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ABSTRACT: 

 

This paper presents an algorithm for the automatic registration of terrestrial point clouds by match selection using an efficiently 

conditional sampling method -- threshold-independent BaySAC (BAYes SAmpling Consensus) and employs the error metric of 

average point-to-surface residual to reduce the random measurement error and then approach the real registration error. BaySAC and 

other basic sampling algorithms usually need to artificially determine a threshold by which inlier points are identified, which leads to 

a threshold-dependent verification process. Therefore, we applied the LMedS method to construct the cost function that is used to 

determine the optimum model to reduce the influence of human factors and improve the robustness of the model estimate. Point-to-

point and point-to-surface error metrics are most commonly used. However, point-to-point error in general consists of at least two 

components, random measurement error and systematic error as a result of a remaining error in the found rigid body transformation. 

Thus we employ the measure of the average point-to-surface residual to evaluate the registration accuracy. The proposed approaches, 

together with a traditional RANSAC approach, are tested on four data sets acquired by three different scanners in terms of their 

computational efficiency and quality of the final registration. The registration results show the st.dev of the average point-to-surface 

residuals is reduced from 1.4 cm (plain RANSAC) to 0.5 cm (threshold-independent BaySAC). The results also show that, compared 

to the performance of RANSAC, our BaySAC strategies lead to less iterations and cheaper computational cost when the hypothesis 

set is contaminated with more outliers. 

 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

Terrestrial laser scanning (TLS) is effectively used in urban 

mapping for applications like as-built documentation, change 

detection, 3D reconstruction of architectural details and 

building facades. However, one of the biggest problems 

encountered while processing the scans is the so-called 

registration step in which rigid transformation parameters 

(RTPs) are determined in order to align scans obtained from 

different scan positions into one common coordinate system. 

RTPs are computed from minimizing distances between 

common points, obtained by correspondence tracking, in scenes 

sampled from different viewpoints. In general two registration 

goals are distinguished, coarse and fine registration. A coarse 

registration of sufficient quality is typically needed as input for 

a successful fine registration (Vosselman & Maas, 2010). This 

paper is focused on coarse registration. 

 

Coarse registration should be able to compute an initial estimate 

of the transformation between two point clouds that are quite far 

apart. A well-known approach is to compute motion invariant 

features (or descriptors) for both sets and consecutively match 

these features. The feature extraction and matching step is 

generally approached in three different ways: Manual point-

based matching, target-based matching and feature-based 

matching. However, existing fully automated approaches may 

only work in certain contexts. 

 

Besides differing on the type of descriptors used, coarse 

registration algorithms also differ on the matching methods 

used to establish correspondences between scans (e.g. ordinary 

Least Squares adjustment, Genetic Algorithms (Brunnström & 

Stoddart, 1996), Principal Component Analysis ‘‘PCA’’ 

(Chung & Lee, 1998) or RANdom Sample And Consensus 

‘‘RANSAC’’ (Fischler & Bolles, 1981)). Kang et al. (2009) 

proposed an iterative algorithm, using Lease Squares 

adjustment, for optimal transformation parameters estimation. 

Akca (2010) achieved the parameter estimation using a 

Generalized Gauss-Markov model. Grant et al. (2012) proposed 

a point-to-plane fine registration approach that also uses a 

General Least Squares adjustment model. 

 

In many cases RANSAC is used to automatically remove false 

matches. However, the original RANSAC algorithm assumes 

constant prior probabilities for all data points and chooses 

hypothesis sets at random, which leads to many iterations and 

high computational costs as many hypothesis sets will be 

contaminated with outliers. 

 

Therefore, the scope of this paper is focused on improving the 

efficiency of coarse matching by improving on the RANSAC 
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paradigm, The SIFT-based reflectance image matching method 

(Kang et al., 2009) is employed to determine initial 3D 

correspondences. For robust estimation of transformation 

parameters from 3D correspondences contaminated by outliers, 

we implement a conditional sampling method – optimized 

BaySAC (Kang et al., 2014) to always select the minimum 

number of data required with the highest inlier probabilities as 

hypothesis set. Moreover, LMedS method is used to construct 

the cost function that is used to determine the optimum model. 

