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Abstract We have investigated the dynamics of a neu-
tral and a charged particle around a static and spherically
symmetric black hole in the presence of quintessence mat-
ter and external magnetic field. We explore the conditions
under which the particle moving around the black hole could
escape to infinity after colliding with another particle. The
innermost stable circular orbit (ISCO) for the particles are
studied in detail. Mainly the dependence of ISCO on dark
energy and on the presence of external magnetic field in the
vicinity of black hole is discussed. By using the Lyapunov
exponent, we compare the stabilities of the orbits of the par-
ticles in the presence and absence of dark energy and mag-
netic field. The expressions for the center of mass energies
of the colliding particles near the horizon of the black hole
are derived. The effective force on the particle due to dark
energy and magnetic field in the vicinity of black hole is also
discussed.

1 Introduction

The accelerating expansion of the universe indicates the pres-
ence of elusive dark energy. The presence of dark energy
is supported by several astrophysical observations including
the study of Ia Supernova [1], cosmic microwave background
(CMB) [2] and large scale structure (LSS) [3,4]. The nature
of dark energy is not understood until now. It is explained
by cosmological models in which dominant factor of dark
energy density may possess negative pressure such as cos-
mological constant � with a state parameter wq = −1.
There are other scaler field models that are proposed such
as quintessence [5], phantom dark energy [6–9], K-essence
[10], holographic dark energy [11–14] to name a few. Dark
energy is approximately 70 % of the energy density of the
universe. If dark energy is dynamical, then naturally it will
become more dominant in the future and will play a crucial
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role at all length scales. In this context, we study the motion
of the particles around the black hole surrounded by dark
energy and magnetic field.

Observational evidences indicate that magnetic field
should be present in the vicinity of black holes [15]. This
magnetic field arises due to plasma in the surrounding of
black hole. The relativistic motion of particles in the conduct-
ing matter in the accretion disk may generate the magnetic
field inside the disk. This field does not affect the geometry
of the black hole yet, it affects the motion of charged particles
and support them to escape [16,17].

Bañados, Silk and West (BSW) proposed that some black
holes may act as particle accelerators [18]. In the vicinity of
extremal Kerr black hole, they have found that infinite center-
of-mass energy (CME) can be achieved during the collision
of particles. The BSW effect has been studied for different
black hole spacetimes [18–30]. In this paper we obtain the
CME expression for the colliding particles near horizon of
Schwarzschild-like black hole surrounded by quintessence
matter and BSW effect is studied for both neutral and charged
particles.

Quintessence is defined as a scalar field coupled to grav-
ity with the potential which decreases as field increases [31].
The solution for a spherically symmetric black hole sur-
rounded by quintessence matter was derived by Kiselev [32].
It has the state parameter in the range , −1 < wq < −1

3 . In
this work we will focus on Kiselev solution. We consider a
Schwarzschild-like black hole surrounded by quintessence
matter in the presence of external axi-symmetric magnetic
field. The magnetic field is homogeneous at infinity. This
magnetic field and quintessence matter strongly affects the
dynamics of the particles and location of their inner stable
circular orbits (ISCO) around black hole. During the motion
of a particle around the black hole, it is under the influence of
dark energy, gravitational and magnetic forces. Before deal-
ing with a difficult problem about dynamics of a charged
particle around black hole, we start with the neutral particle
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without considering magnetic field. We construct the dynam-
ical equations from the Lagrangian formalism which are not
solvable via analytic methods.

We are extending a previous work [33] by choosing a
Schwarzschild-like black hole surrounded by quintessence
matter and an external magnetic field. Main objective of our
work is to study the effects on the motion of a particle, ini-
tially moving in the ISCO, after its collision with another
particle. So under what circumstances after the collision the
particle would escape from ISCO or its motion would remain
bound. Also how would the energy of the particle change
after collision. We calculate the force acting on the parti-
cle due to dark energy and mention the conditions when
this force be attractive or repulsive. In this paper we cal-
culate the velocity of a particle needed to escape to infinity
and investigate some characteristics of the particle’s motion
moving around black hole. We also compare the stability of
orbits for photon and massive particle by using Lyapunov
exponent [34].

