functions

The modified Bessel functions I0, I1, K0, K1 with real argu-
ments are available asjbdbesi0,jbdbesi1,jbdbesk0
and jbdbesk1. These are implemented in jbdbesio
which is a simple port to C++ of the CERNLIB rou-
tines dbesi0,…. In addition the modified Bessel functions
K2, K3, K4 are available as jbdbesk2, jbdbesk3 and
jbdbesk4. These are evaluated using the recursion rela-
tions from K0 and K1.

3.1.3 Theta functions

The functions defined are related to the Jacobi theta functions.
jbdtheta30(q) returns the function

θ30(q) = 1 + 2
∑

n=1,∞
q(n2) . (1)

It uses the idea behind the CERNLIB routines DTHETA. For
small q it simply sums the series (1) and for larger q it uses
the modular invariance and a series in the changed variable
instead. The accuracy has been checked by running both
series too much higher orders and comparing the two results.
Implemented in jbdtheta30.cc. A function without the
1 which is needed to keep accuracy for small q is available as
jbdtheta30m1. Implemented in jbdtheta30m1.cc.
jbdtheta32(q) returns the function

θ32(q) = 2
∑

n=1,∞
n2q(n2) . (2)

For small q it simply sums the series (2) and for larger q it
uses the modular invariance and the derivative of the series
in the changed variable The accuracy has been checked by
running both series too much higher orders and comparing
the two results. Defined in jbdtheta32.cc. A function
with n4 multiplying q(n2) is available as jbdtheta34 and
implemented in jbdtheta34.cc.

3.1.4 Higher dimensional theta functions

There are higher dimensional generalizations of the theta
functions. These satisfy a more general modular invariance
which can be used to get much faster convergence series. The
functions defined below use some of these possible optimiza-
tions.

The basic function is the 2-dimensional generalization

θ
(2d)
0 (α, β, γ ) =

∑

n1,n2=−∞,∞
e−αn2

1−βn2
2−γ (n1−n2)

2
. (3)

This function is implemented as jbdtheta2d0 with
arguments α, β, γ in jbdtheta2d0.cc. In addition the

function with the one removed is also available as jbd
theta2d0m1 implemented in jbdtheta2d0m1.cc.

The function with the exponential multiplied by n2
1 is

called jbdtheta2d02 and implemented in jbdthet
a2d02.cc.

3.2 Integration routines

An adaptive gaussian quadrature routine jbdgauss and
an adaptive integration routine jbdcauch, that integrates
symmetrically around a singularity, are included. These are
ports of the CERNLIB routines dgauss and dcauch
respectively. Implementation is in jbdgauss.cc and
jbdcauch.cc. The complex equivalent is jbwgauss in
jbwgauss.cc.

The higher dimensional integration CERNLIB routine
DADMUL based on [11] has been ported to C++ and a simple
interface for two and three-dimensional integration imple-
mented as jbdad2 and jbdad3. The code can be found in
jbdadmul.cc.

4 ChPT notation

The notation used in ChPT is not fully unique. The notation
used in this program collection is the main one used by the
author and his collaborators. The main point to be observed
is that chiron uses a normalization for the decay constants
with Fπ ≈ 92 MeV.

For the low-energy-constants, we use the conventions of
[3,12,13] with dimensionless renormalized couplings Lr

i
and Cr

i .
The lowest order couplings are denoted by F0 and B0. The

quark masses are m̂ = mu = md , note that we work in the
isospin limit, and ms . The lowest order masses1 are given by

m2
π 0 = 2B0m̂ , m2

K 0 = B0
(
m̂ + ms

)
,

m2
η 0 = B0

3

(
2m̂ + 4ms

)
. (4)

5 Data structures

This section discusses the structures available for dealing
with masses, Fπ , the Lr

i and Cr
i , and the subtraction constant

μ. Note that μ is present in all three data structures and the
user should make sure that their use is consistent. The default-
value mechanism in C++ has been used to define the values
when the constructors are called with less than the full data
needed.