We evaluate the results of the optimized BaySAC strategy 

compared to a traditional RANSAC approach both by 

considering the required computational efforts and by 

comparing the quality of the resulting registration. For the latter, 

we compare the RMSEs of the distances between matching 

points in the final inlier set and, in addition, evaluate the 

Euclidean distances between the transformed points in the 

analyzed scan to the surface fitted to the fixed scan. 

 

2. DETERMINATION OF THE PRIOR INLIER 

PROBABILITIES OF DATA POINTS 

Determining the proper prior inlier probability is important for 

the BaySAC algorithm. We implemented the statistical testing 

process proposed in (Kang et al., 2014), which is generic and 

can be applied to any BaySAC problem. The process is 

implemented using a histogram that illustrates the distribution 

of the discrete hypothesis model parameter sets that are 

computed during the different iterations and the degree of 

convergence of each candidate parameter set that describes how 

the other sets converge to it. The degree of convergence of a bin 

in the histogram is calculated as the number of parameter sets in 

that bin divided by the total number of parameter sets. 

 

Our presented strategy is based on a histogram to dynamically 

evaluate the convergence of the hypothesis parameters sets 

during the hypothesis testing process (Fig.1 shows a histogram 

to evaluate the convergence of the rigid transformation 

parameters. Different convergent cluster of the hypothesis sets 

will be presented in the histogram. We select the oldest 

parameter set as the reference point for each convergent cluster 

of parameter sets. The more the hypothesis sets converge to a 

cluster, the more possible is it that the reference parameters set 

of the cluster is correct. Therefore, we present the convergence 

degree of a cluster to evaluate the correct possibility. The 

convergence degree is a percentage which describes the number 

of sets converge to a parameters sets cluster. It is calculated by 

dividing the number of the hypothesis sets in the cluster by the 

total number of hypothesis sets. 

 

In this paper, the rigid transformation model in point cloud 

registrationis used as the hypothesis models. 

 

The hypothesis testing process starts with a RANSAC strategy 

which chooses initial data sets at random. After that, during 

each iteration, the distribution of the hypothesis parameters sets 

is updated by adding the parameters set corresponding to the 

newly evaluated hypothesis sets. If a newly added set doesn’t 

converge to any existing cluster, it will be regarded as a new 

cluster in the distribution. Else, the number of solutions in an 

existing cluster is increase by one and the convergence degree 

of the different clusters is updated accordingly. 

 

When the degree of convergence of a cluster in the distribution 

of parameter solutions reaches a predefined threshold, the first 

hypothesis set in that cluster is used to determine the prior inlier 

probabilities of the data points according Eq. (1): 
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where Pi denotes the prior probability of point i, Di is the 

distance between point i and the fitted primitive, and m 

represents the predefined threshold for outlier identification, 

which is set as five times the point precision. 

 

3. PROBABILITY UPDATING  

After determining the prior inlier probabilities of each 

corresponding pair, Eq. (2) (Kang et al., 2014) is employed to 

update the inlier probabilities during consecutive iterations: 
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where I is the set of all inliers, Ht is the hypothesis set of n 

data points used in iteration t of the hypothesis testing process, 

Pt-1(i I) and Pt(i I) denote the inlier probabilities for data 

point i during iterations t-1 and t, respectively, k is the number 

of points consistent with the model during a test, and D is the 

total number of data points. 

 

   

 

4. CONSTRUCTION OF THE COST FUNCTION USING 

LMEDS 

 

We applied the LMedS method (Rousseeuw & Leroy, 1987) to 

construct the cost function that is used for determining the 

optimum model to reduce the influence of human factors and 

improve the robustness of the model estimate. 