The outline of the paper is as follows: We explain our
model in Sect. 2 and derive an expression for escape velocity
of the neutral particle. In Sect. 3 we give the expression for
magnetic field around the black hole and derive the equa-
tions of motion for a charged particle. In Sect. 4 we give
the dimensionless form of the equations. In Sect. 5 CME
expressions are derived for colliding particles. In Sect. 6 the
Lyapunov exponent is calculated. In Sect. 7 the force on the
charged particle is calculated. Trajectories for escape energy
and escape velocity of the particle are given in Sect. 8. Con-
cluding remarks are given in Sect. 9. We use (+,−,−,−)

sign convention and gravitational units, c = G = 1.

2 Dynamics of a neutral particle

We start with the simpler case of calculating the escape veloc-
ity of a neutral particle in the absence of magnetic field.
The geometry of static spherically symmetric black hole sur-
rounded by the quintessence matter is given by [32]

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2dθ2 − r2 sin2 θdφ2,

f (r) = 1 − 2M

r
− c

r3wq+1 . (1)

Here M is the mass of black hole, c is the quintessence param-
eter and wq has range −1 < wq < −1

3 while we will focus on
wq = −2

3 . The above metric (1) diverges when r = 0 which
is curvature singularity. For f (r) = 0 we get two values of
r :

r+ = 1 + √
1 − 8Mc

2c
, r− = 1 − √

1 − 8Mc

2c
. (2)

The region r = r− corresponds to black hole horizon while
r = r+ represents the cosmological horizon. Therefore, r−
and r+ are the two coordinate singularities in the metric (1).
If 8Mc = 1 then we get the degenerate solution for the
spacetime at r± = 1

2c and if 8Mc > 1 then horizons do not
exist. For very small value of c, r+ ≈ 1

c . Further more, we
can say that the restriction on c, is c ≤ 1

8M .
We discuss the dynamics of a neutral particle in the

Schwarzschild-like back ground defined by (1). There are
three constants of motion corresponding (1) in which two of
them arise as a result of two Killing vectors [35]

ξ(t) = ξ
μ

(t) = ∂t , ξ(φ) = ξ
μ

(φ) = ∂φ. (3)

where ξ
μ
t = (1, 0, 0, 0) and ξ

μ
φ = (0, 0, 0, 1) Eq. (3) implies

that, black hole metric (1) is invariant under time translation
and rotation around symmetry axis (θ = 0). The correspond-
ing conserved quantities (conjugate momenta) are the energy
per unit mass E and azimuthal angular momentum per unit
mass Lz , respectively given by

E ≡ f (r)ṫ, (4)

−Lz ≡ φ̇r2 sin2 θ. (5)

Here over dot represents differentiation with respect to proper
time τ . The third constant of motion is the total angular
momentum

L2 = r4θ̇2 + L2
z

sin2 θ
= r2v2⊥ + L2

z

sin2 θ
. (6)

Here we denote v⊥ ≡ −r θ̇o. By using the normalization
condition of 4-velocity uμuμ = 1 and constants of motion
(4) and (5), we get the equation of motion of neutral particle

ṙ2 = E2 −
(

1 + L2
z

r2 sin2 θ

)
f (r). (7)

At the turning points of the moving particles from the trajec-
tories ṙ = 0, hence Eq. (7) gives

E2 =
(

1 + Lz

r2 sin2 θ

)
f (r) ≡ Ueff, (8)

where Ueff is the effective potential.
Consider a particle in the circular orbit r = ro, where

ro is the local minima of the effective potential. This orbit
exists for ro ∈ (4M,∞). Generally for non-degenerate case
(r+ 	= r−) the energy and azimuthal angular momentum
corresponding to local minima ro are

Lzo =
√

cr2
o − 2M√

c + 6M−2ro
r2

o

, (9)