1 Note that the programs use an internal convention where mhat=
2B0m̂ and mstrange= 2B0ms .

123



27 Page 4 of 10 Eur. Phys. J. C (2015) 75 :27

These data structures are implemented as classes.
Note that we assume dimensional units in GeV, but if all

dimensional inputs are scaled accordingly the routines give
the correct answer. However, typical precisions set are assum-
ing ChPT applications with dimensional units in powers of
GeV.

5.1 physmass: Masses, Fπ , μ

The physical masses are defined in a class physmass
defined in inputs.h and implemented in inputs.cc.

Private data members: mpi, mk, meta, fpi, mu.
Typical declaration: physmass mass1(0.135,

0.495,0.548,0.0922,0.77); The numbers given
above are also the defaults.

These are the physical pion, kaon and eta mass, mπ , mK ,

mη the physical pion decay constant, Fπ , and the subtraction
point μ. The default constructor puts them all at some rea-
sonable values but they can be created with any number of
the inputs specified, starting from the left. In addition there
are functions void setmpi(double) etc., defined that
set one of the values only. These use the same default values.

The values can be obtained from the function void
out( mpi, mk, meta, fpi, mu) that returns all of
them via referenced doubles. Functions double
getmpi(void) etc. are defined that return one of the val-
ues.

The output/input stream format is defined as well so
cout << mass1 and cin >> mass1 make sense. The
input stream should have the same format as the output stream
produces. This works for all streams, not just the standard
cout and cin.

A test for equality is defined which checks that all data
members agree to 7 significant digits. So expressions like
if(mass1 == mass2) can be used. This is relative pre-
cision, so it is assumed no mass is zero here. The reason for
not using exact equality is that calculated masses might not
be exactly the same using double precision variables.

5.2 Classes for the NLO LECS: Li

The class for dealing with the next-to-leading-order (NLO)
low-energy constants (LECs) defined in [3] is named Li.
This is implemented in Li.cc and defined in Li.h.

The Li class has 13 double precision variables to store
the LECs Lr

1, . . . , Lr
10, Hr

1 , Hr
2 and the subtraction scale μ.

It also contains a string with a name for the set of constants.
The LECs default to zero, the scale to 0.77 and the name to
“nameless Li.” When the LECs are referred to with numbers,
11,12 correspond to Hr

1 , Hr
2 respectively.

Typical declarations are:
Li Li1; Li Lifitall(0.88e-3,0.61e-3,-3.
04e-3,0.75e-3,0.58e-3,0.29e-3,

-0.11e-3,-0.18e-3,5.93e-3,0.,0.,0.,0.77,
“fit All”);

Operations defined on the Li: overloaded operators are
defined such that sets of Li can be added or subtracted
and multiplied by a number (double). The output/input
stream format is defined as well so cout << Li1 and
cin >> Li1 make sense. The input stream should have
the same format as the output stream produces.

Member functions that can be used to set the parame-
ters are setli which takes an integer and a double (in
either order) as argument to set the corresponding LEC to the
double, setmu which sets the scale2 and setname which
changes the name of the set of Lr

i .
Output member functions exist to obtain a single LEC,

out(int), or the 10 Lr
i , the 10 Lr

i and μ, the 12 LECs, the
12 LECs and μ, and the 12 LECs, μ and the name. These are
all called out and return the results via a reference to 10, 11,
12, 13 double or 13 double and a string variable.

The member function changescale changes the scale
μ and changes the Lr

i and Hr
i according to the scale depen-

dence as obtained first in [3].
There are also three functions defined that return a

set of random NLO LECs. These are Lirandom which
gives each LEC a random value between ±1/(16π2).
LirandomlargeNc does the same but leaves Lr

4, Lr
6 and

Lr
7 zero. Finally, LirandomlargeNc2 does the same but

Lr
4, Lr

6 and Lr
7 get a random value between ±(1/3)/(16π2).

Note that 1/(16π2) ≈ 0.0063 so the ranges include the val-
ues of the fitted Lr

i . The random numbers are generated using
the system generator rand() so we recommend initializ-
ing using something like srand(time (0)). These latter
functions were used in the random walks in the Lr

i in [14].