 

We first randomly select a subset of corresponding points from 

the samples to calculate the model parameters and then 

calculate the deviation (i.e., distances between corresponding 

points) of all the other sample points with respect to the model. 

We use the equation as follows to calculate the deviation in the 

 

Figure 1  2D histogram of parameter sets corresponding to 

different hypothesis sets 
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middle of all the model deviations, which is called the Med 

deviation: 

 

   NiDmidMed i  12  (3) 

 

where 
iD  is the distance from point i to the model, and N is the 

number of data points used to test the model parameter. 

 

We used Med deviation to replace the number of inlier points 

complying with the hypothesis model as the criteria to 

determine the optimum model. After the iterative process of the 

hypothesis test is finished, we select the model with the smallest 

Med deviation as the optimum model. 

 
5. RESULT EVALUATION 

Accuracy is of great importance for point cloud registration. 

Therefore, various error metrics have been defined to measure 

the registration accuracy of point clouds (Simon, 1996; Maas, 

2000; Rusinkiewicz & Levoy, 2001). These include the change 

in rotation angle and/or translation vector, the distances 

between corresponding points and the distances between points 

and their corresponding surfaces. Among them, point-to-point 

and point-to-surface error metrics are most commonly used, 

both of which are utilized in this paper. As the registration 

process is implemented using 3D corresponding points, we 

naturally use the st.dev of the distances between corresponding 

points in the first scan and their transformed matches from the 

second scan, to evaluate the quality of the registration results. 

However, the error evaluated as a point to point difference 

between two scans after registration in general consists of at 

least two components, a random measurement error component 

and a systematic error component as a result of a remaining 

error in the found rigid body transformation. Still, in most 

publications the quality of a registration is expressed in terms of 

standard deviations, which assumes an underlying normal 

distribution. Thus we employ the measure of the average point-

to-surface residual, introduced by (Lindenbergh & Pfeifer, 2005) 

to evaluate the registration accuracy. 

 

5.1  Distances between corresponding points 

The first method to evaluate the quality of the resulting 

registration is by considering the distances at corresponding 

points as follows. Applying the methods on the initial set of 

corresponding pairs results in general different sets of correct 

correspondences. As indicated before, the correct 

correspondences are used to estimate a final rigid body 

transformation TR using least squares. The resulting 

transformation TR is applied to each inlying corresponding 

point in the second scan. Finally the st.dev of the distances 

between corresponding points in the first scan and their 

transformed matches from the second scan is determined. 

Advantage of this approach is that it is expected that matches 

are found throughout the overlap between the two scans. 

 

5.2. Average point-to-surface residual 

The error evaluated as a point to point difference between two 

scans after registration normally comprises at least two 

components, i.e. random measurement error and registration 

error. As errors in the computed transformation parameters lead 

to non-random differences between the fixed and transformed 

scans, we consider the registration error as systematic.  

 

Random errors are also known as compensating errors, since 

they tend to partially cancel themselves in a series of 

measurements. In this paper, we implement the U test (Lehman 

& Romano, 2005) to estimate the normality of the distribution 

of the residuals. The formula to compute U value in terms of the 

skewness or kurtosis of the distribution is as follow. 
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Where, 
1g  and 1g denote skewness and its st.dev, 

2g  and 

2g represent kurtosis and its st.dev.  

If 
1U  and 

2U  both satisfy the following condition, the 

distribution is regarded as normal. 

 

 96.105.0 UU  (5) 

 

If the random measurement error is reduced, the remaining 

difference is expected to approach the real registration error. 

First, the surface representations, e.g. plane and curve, are 

obtained from the first scan using the RANSAC algorithm. We 

then compute the distances between the transformed points 

(from the second scan) to the surface of the fixed reference, the 

first scan. For the purpose of reducing the effect of random 

measurement noise, the point-to-surface residuals are averaged 

to a regular grid spanned over the considered surface segment. 