Eo = 2 (2M + ro(cro − 1))2

ro (6M + ro(cro − 2))
. (10)
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For the degenerate case which is defined by c = 1
8M or

r+ = r−. The energy and azimuthal angular momentum cor-
responding to ro are

Lzo =
√

r2
o

8M − 2M√
1

8M + 6M−2ro
r2

o

, (11)

Eo = 2
(
2M + ro(

ro
8M − 1)

)2

ro
(
6M + ro(

ro
8M − 2)

) . (12)

The ISCO is defined by ro = 4M which is the convolution
point of the effective potential [36]. We have not restricted
ourself to this local minima at ro because it depends on the
applied condition which we will discuss later in Sect. 8.

Now consider the particle is in a ISCO and collides with
another particle, the later one is coming from the rest position
at infinity as a freely falling particle. After collision between
particles, three cases are possible for the particles: (i) remain
bounded around black hole, (ii) captured by black hole and
(iii) escape to infinity. The results depend on the collision
process. For small changes in energy and angular momen-
tum, orbit of the particle is slightly perturbed but particle
remains bounded. For larger change in energy and angular
momentum, it can go away from initial path and could be
captured by black hole or escape to infinity.

After the collision particle should have new values of
energy and azimuthal angular momentum and the total angu-
lar momentum. We simplify the problem by applying the fol-
lowing conditions: (i) the azimuthal angular momentum does
not change and (i i) initial radial velocity remains same after
collision. Under these conditions only energy can change by
which we can determine the motion of the particle. After col-
lision particle acquires an escape velocity (v⊥) in orthogonal
direction of the equatorial plane [15].

After collision the total angular momentum and energy of
the particle become (at θ = π

2 )

L2 = r2
o v2⊥ + L2

z , (13)

E =
[

f (r)

(
1 + (Lz + rv⊥)2

r2

)] 1
2

. (14)

These new values of angular momentum and energy are
greater from their values before collision because during col-
lision colliding particle may impart some of its energy to the
orbiting particle. We get the expression (15) for velocity v

from Eq. (14) after solve it for v.

vesc⊥ ≥ Lzr(r − 2M − cr2) + √
r4(r(1 − cr) − 2M)(2M + r(cr + E2 − 1))

r2(2M + r(cr − 1))
, (15)

particle would escape if |vesc⊥ | ≥ v⊥.

3 Dynamics of a charged particle

We investigate how does the motion of a charged particle
is effected by both magnetic field in the black hole exterior
and gravitational field. The general Killing vector equation
is [37]

�ξμ = 0, (16)

where ξμ is a Killing vector. Equation (16) coincides with the
Maxwell equation for 4-potential Aμ in the Lorentz gauge
Aμ

;μ = 0. The special choice [38]

Aμ = B
2

ξ
μ

(φ), (17)

corresponds to the test magnetic field, where B is the mag-
netic field strength. The 4-potential is invariant under the
symmetries which corresponds to the Killing vectors as dis-
cussed above, i. e.,

Lξ Aμ = Aμ,νξ
ν + Aνξ

ν
,μ = 0. (18)

A magnetic field vector is defined as [35]

Bμ = −1

2
eμνλσ Fλσ uν, (19)

where

eμνλσ = εμνλσ

√−g
, ε0123 = 1, g = det(gμν). (20)

εμνλσ is the Levi Civita symbol. The Maxwell tensor is
defined as

Fμν = Aν,μ − Aμ,ν = Aν;μ − Aμ;ν . (21)

For a local observer at rest in the space-time (1),

uμ
0 = 1√

f (r)
ξ

μ

(t), uμ
3 = 1√

r2 sin2 θ
ξ

μ

(φ). (22)

The other two components uμ
1 and uμ

2 are zero at the turning
point (ṙ = 0). From Eqs. (19)–(22) we have obtained the
magnetic field given below

Bμ = B 1√
f (r)

[
cos θδμ

r − sin θδ
μ
θ

r

]
. (23)

Here we considered magnetic field to be directed along the
vertical (z-axis) and B > 0.