5.3 Classes for the NNLO LECS: Ci

The class for dealing with the next-to-next-to-leading-order
(NNLO) low-energy constants (LECs) defined in [12] is
named Ci. This is implemented in Ci.cc and defined in
Ci.h. Note that this set of routines uses the convention where
the Cr

i are dimensionless. The parameters in the Lagrangian
have dimension mass(−2) but the definition of the subtracted
Cr

i in [13] is dimensionless. Going from one-convention to
the other is with the appropriate power3 of Fπ .

The Ci class has as private members a double precision
array Cr[95], which holds the Cr

i , i = 1, 94 in Cr[i], the
scale mu and string for the name. Defaults are zero for all the
Cr

i , 0.77 GeV for the scale and “nameless Ci” for the name.

2 This sets the scale simply, it does not change the numerical values of
the LECs.
3 The definition is with the chiral limit value F0 but the difference is
higher order.
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Constructors are provided with as input a double array
Cr[95], the scale and a name or a scale and a name or a scale
only or no input. Typical declarations are:
Ci Ci1,Ci2(1.0),Ci3(Crr,0.8,“a nice set”)
where Crr is defined as double Crr[95].

An additional constructor is provided that has as input
the resonance parameters where the resonance model is the
simple version described in Sect. 5 of [15].

Operations defined on the Ci are: overloaded opera-
tors are defined such that sets of Ci can be added or
subtracted and multiplied by a number (double). The out-
put/input stream format is defined as well so cout << Ci1
andcin >> Ci1make sense. The input stream should have
the same format as the output stream produces.

Member functions that can be used to set the parame-
ters are setci which takes an integer and a double (in
either order) as argument to set the corresponding LEC to the
double, setmu which sets the scale4 and setname which
changes the name of the set of Cr

i .
Output member functions exist to obtain a single LEC,

out(int), or the Cr[95], or Cr[95] and the scale, or
Cr[95], scale and name. These are all called out and return
the results via references to the string and scale and the array.

The member functions changescale(double,Li)
and changescale(Li,double) change the scale μ and
changes the Lr

i , Hr
i and Cr

i according to the scale dependence
as obtained first in [13]. Note that the Li set here has also
the scale and values changed accordingly, not only the Cr

i .
There are also three functions defined that return a

set of random NLO LECs. These are Cirandom which
gives each LEC a random value between ±1/(16π2)2.
CirandomlargeNc does the same but leaves the large-Nc

suppressed constants zero. Finally, CirandomlargeNc2
does the same but the large-Nc suppressed constants get a
value between ±(1/3)/(16π2)2. The random numbers are
generated using the system generator rand() so we rec-
ommend initializing using something like srand(time
(0)). Typically these values of the Cr

i are somewhat on
the large side when fitting data.

6 Loop integrals

Most of the integrals used have been treated in many places. I
refer only to the papers where our particular notation has been
defined and/or the method used to evaluate them was devel-
oped. When comparing with other packages, keep in mind
the differences in subtraction and/or differences in defining
the integrals.

4 This sets the scale simply, it does not change the numerical values of
the LECs.

6.1 One-loop integrals

6.1.1 Tadpoles

These integrals have been defined in [16] and correspond to
the finite parts of the integral

A(n, m2) = 1

i

∫
dd p

(2π)d

1

(p2 − m2)n
. (5)

After the subtraction and renormalization as usual in ChPT,
we are left with the finite four-dimensional part Ā(n, m2)

which is implemented as Ab(n,msq,mu2) and the n =
1, 2, 3 asAb,Bb,Cb respectively with argumentsmsq,mu2.
These functions are defined in oneloopintegrals.h
and implemented in oneloopintegrals.cc.