The average point-to-surface residual per cell is expected to 

reduce the random error so that this residual approaches the real 

registration error. 

 
6. EXPERIMENT AND ANALYSIS 

The performances of the threshold-independent BaySAC 

algorithm was evaluated on real datasets in terms of both 

registration accuracy and computational efficiency.  

 

6.1. Description of the test data 

Four datasets are considered, acquired respectively by the 3D 

SwissRanger camera, by the LMS-Z620 and VZ-400 laser 

scanners from RIEGL, as well as by the FARO LS 880 laser 

scanner (Fig.2). The SwissRanger dataset consists of two point 

clouds sampling the indoor environment of a building of the 

Aerospace Engineering Faculty of Delft University of 

Technology, The Netherlands. The RIEGL LMS VZ-400 

dataset comprises six point clouds acquired in a subway tunnel 

in Shanghai, China. The FARO dataset consists of two point 

clouds of an office environment, while the RIEGL LMS-Z620 

dataset consists of two point clouds, capturing a simple building 

in construction on the campus of Capital Normal University in 

Beijing, China. Tab. 1 describes the test point clouds. Note that 

both the angular resolution and the range accuracy of the 

SwissRanger data are much lower than those of normal laser 

scanners.  

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-493-2016

 
495



 

 

 

Two robust strategies, i.e. RANSAC, BaySAC-LMedS, were 

respectively utilized to prune false correspondences.  

 

6.2. Registration accuracy 

As presented in Section 5, the registration accuracies of 

RANSAC and BaySAC-LMedS on four datasets were evaluated 

using two measures, the average distance between inlier 

correspondences after registration and the average point-to-

surface residual.  

 

6.2.1. Average point-to-point distance 

Fig.3 shows that a certain number of correspondences (e.g. 5 of 

Dataset 1) were identified for each dataset as check points. 

Tab.2 lists the evaluation of registration accuracies in terms of 

the average distance between the selected correspondences after 

registration. BaySAC-LMedS achieved overall higher accuracy 

(the average RMSs 8.1 mm) compared with the performance of 

the plain RANSAC (the average RMSs 22.9 mm). 

 

6.2.2. Average transformed-point-to-analyzed-surface 

residual per cell 

For the purpose of registration quality evaluation we selected 

ten planar segments from Datasets 1, 2, 3 and 4 and nine 

curved-surface segments from Dataset 2. These segments are 

visualized in Fig.5 To evaluate the registration error, we 

computed the Euclidean distances between the transformed 

points in the analyzed scan and the surface fitted to the fixed 

scan. Non-zero distances are mainly caused by  three factors: 

measurement errors, surface fitting errors and registration errosr. 

The first factor is believed to be random, therefore the influence 

of the two other factors are analyzed in the following sections. 

 

1) Average point-to-fitted-surface residuals after surface 

fitting 

 

 

 
(a) (b) 

 
(c) 

 
(d) 

Figure 2. Experimental datasets visualized as panoramic 2D 

images. The grey values indicate intensity. (a)  Dataset 1;  (b)  

Dataset 2; (c)  Dataset 3; (d)  Dataset 4. 

 

Point Cloud 
Scan Angular 

Resolution 
Range Accuracy 

Dataset 1 0.24 ±10 mm 

Dataset 2 0.046 ±2 mm 

Dataset 3 0.0469 ±10 mm 

Dataset 4 0.036 ±3 mm 

Table 1. Description of the test point clouds. 

 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) 

Figure 3. Check points. (a) Dataset 1; (b) Dataset 2(Point 

cloud I~II); (c) Dataset 2 (Point cloud II-III); (d) Dataset 2 

(Point cloud III-IV); (e) Dataset 2 (Point cloud pair V-VI); 

(f) Dataset 3; (g) Dataset 4. 