The Lagrangian of the particle of mass m and electric
charge q moving in an external magnetic field of a curved
space-time is given by [28]

L = 1

2
gμνuμuν + q Aμ

m
uμ, (24)
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and generalized 4-momentum of the particle pμ = muμ +
q Aμ. The new constants of motion are defined below

ṫ = E
f (r)

, φ̇ = Lz

r2 sin2 θ
− B, (25)

here

B ≡ qB
2m

. (26)

By using these constants of motion in the Lagrangian we get
the dynamical equations for θ and r , respectively

θ̈ = B2 sin θ cos θ − 2

r
ṙ θ̇ − L2

z cos2 θ

r4 sin3 θ
, (27)

r̈ = − (2M + r(cr − 1))2

(−2M + r − cr2)

(
L2

z

r4 sin2 θ

)

+ (2M + cr2)

(2M + cr2 − r)2 (E + ṙ2)

+ (2M + r(cr − 1))2

(−2M + r − cr2)
(B2 sin2 θ + θ̇2). (28)

By using normalization condition we get

E2 = ṙ2 + r2 f (r)θ̇2

+ f (r)

[
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
− B

)2
]
. (29)

From Eq. (29) we can write the effective potential as

Ueff = f (r)

[
1 + r2 sin2 θ

(
Lz

r2 sin2 θ
− B

)2
]
. (30)

The above equation is a constraint i.e. if it is satisfied ini-
tially, then it is always valid, provided that θ(τ ) and r(τ ) are
controlled by Eqs. (27) and (28).

Let us discuss the symmetries of Eqs. (24)–(29), these
equation are invariant under the transformation given below

φ → −φ, Lz → −Lz, B → −B. (31)

Therefore, without losing the generality, we consider the pos-
itive charged particle. The trajectory of a negatively charge
particle is related to positive charge’s trajectory by transfor-
mation (31). If we make a choice B > 0 then we will have
to study both cases when Lz > 0, Lz < 0. They are phys-
ically different: the change of sign of Lz means the change
of direction of the Lorentz force on the particle.

System of Eqs. (24)–(29) is invariant with respect to reflec-
tion (θ → π − θ). This transformation retains the initial
position of the particle and changes v⊥ → −v⊥. Therefore,
it is sufficient to consider only the positive value of v⊥.

4 Dimensionless form of the dynamical equations

Before integrating our dynamical equations of r and θ numer-
ically we make these equations dimensionless by introducing
the following dimensionless quantities [11]:

2m = rd σ = τ

rd
, ρ = r

rd
, � = Lz

rd
,

b = Brd , c1 = crd . (32)

Equations (27) and (28) acquire the form

d2θ

dσ 2 = b2 sin θ cos θ − 2

ρ

dρ

dσ

dθ

dσ
+ �2 cos2 θ

ρ4 sin3 θ
, (33)

d2ρ

dσ 2 = (1 + c1ρ
2 − ρ)

�2

ρ4 sin2 θ

+ (1 + c1ρ
2)

(1 + c1ρ2 − ρ)2

(
E +

(
dρ

dσ

)2
)

−(1 + c1ρ
2 − ρ)

(
b2 sin2 θ +

(
dθ

dσ

)2
)

. (34)

For the equatorial plane the Eq. (33) is obviously satisfied
and the Eq. (34) becomes

d2ρ

dσ 2 = (1 + c1ρ
2 − ρ)

(
�2

ρ4 − b2
)

+ (1 + c1ρ
2)

(1 + c1ρ2 − ρ)2

(
E +

(
dρ

dσ

)2
)

. (35)

We have solved the Eq. (35) numerically by using the built in
command NDSolve in Mathematica 8.0. We have obtained
the interpolating function as a solution of Eq. (35) and we
plot the derivative of interpolating function (radial velocity
of the particle) as a function of σ in Fig. 1.