6.1.2 Bubble integrals

These have been defined in [16,17]

B(m2
1, m2

2, p2) = 1

i

∫
ddq

(2π)d

1

(q2 − m2
1)((q − p)2 − m2

2)
,

Bμ(m2
1, m2

2, p2) = 1

i

∫
ddq

(2π)d

qμ

(q2 − m2
1)((q − p)2 − m2

2)

= pμ B1(m
2
1, m2

2, p2) ,

Bμν(m
2
1, m2

2, p2) = 1

i

∫
ddq

(2π)d

qμqν

(q2−m2
1)((q− p)2−m2

2)

= pμ pν B21(m
2
1, m2

2, p2)

+gμν B22(m
2
1, m2

2, p2) ,

Bμνα(m2
1, m2

2, p2) = 1

i

∫
ddq

(2π)d

qμqνqα

(q2−m2
1)((q− p)2−m2

2)

= pμ pν pα B31(m
2
1, m2

2, p2)+(pμgνα+ pνgμα+ pαgμν)

×B32(m
2
1, m2

2, p2) . (6)

Again one needs to do the subtraction and renormaliza-
tion with ChPT convention. The analytical values can be
obtained using the methods of [10] for the B integral and
the others can be reduced to it using the methods of [18]. All
functions have been implemented via a method that does the
integration over the Feynman parameter x numerically. These
have real arguments m1sq,m2sq,psq,mu2 and are called
Bbnum,B1bnum,B21bnum,B22bnum,B31bnum,B32
bnum and return a complex value. The analytical evaluation
has been implemented in Bb,B1b, B21b,B22b with the
same arguments and a complex return value. The simpler
analytical expression for the case of the two masses equal
has been implemented analytically for Bb and B22b called
with argument msq,psq,mu2
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For the cases with numerical integrations, the precision
can be set using
setprecisiononeloopintegrals(double) and
obtained by
getprecisiononeloopintegrals(void).

All functions are defined in oneloopintegrals.h
and implemented in
oneloopintegrals.cc.

6.2 Sunset integrals

These give the sunsetintegral loop integral functions H F , H F
1 ,

H F
21 defined in App. C of [16]. The definition in finite vol-

ume is given in (9) below. H F
31 is the function multiplying

the pμ pν pρ part of the integral with rμrνrρ . These exist in
a real version valid below threshold and a complex version
valid everywhere. The method used is derived in [16].

The derivative w.r.t. p2 is included for the real version of
H , H1, H 21. Functions defined in sunsetintegrals.h
and implemented in sunsetintegrals.cc.

Input arguments are real and are m2
1, m2

2, m2
3, p2, μ2.

Naming conventions are hh,hh1, hh21,hh31 for the
real versions valid below threshold and the complex ver-
sions valid everywhere zhh,zhh1,zhh21,zhh31. The
real versions are normally faster when applicable. In addi-
tion, wave-function renormalization requires some deriva-
tives w.r.t. the external momentum p2. These are encoded in
hhd,hh1d,hh21d and zhhd,zhh1d,zhh21d for the
real and complex case respectively.

The precision of the numerical integrations can be set
using
setprecisionsunsetintegrals(double) and
obtained by
getprecisionsunsetintegrals(void).

These functions are defined in sunsetintegrals.h
and implemented in sunsetintegrals.cc.

6.3 One-loop finite volume integrals

The methods used for these are derived in detail in [19],
references to earlier literature can be found there. The inte-
grals used here are given in the Minkowski conventions as
defined in [20]. All of the integrals are available with two
different methods, one using a summation over Bessel func-
tions and the other an integral over a Jacobi theta function.
The versions included at present are using periodic boundary
conditions, all three spatial sizes of the same length L and
the time direction of infinite extent.

6.3.1 Tadpoles

The tadpole integrals A and Aμν are defined as

{
A(m2), Aμν(m

2)
}

= 1

i

∫

V

ddr

(2π)d

{
1, rμrν

}

(r2 − m2)
. (7)

The B tadpole integrals are the same but with a doubled
propagator.

The subscript V on the integral indicates that the integral
is a discrete sum over the three spatial components and an
integral over the remainder. At finite volume, there are more
Lorentz-structures possible. The tensor tμν , the spatial part of
the Minkowski metric gμν , is needed for these. The functions
for Aμν are

Aμν(m
2) = gμν A22(m

2) + tμν A23(m
2) . (8)

In infinite volume A22 is related to A and A23 vanishes. We
denote the finite volume part by a superscript V and one
should remember that for the full integrals, the infinite vol-
ume results of Sect. 6.1.1 need to be added.