 

 
(a) (b) 

 
(c) (d) 

Figure 4. The histograms of point-to-surface residuals of 

the fitted surfaces. (a) Dataset A; (b) Dataset B1; (c) 

Dataset C1; (d) Dataset 2 D1. 
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As proposed in Section 5, RANSAC was implemented to fit 

points from selected segments from the first scan to surface 

representations. To evaluate the fitting error, we computed the 

point-to-surface residuals per segment. 

 

Fig.4 shows the histograms and spatial distributions of the 

point-to-surface residuals for the fitted surfaces (e.g. A, B1, C1 

and D1) of the four datasets. 

 

As proposed in Section 5.2, we implemented the U test to 

estimate the normality of the distribution of the residuals. Tab. 4 

lists the U values computed in terms of skewness and kurtosis 

of the residual distributions of nineteen fitted surfaces. 

 

From Tab. 3 we can know that all U1 and U2 values are less 

than the threshold value 1.96 of U0.05, which strongly indicates 

that the distribution of point-to-surface residuals of the fitted 

surface is normal. 

 

The average point-to-surface residuals are given in Tab 4. All 

signed average point-to-surface residuals are below 1 mm, 

which proves that the signed point-to-surface residuals can 

partially cancel themselves after averaging, compared with the 

RMS of the point-to-surface residuals. 

 

2) Points to surface registration residuals 

 

To evaluate the registration error, we computed the Euclidean 

distances between the transformed points in the analyzed scan 

to the surface fitted to the fixed scan. Fig.6 shows the 

histograms of these distances. Compared to Fig. 4, in Fig. 6 

obvious shifts from the origin are visible, which we interpret as 

being caused by registration errors because the surface fitting 

error is proven to be random. 

 

Afterwards, we superimposed a regular grid with an edge length 

of 10cm on the selected surface segment and calculated the 

average point-to-surface difference for each cell. Fig.7 

( Segment D1) shows that both of the magnitudes and signs of 

the average point-to-surface differences per cell are non-random 

and are expected to approach the real registration error. The 

spatial distribution of the residuals also appears systematic 

(Fig.7), for instance most larger differences occur in the bottom 

left part of Fig.7(a). Fig.7(b) shows a distribution of differences 

with smaller absolute values, compared to the distributions 

shown in Fig.7(a).  

 

The average differences between the transformed points from 

the registered scan and the reference surface are shown in 

Tab.5. From The two different strategies BaySAC-LMedS, on 

the whole, achieved registrations with the smaller residuals 

(average  

 Segment U1 U2 

Dataset 1 A 0.4678 0.4713 

Dataset 2 

B1 0.4207 0.5472 

B2 0.0099 0.4542 

B3 0.3842 1.5052 

E1 0.2130 0.4712 

E2 1.2465 0.7120 

E3 0.6711 1.1188 

F1 0.3478 0.4212 

F2 0.0081 0.1242 

F3 0.3812 1.0391 

G1 0.0120 0.3200 

G2 0.4630 0.0310 

G3 0.0100 1.2140 

Dataset 3 

C1 0.4894 1.0592 

C2 0.1920 0.7981 

C3 0.5230 1.1325 

Dataset 4, 

D1 1.4657 0.6733 

D2 1.3643 0.7106 

D3 0.0188 0.0824 

Table.3 U value 

 

 
(a) (b) 

 
(c) (d) 

 
(e) (f) 

 
(g) 

Figure 5. Selected surface segments for registration quality 

evaluation. (a) Dataset 1; (b) Dataset 2 (Point cloud pair I-

II); (c) Dataset 2 (Point cloud pair II-III); (d) Dataset 2 

(Point cloud pair III-IV); (e) Dataset 2 (Dataset 2 (Point 

cloud V-VI); (f) Dataset 3; (g) Dataset 4. 