Equations (29) and (30) become

E2 =
(

dρ

dσ

)2

+ ρ2
(

1 − c1ρ − 1

ρ

) (
dθ

dσ

)2

+ Ueff . (36)

Ueff =
(

1 − c1ρ − 1

ρ

)[
1 + ρ2

(
�

ρ2 sin2 θ
− b

)2
]

(37)

The energy of the particle moving around the black hole in a
orbit of radius ρo at the equatorial plane (θ = π

2 ) is given by

Ueff = E2
o =

(
1 − c1ρ − 1

ρ

) [
1 + (� − bρ2

o )2

ρ2
o

]
. (38)

Solving dUeff
dρ

= 0 and d2Ueff
dρ2 = 0 simultaneously we calcu-

late b and � in term of ρ where

dUeff

dρ
= ρ2 − 2b�ρ2 − b2ρ4 − 2b2ρ5(c1 − 1)

+�2(3 + 2ρ(c1 − 1)), (39)
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Fig. 1 In this figure we have plotted radial velocity as a function of σ

for � = 5, E = 1, b = 0.25 and c1 = 0.125

and

d2Ueff

dρ2 = 2
[
2b�ρ2 − ρ2 + b2ρ5(1 − c1)

−3�2(2 + ρ(c1 − 1))
]
. (40)

The obtained expressions for b and � are

b = 1

2
√

2ρ4(1 + ρ(c1ρ − 1))2 [3 + ρ (ρ(4 + c1(18 + ρ(3c1ρ − 18))) − 10)]

×
[√

ρ4 [1 − ρ(3 + c1ρ(ρ(3c1ρ − 1) − 6))] (ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3)3

+ρ2 (ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3) (3 + ρ(ρ(4 + c1(14 + 3ρ(c1ρ − 3))) − 9))
] 1

2
, (41)

and

� =
√

ρ4 [1 − ρ(3 + c1ρ(ρ(3c1ρ − 1) − 6))] (ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3)3

(ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3)2

×
[

1

2
√

2ρ4(1 + ρ(c1ρ − 1))2 [3 + ρ (ρ(4 + c1(18 + ρ(3c1ρ − 18))) − 10)]

×
{√

ρ4 [1 − ρ(3 + c1ρ(ρ(3c1ρ − 1) − 6))] (ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3)3

+ρ2 (ρ(1 + c1ρ(6 + ρ(c1ρ − 3))) − 3) (3 + ρ(ρ(4 + c1(14 + 3ρ(c1ρ − 3))) − 9))
} 1

2
]

. (42)

In Fig. 2 we have plotted magnetic field b against ρ for dif-
ferent values of c1. It can be seen that the strength of magnetic
field is increasing for large value of c1. We can conclude that
the presence of dark energy strengthens the magnetic field
which is present in the vicinity of black hole. The strength
of magnetic field is decreasing away from the black hole. In
Fig. 3, we plotted angular momentum as a function of ρ for

Fig. 2 In this figure we have plotted the magnetic field b as a function
of ρ for different value of c1

different values of c1. Figures 4 and 5 represent the angular
momentum for ISCO as a function of magnetic field. Lorentz
force is attractive if � > 0 which corresponds to Fig. 4 and
it is repulsive if � < 0 corresponds to Fig. 5.

As we did before in the case of a neutral particle, we
assume that the collision does not change the azimuthal

angular momentum of the particle but it changes the velocity
v⊥ > 0. Due to this, the particle energy changes Eo → E
and is given by the equation in dimensionless form

E=
√√√√((

1 − c1ρ − 1

ρ

)[
1 + ρ2

(
� + ρv⊥

ρ2 − b

)2
])

. (43)
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Fig. 3 This figure shows the behavior of angular momentum as a func-
tion of ρ for different value of c1

Fig. 4 In this figure we have plotted the angular momentum �+ vs
magnetic field b

We get escape velocity of the particle from the above equation
(43) as given below

vesc⊥ ≥ 1

ρ2(1 + ρ(c1ρ − 1)

[
ρ(1 + ρ(c1ρ − 1))(bρ2 − �)

±
√

ρ4(ρ(1 − c1ρ)−1)(1+ρ(E2 + c1ρ − 1))
]
. (44)