The functions are defined as AbVt(msq,L), BbVt
(msq,L), AbVb(msq,L), BbVb(msq,L). The last let-
ter indicates whether they are computed with the theta func-
tion or Bessel function method. The results were checked
by comparing against each other and by comparing with the
independent Bessel function implementation done in [21].

The functions A22bVt(msq,L), A22bVt(msq,L),
and A23bVb(msq,L), A23bVb(msq,L) are available as
well.
setprecisionfinitevolumeoneloopt
(Abacc,Bbacc,printout) and
setprecisionfinitevolumeoneloopt(maxsum,
Bbacc,printout) set the precision. The last variable
printout is a logical variable which can be set to true or
false, default is false. The first and second argument give
the (mainly absolute) precision of the numerical integration
for the tadpole and bubble integral numerical integrations.
maxsum indicates how far the sum over Bessel function is
taken. Maximum at present is 400.

These functions are defined infinitevolumeoneloop
integrals.h and implemented in finitevolumeone
loopintegrals.cc.

6.3.2 Bubble integrals

Not implemented in this version.

6.4 Sunset finite volume integrals

Sunset integrals are defined as

{
H, Hμ, Hμν

} = 1

i2

∫

V

ddr

(2π)d

dd 1

(2π)d

×
{
1, rμ, rμrν

}
(
r2 − m2

1

) (
s2 − m2

2

) (
(r + s − p)2 − m2

3

) .

(9)
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The subscript V indicates that the spatial dimensions are a
discrete sum rather than an integral. The conventions corre-
spond to those in infinite volume of [16]. Integrals with the
other momentum s in the numerator are related using the
trick shown in [16] which remains valid at finite volume in
the cms frame [19].

In the cms frame we define the functions5

Hμ = pμH1

Hμν = pμ pν H21 + gμν H22 + tμν H27 . (10)

The arguments of all functions in the cms frame are
(m2

1, m2
2, m2

3, p2). These functions satisfy the relations, valid
in finite volume [19],

H1(m
2
1, m2

2, m2
3, p2) + H1(m

2
2, m2

3, m2
1, p2)

+H1(m
2
3, m2

1, m2
2, p2) = H(m2

1, m2
2, m2

3, p2) ,

p2 H21+d H22+3H27−m2
1 H = A(m2

2)A(m2
3) . (11)

The arguments of the sunset functions in the second rela-
tion are all (m2

1, m2
2, m2

3, p2, L , μ2). (L only for the finite
volume part).

We split the functions in an infinite volume part, H̃i , and
a finite volume correction, H̃ V

i , with Hi = H̃i + H̃ V
i . The

infinite volume part has been discussed above. For the finite
volume parts we define

H̃ V = λ0

16π2

(
AV (m2

1) + AV (m2
2) + AV (m2

3)
)

+ 1

16π2

(
AV ε(m2

1) + AV ε(m2
2) + AV ε(m2

3)
)

+H V ,

H̃ V
1 = λ0

16π2

1

2

(
AV (m2

2) + AV (m2
3)

)

+ 1

16π2

1

2

(
AV ε(m2

2) + AV ε(m2
3)

)
+ H V

1 ,

H̃ V
21 = λ0

16π2

1

3

(
AV (m2

2) + AV (m2
3)

)

+ 1

16π2

1

3

(
AV ε(m2

2) + AV ε(m2
3)

)
+ H V

21 ,

H̃ V
27 = λ0

16π2

(
AV

23(m
2
1) + 1

3
A23(m

2
2) + 1

3
AV

23(m
2
3)

)

+ 1

16π2

(
AV ε

23 (m2
1) + 1

3
AV ε

23 (m2
2) + 1

3
AV ε

23 (m2
3)

)

+H V
27 . (12)

The finite parts are defined differently from the infinite
volume case in [16]. The parts with AV ε are removed here
as well.

5 In the cms frame tμν = gμν − pμ pν/p2 but the given separation
appears naturally in the calculation [19]. It also avoids singularities in
the limit p → 0.

The functions H V
i can be computed with the methods of

[19]. They correspond to adding the parts labeled with G and
H in Sect. 4.3 and the part of Sect. 4.4 in [19].