5 Center of mass energy of the colliding particles

5.1 In the absence of magnetic field

First we consider that the two neutral particles of masses
m1 and m2 coming from infinity collide near the black hole
when there is no magnetic field. The collision energy of the

Fig. 5 In this figure we have plotted the angular momentum �− against
magnetic field b

particles of masses m1 = m2 = mo in the center of mass
frame is defined as [18]

Ecm = mo
√

2
√

1 − gμνuμ
1 uν

2, (45)

where

uμ
i ≡ dxμ

dτ
, i = 1, 2 (46)

is the 4-velocity of each of the particles. Using Eqs. (4), (5),
and (7), in Eq. (45) we get the CME for the neutral particle,
falling freely from rest at infinity, given below

Ecm = mo
√

2

[
2 +

(
L2

1 + L2
2

2r2

) (E2 + f (r)

E2

)

+(L1L2)

(
f (r)(L1L2)−2r2E2

2E2r4

)
+ f (r)

2E2

]1/2

. (47)

We are interested to find out the CME of the particles near
the horizon, so taking f (r) = 0 we get

Ecm = 2mo

√
1 + 1

4r2
h

(L1 − L2)2, (48)

where rh = 1±√
1−8Mc
2c represents the horizons of the black

hole, obtained earlier. The expression of CME obtained in
Eq. (48) could be infinite if the angular momentum of one
of the particles gets infinite value, but it would not allow the
particle to reach the horizon of the black hole. Thus the CME
in Eq. (48) can not be unlimited.

5.2 In the presence of magnetic field

For a charged particle moving around the black hole we have
obtained the constants of motion defined in Eq. (25), using it
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with normalization condition of the metric we get the equa-
tion of motion of the particle

ṙ2 = E2 − f (r)

[
1 + r2

(
L

r2 − B

)2
]
. (49)

Using Eqs. (25), (49) with Eq. (45) we get the expression for
CME of the charged particles coming from infinity, colliding
near the black hole

Ecm = mo
√

2

[
2 + (L2

1 + L2
2)

[
f (r) + E2

2r2E2 + f (r)B2

2E2

]

−(L1 + L2)

[
B(

E2 + f (r)

E2 ) + f (r)r2 B3

E2

]

+L1L2

[
f (r)

2E2r4

(
L1L2 + 2Br2(L1 + L2) + 4B2r4

)

− 1

r2

]
+ B2r2(

E2 + f (r)

E2 )+ f (r)

2E2 + f (r)r4 B4

2E2

]1/2

,

(50)

near horizon i.e. at f (r) = 0, Eq. (50) becomes

Ecm = 2mo

[
1+ 1

4r2
h

(L1 − L2)
2− B

2
[(L1+L2)−Br2]

]1/2

,

(51)

where rh represent the horizons of the black hole. The CME
in Eq. (51) could be infinite, if the angular momentum of
one of the particles has infinite value, for which the particle
could not reach the horizon of the black hole. Thus the CME
defined in Eq. (51) is some finite energy.

6 Lyapunov exponent for the instability of orbit

We can check the instability of circular orbit by Lyapunov
exponent which is given by [34]

λ =
√

−U ′′
eff(ro)

2ṫ(ro)2 (52)

λ =
√

(2M + r(−1 + cr))
(−2Mr2 + 4BL Mr2 + B2r5(1 − 3cr) − L2(12M + r(cr − 3))

)
L2r4 (53)

Figures 6 and 7 shows the Lyapunov exponent as a func-
tion of c. It can be seen form these figures that instabil-
ity of circular orbits are less for non zero c in comparison
with Schwarzschild black hole. In Fig. 8 we are comparing
the Lyapunov exponent for three different types of black
hole, Schwarzschild black hole, Schwarzschild black hole

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.2

0.4

0.6

0.8

c

λ

Fig. 6 Figure shows the Lyapunov exponent as a function of c for
massive particle. Here, r = 3 M = 1, L = 3.22, and b = 0.25