They are implemented as functions hhVt,hh1Vt,
hh21Vt,hh22Vt,hh27Vtwith argumentsm1sq,m2sq,
m3sq,psq,L,mu2. The derivatives w.r.t. p2 exist as
hhdVt,hh1dVt,hh21dVt,hh22dVt,hh27dVt. These
are the functions using the theta function method. Those
using the Bessel function method are implemented with a
b instead of t as last letter in the name. The arguments are
the same.

For all cases discussed we have done checks that both
methods, via Bessel or (generalized) Jacobi theta functions,
give the same results. In addition the derivatives w.r.t. p2

for all the integrals are compared with taking a numerical
derivative.

Note that the sunset functions at finite volume call
the tadpole integrals evaluated with the same method. Do
not forget to set precision for those as well. The preci-
sion for the sunset integrals can be set with the functions
setprecisionfinitevolumesunsett(racc,
rsacc,printout) and setprecisionfinite
volumesunsetb(maxsum1,mxsum2,racc,rsacc,
printout). The bool variable printout defaults to
true and sets whether the setting is printed. The double
values sunsetracc and sunsetrsacc set the accura-
cies of the numerical integration needed when one or two
loop-momenta “feel” the finite volume. Default values are
1e-5 and 1e-4 respectively. The integers maxsum1 and
maxsum2 give how far the sum over Bessel functions is used
for the same two cases. The first is maximum 400, the second
maximum 40 in the present implementation. In the latter case
a triple sum is needed, hence the much lower upper bound.
For most applications it makes sense to have a higher pre-
cision for the case with one loop momentum quantized, i.e.
racc smaller than rsacc.

7 Masses, decay constants and
vacuum-expectation-values

7.1 Masses

The masses of the pion, kaon and eta at two-loops in three
flavour ChPT were calculated in [16]. The pion and eta mass
were done earlier with a different subtraction scheme and a
different way to perform the sunset integrals in [22].

The expressions for the physical masses for a = π, K , η

are given by

m2
a phys = m2

a 0 + m2(4)
a + m2(6)

a . (13)

The superscripts indicate the order of the diagrams in p that
each contribution comes from. The lowest order masses are
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given in (4). The expressions can be found in [16]. In addition
the contributions themselves are split in the parts depend-
ing on the NLO LECs Lr

i , on the NNLO LECs Cr
i and the

remainder as

m2(4)
a = m2(4)

a L + m2(4)
a R , m2(6)

a = m2(6)
a L + m2(6)

a C + m2(6)
a R .

(14)

All the parts in (14) are implemented as the functions
mpi4(physmass,Li), mpi4L(physmass,Li),
mpi4R(physmass), mpi6(physmass,Li,Ci),
mpi6L(physmass,Li), mpi6C(physmass,Ci) and
mpi6R(physmass) . The equivalent functions also exist
for the kaon, with pi to k, and eta, with pi to eta.

The functions are defined in massesdecayvev.h and
implemented in massesdecayvev.cc.

7.2 Decay constants

The decay constants of the pion, kaon and eta at two-loops in
three flavour ChPT were calculated in [16]. The pion and eta
decay constants were done earlier with a different subtraction
scheme and a different way to perform the sunset integrals
in [22].

The expressions for the decay constants for a = π, K , η

are given by

Fa phys = F0

(
1 + F (4)

a + F (6)
a

)
. (15)

The superscripts indicate the order of the diagrams in p that
each contribution comes from. F0 denotes the decay constant
in the three-flavour chiral limit. The expressions were origi-
nally derived in [16], but note the description in the erratum
of [15]. The expressions corrected for the error can be found
in the website [23]. In addition the contributions themselves
are split in the parts depending on the NLO LECs Lr

i , on the
NNLO LECs Cr

i and the remainder as

F (4)
a = F (4)

a L + F (4)
a R , F (6)

a = F (6)
a L + F (6)

a C + F (6)
a R . (16)

All the parts in (16) are implemented as the functions
fpi4(physmass,Li), fpi4L(physmass,Li),fpi
4R(physmass), fpi6(physmass,Li,Ci), fpi6L
(physmass,Li), fpi6C(physmass,Ci) and fpi6R
(physmass) . The equivalent functions also exist for the
kaon, with pi to k, and eta, with pi to eta. For the η the
decay constant has been defined with the octet axial-vector
current.