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.770

0.775

0.780

0.785

0.790

c

λ

Fig. 7 Figure shows the Lyapunov exponent as a function of c for
photon. Here, r = 3, M = 1, L = 3.22, and b = 0.25

immersed in a magnetic field and Schwarzschild-like black
hole surrounded by quintessence matter and magnetic field.
It can be seen from this figure that with non zero c or B,
stability is more as compared to Schwarzschild black hole. It
can be seen from the Fig. 8 that the Lyapunov exponent λ is

smaller for the quintessence black hole as compared to λ for
the stable circular orbit for schwarzschild black hole and it is
even more smaller if we consider black hole surrounded by
both dark energy and magnetic field. Here for all the figures
we denote b = B

rd
. Figure 9 shows the force acting on the

particle as a function of r .
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Fig. 8 Lyapunov exponent for different values of c and b as a function
of radial coordinate r for M = 1, and L = 3.22

Fig. 9 Figure shows the force on the particle as a function of r . Here
c = 0.05, M = 1, L = 3.22 and b = 0.5. The orbits corresponds to
Fmax are unstable and the orbits corresponds to Fmin are stable

7 Effective force on the particle

We have computed the effective potential, one can obtain the
effective force on the particle as

F = −1

2

dUeff

dr
, (54)

F = − M

2r4

(
6L2 − 4BLr2 − 2B2r4

)
+ 1

2r4

(
2L2r − 2r2 − 2Br5

)
− c

2r4

(
r2L2 + 2BLr4 − r4 − 3B2r6

)
(55)

First term in Eq. (55) is attractive if
(
6L2 > −4BLr2 − 2B2

r4
)
. Second term is repulsive if

(
2L2r > −2r2 − 2Br5

)
.

Third term is the force due to quintessence matter, is also

attractive if
(
r2L2 + 2BLr4 > −r4 − 3B2r6

)
. In case of

photon the first term and the dark energy terms are purely
attractive (without any condition) and remaining term is
repulsive.

For the rotational (angular) variable

dφ

dτ
= Lz

r2 − b. (56)

If the right hand side of Eq. (56) is positive (Lz > b), then the
Lorentz force on the particle is repulsive (particle moving in
anticlockwise direction). If right hand side is negative (Lz <

b), then the Lorentz force is attractive (clockwise rotation).

8 Trajectories for effective potential and escape velocity

In Fig. 10 we plotted the effective potential vs ρ. The Hor-
izontal line α with E < 1 corresponds to bound motion,
this is the analogue of elliptical motion in Newtonian the-
ory. The trajectories of the particle is not closed in general.
The line segment β with E > 1 corresponds to a particle
coming from infinity and then move back to infinity (hyper-
bolic motion). The line γ does not intersects with the curve
of effective potential and passes above its maximum value
U1max. It corresponds to particle which is falling into the
black hole (captured by the black hole). In Fig. 10, U1max

and U2max correspond to unstable orbits and Umin refers to a
stable circular orbit.

In Fig. 11 we are comparing the effective potentials for
different value of c. One can notice as the value of c increases
the maxima and minima of effective potential shifted down-
ward. Here Umax and Umin corresponds to unstable and sta-
ble orbits of the particle around the black hole, respectively.
In Fig. 11, curve 3 represents the Schwarzschild effective
potential. Therefore, one can say that the dark energy acts to

Fig. 10 In this figure we have plotted the effective potential against ρ

123



Eur. Phys. J. C (2015) 75 :24 Page 9 of 11 24

Fig. 11 In this figure we have plotted the effective potential as a func-
tion ρ, for different value of c

Fig. 12 In this figure we have plotted the effective potential against ρ,
for different value of magnetic field b

decrease the effective potential. We can conclude that force
on the particle due to dark energy is attractive. Hence the pos-
sibility for a particle to capture by the black hole is greater
due to presence of dark energy as compare to the case when
c = 0. Effective potential vs ρ is plotted in Fig. 12 for dif-
ferent values of magnetic field b. One can notice from the
Fig. 12 that as we increase the strength of magnetic field sta-
bility is more as compare to the case for which magnetic field
is absent b = 0. It can also be seen that the local minima of
the effective potential which corresponds to ISCO is shifting
toward the horizon which is in agreement with [38,39]. We
are comparing the effective potential for massive particle and
photon in Fig. 13. For photon there is no stable orbit as there
is no minima for � = 0 represented by plot 3 in Fig. 13.
While for the massive particle there are local minima Umin1

and Umin2 which correspond to stable orbits. It can also be

Fig. 13 Here we have plotted the effective potential against ρ, for
different value of angular momentum �

1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.0

1.5

2.0

2.5

3.0
ve
sc

Fig. 14 Here we have plotted the escape velocity as a function of ρ

for � = 3.22, b = 0.50 and c1 = 0.10

concluded that the particle having larger value of angular
momentum � can escape easily as compare to the particle
with lesser value of angular momentum �.

Figure 14 explains the behavior of escape velocity of the
particle moving around the black hole. In this Fig. 14 the
shaded region corresponds to escape velocity of the particle
and the solid curved line represents the minimum velocity
required to escape from the vicinity of the black hole and the
unshaded region is for bound motion around the black hole.
In Fig. 15 we have plotted the escape velocity for different
values of energy E . Figure 15 shows that the possibility for
the particle to escape from the vicinity of black hole having
the larger value of energy is greater as compare to the parti-
cle with lesser value of energy. Escape velocity for different
values of c1 is plotted in Fig. 16. This figure shows that the
greater the value of c greater will be the escape velocity of
the particle provided that the energy of the orbiting particle
after collision is less then the Umax otherwise it will captured
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Fig. 15 In this figure we have plotted escape velocity vesc as a function
of ρ for different values of energy E

Fig. 16 In this figure we have plotted escape velocity vesc against ρ

for different values of c1

by the black hole. One can conclude that the presence of dark
energy might play a crucial role in the transfer mechanism
of energy to the particle during its motion in the ISCO. In
Fig. 17 we are comparing the escape velocity for different
values of magnetic field b. It can be seen from Fig. 17 that
greater the strength of magnetic field the possibility for a par-
ticle to escape is more. It can be concluded that the key role
in the transfer mechanism of energy to the particle for escape
from the vicinity of black hole is played by the magnetic field
which is present in the accretion disc. This is in agreement
with the result of [16,17].

9 Summary and conclusion

• We have studied the dynamics of a neutral and a charged
particle in the vicinity of Schwarzschild black hole sur-

Fig. 17 In this figure we have plotted escape velocity vesc vs ρ for
different values of magnetic field b

rounded by quintessence matter. It is known that the
quintessence is the candidate for dark energy and the
black hole metric which we have studied was derived by
Kiselev [32].

• We have studied the motion of a neutral particle in the
absence of magnetic field and the dynamics of a charged
particle in the presence of magnetic field in the vicinity
of black hole in detail.

• We have discussed the energy conditions for the stable
circular orbits and for unstable circular orbits around the
black hole.

• The ISCO for a massive neutral particle around a
Schwarzschild-like black hole occurs at r = 4M.

• We have found that ISCO shifts closer to the event hori-
zon due to presence of dark energy and magnetic field as
compare to Schwarzschild black hole. This is the indica-
tion that the force due to dark energy is attractive which
is agreement with the results of [33].

• Center of mass energy expressions are derived for
the colliding particles near horizons. It is found that
CME is finite for the particle colliding in the vicin-
ity of Schwarzschild-like black hole surrounded by
quintessence.

• We also derived the formula for escape velocity for both
particles moving in ISCO.

• The equations of motion have been solved numerically
and we plotted the radial velocity of the particle.

• We have calculated the Lyapunov exponent which gives
the instability time scale for the geodesics of the particle.
Therefore we have concluded that the instability of the
circular orbits for Schwarzschild black hole is more in
comparison with the black hole which is surrounded by
quintessence matter in the presence of magnetic field.
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• We have derived the effective force acting on the particle
due to dark energy and mentioned the conditions when
the force on the particle due to dark energy is attractive
and when it is repulsive.
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