The functions are defined in massesdecayvev.h and
implemented in massesdecayvev.cc.

7.3 getfpimeta

A problem that occurs in trying to compare to lattice QCD is
that the present routines are written in terms of the physical
pion decay constant and masses. In particular, the eta mass is
treated as physical. One thus needs a consistent eta mass and
pion decay constant when varying the input pion and kaon
mass. This assumes we have fitted the LECs Lr

i and Cr
i with

a known set of mπ , mK , mη, Fπ .
The functionsgetfpimeta6(mpiin,mkin,massin,

Li,Ci) and getfpimeta4(mpiin,mkin,massin,
Li) return a physmass with a consistent set of Fπ and
mη for input values of the pion and kaon mass. The other
input is the physmass massin, the Li and Ci that are
used as input. The formulas used are (14) and (16) up to
order p6 and p4 respectively. The solution is obtained by
iteration and stops when six digits of precision are reached.
This method was used in [20] to obtain the consistent set of
masses and decay constants used there.

7.4 Vacuum-expectation-values

The corrections to the vacuum expectation values (vevs)
〈0|qq|0〉 for up, down and strange quarks in the isospin limit
were calculated at two-loops in three flavour ChPT in [15].
The expression for the up and down quark vev are identical
since we are in the isospin limit.

We write the expressions in a form analoguous to the decay
constant treatment:

〈0|qq|0〉a phys = −F2
0 B0

(
1 + 〈0|qq|0〉(4)

a + 〈0|qq|0〉(6)
a

)
.

(17)

The superscripts indicate the order of the diagrams in p that
each contribution comes from. The lowest order values are
−F2

0 B0.
Note that the vevs are not directly measurable quanti-

ties. They depend on exactly the way the scalar densities are
defined in QCD. ChPT can be used for them when a massin-
dependent, chiral symmetry respecting subtraction scheme
is used. M S in QCD satisfies this, but there are other pos-
sibilities. Even within a scheme, B0 and the quark masses
depend on the QCD subtraction scale μQCD in such a way
that B0mq is independent of it. The higher order corrections
in this case also depend on the LECs for fully local counter-
terms, Hr

1 , Hr
2 at order p4 and Cr

91, . . . , Cr
94 at p6. When the

scalar density is fully defined, measuring these quantities in
e.g. lattice QCD and comparing with the ChPT expressions
is a well defined procedure.

The contributions at the different orders themselves are
split in the parts depending on the NLO LECs Lr

i , on the
NNLO LECs Cr

i and the remainder as
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〈0|qq|0〉(4)
a = 〈0|qq|0〉(4)

a L + 〈0|qq|0〉(4)
a R,

〈0|qq|0〉(6)
a = 〈0|qq|0〉(6)

a L + 〈0|qq|0〉(6)
a C + 〈0|qq|0〉(6)

a R .

(18)

All the parts in (18) are implemented as the functions
qqup4(physmass,Li), qqup4L(physmass,Li),
qqup4R(physmass),qqup6(physmass,Li,Ci),qq
up6L(physmass,Li), qqup6C(physmass,Ci) and
qqup6R(physmass) . The equivalent functions also exist
for the strange quark case, with up changed to strange.

The functions are defined in massesdecayvev.h and
implemented in massesdecayvev.cc.

8 Masses and decay constants at finite volume

The expressions treated in this section have been derived in
[20]. A general remark is that care should be taken to set
the precision in the loop integrals sufficiently high. For the
one-loop integrals setting it very high is usually no problem.
For the sunset integrals the evaluation can become very slow.
It is strongly recommended to play around with the settings
and compare the outputs for the two ways to evaluate the
integral. The theta and Bessel function evaluation approach
the correct answer differently. For most cases it is possible
to have rsacc set smaller than racc.

For many applications it is useful to calculate the very
time consuming parts, those labeled 6RV, once and store
them. They only depend nontrivially on the masses and size
of the finite volume. The decay constant dependence is very
simple and there is dependence on the NLO LECs Lr

i .
The results presented in this section are with periodic

boundary conditions and an infinite extension in the time
direction. They are also restricted to the case where the par-
ticle is at rest, i.e. p = 0.

8.1 Masses at finite volume

The finite volume corrections to the masses squared6 are
defined as the difference of the mass squared in finite volume
and in infinite volume:

�V m2
a = m2V

a − m2 V =∞
a = m2V (4)

a + m2V (6)
a .

m2V (6)
a = m2V (6)

a L + m2V (6)
a R . (19)

These definitions are for a = π, K , η. These functions
are available as mpi4Vt, mpi6Vt, mpi6LVt mpi6RVt
respectively for the pion. mpi4Vt and mpi6RVt have as
arguments a physmass and the length L . The other two have

6 Note that in other papers the corrections to the mass itself are some-
times quoted.

as arguments physmass,Li, double L. The final let-
ter “t” indicates the evaluation using theta functions. With a
“b” instead they use evaluation via Bessel functions.

The equivalent functions for the kaon (pi to k) and
eta (pi to eta) are also available. All these are defined
in massdecayvevV.h and implemented in massdeca
yvevV.h.

8.2 Decay constants at finite volume

The finite volume corrections to the decay constants are
defined as the difference of the mass squared in finite volume
and in infinite volume:

�V Fa = F V
a − F V =∞

a = F V (4)
a + F V (6)

a .

F V (6)
a = F V (6)

a L + F V (6)
a R . (20)

These definitions are for a = π, K , η. Note that the correc-
tion is defined to the value of the decay constant, not divided
by the lowest order decay constant as in (15). The functions
are available as fpi4Vt, fpi6Vt, fpi6LVt fpi6RVt
respectively for the pion. fpi4Vt and fpi6RVt have as
arguments a physmass and the length L . The other two have
as arguments physmass,Li, double L. The final let-
ter “t” indicates the evaluation using theta functions. With a
“b” instead they use evaluation via Bessel functions.

The equivalent functions for the kaon (pi to k) and
eta (pi to eta) are also available. All these are defined
in massdecayvevV.h and implemented in massdeca
yvevV.h.

9 Various comments

9.1 Error handling

Error handling has been dealt with in a very simple man-
ner. Most functions print out a message to standard output if
something doesn’t seem right. In particular, since the subtrac-
tion scale is present in several inputs, many functions check
if these are the same and print out a message if not.

Errors due to a zero in a denominator are not caught and
might lead to a crash.

9.2 Warnings

The definition of higher orders in ChPT is not unique. In this
program collection, we have consistently chosen to rewrite
all results in the physical masses and the physical pion decay
constant, but note that even this is not fully unique. While
there is usually a standard choice for the lowest order expres-
sion, at one-loop order this is often not the case since the
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Gell-Mann–Okubo relation can be used to rewrite the depen-
dence on the η mass.

The files contain many internal functions as well as some
extensions which are not described in this manuscript. These
might change in future releases and have in general not
been as fully tested as the described ones. Use at your own
risk.

9.3 Possible extensions

Two-loop results are known for many more ChPT quantities
also including isospin violation as well as for two-flavour
ChPT and the partially quenched case. In addition at the one-
loop level very many extensions exist for inclusion of the
internal electro-magnetic interaction, finite volume effects,
twisting and various extensions that include finite a effects
in lattice gauge theory.

Another extension is how the higher orders are actually
defined. In this program collection so far we have consis-
tently chosen to rewrite all results in the physical masses and
the physical pion decay constant. Implementations of other
choices of higher orders, in particular in terms of lowest-order
quantities are planned.

A last extension worth mentioning is the inclusion of the
existing two-flavour ChPT results.

10 Conclusions

This paper describes a library of useful numerical programs
in C++ for ChPT at upto two-loop order. Care has been taken
to be independent of other libraries. In particular a number
of numerical routines has been reimplemented in the numer-
ical algorithm part of the library, libjbnumlib.a. The
more ChPT direct functions like the loop integrals, a num-
ber of data structures to deal with LECs and the result for
the masses, decay constants and decay constants are put in
libchiron.a. Finite volume results are included for the
masses and decay constants.

A simple Makefile as well as a large number of test-
ing/example programs are included.
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