 

Number of 

Check 

Points 

RMS/mm 

(RANSAC) 

RMS/mm 

(BaySAC-

CONV) 

Dataset 1 5 50.2431 23.3349 

Dataset 2  

(I-II ) 

8 11.9965 1.11582 

Dataset 2 

(II-III ) 

9 -38.6101 -15.2122 

Dataset 2 

(III-IV ) 

6 -48.1280 8.2588 

Dataset 2 

(V-VI ) 

12 3.4216 4.0218 

Dataset 3 12 5.3005 3.2588 

Dataset 4 10 2.6056 1.6772 

Table 2. The evaluation of registration accuracy in terms of 

the average point-to-point distance 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B5, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B5-493-2016

 
497



 

 

 

  residual 4.8mm), while the average residual of RANSAC is 

14.2 mm. 

 

6.3. Computational efficiency 

Hypothesis set evaluation is an iterative process, so the 

calculational efficiency of the proposed strategies was evaluated 

in terms of the number of iterations and computation time. As 

described in Section 2, the BaySAC- LMedS strategy consists 

of two parts, i.e. the random part (BaySAC- LMedS -Random) 

and the BaySAC part. The random part consists of the iterations 

implemented with a RANSAC strategy, during which the inlier 

probabilities of the different correspondences are determined as 

well. 

 

As shown in Tab.6, the ratio between the number of inliers and 

the number of possible correspondences in Dataset 1 reaches 

81%. The number of iterations for RANSAC varies from 6 to 

 
(a) 

  
(b) 

Figure 7. The statistical histograms and spatial distributions of 

average point-to-surface residuals per cell (Segment D1). (a) 

BaySAC- LMedS; (b) RANSAC. 

Table 5. Average point to surface residuals (non-random) 

 Segment Ransac Baysac- LMedS 

Dataset 1 A 48.5771 22.5091 

Dataset 2 

B1 -11.4907 0.7162 

B2 -19.0931 -12.8367 

B3 11.8259 -6.8396 

E1 -14.12 -10.021 

E2 -40.342 -6.412 

E3 17.213 5.114 

F1 10.218 -10.1329 

F2 -27.122 -3.721 

F3 -58.2012 -1.5021 

G1 2.1492 3.2588 

G2 2.568 2.6095 

G3 -3.2231 2.013 

Dataset 3 

C1 -0.3344 -0.1218 

C2 1.3005 1.2588 

C3 -2.6389 1.7649 

Dataset 4, 

D1 -3.0657 1.8317 

D2 -1.5146 -1.6794 

D3 -5.8077 2.3896 

 

 Segment 
Point-to-surface residual 

Mean Value Standard deviation 

Dataset 1 A 0.4531 0.2872 

Dataset 2 

B1 -0.054 0.11 

B2 0.011 0.1 

B3 0.0412 0.073 

E1 0.0121 1.2014 

E2 0.0945 0.7413 

E3 0.0114 1.4575 

F1 0.0079 0.0016 

F2 0.2605 1.5711 

F3 -0.0352 0.6751 

G1 -0.2202 0.0388 

G2 0.0103 0.0055 

G3 -0.009 0.0038 

Dataset 3 

C1 -0.054 0.06 

C2 0.0125 0.06 

C3 -0.0072 0.0042 

Dataset 4, 

D1 -0.023 0.045 

D2 0.0261 0.063 

D3 0.0087 0.031 

Table 4. The average point to surface residuals 

 
(a) (b) 

 
(c) (d) 

Figure 6. The histograms and spatial distributions of the 

distance between the transformed points and the surface fitted 

to the points in the fixed scan. (a) Segment A; (b) Segment 

B1; (c) Segment C1; (d) Segment D1. 
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18. In attempts No. 1, 2, 7, 8, as presented in Section 2, the 

number of iterations for RANSAC is so small that the BaySAC-

LMedS process failed in the determination of initial inlier 

probabilities of data points before the RANSAC process ended, 

therefore the BaySAC-LMedS degraded to a RANSAC process. 

The total number of iterations for BaySAC-LMedS varies from 

2 to 11. The results show that, although the numbers of 

consumed iterations of BaySAC-LMedS is smaller than those of 

RANSAC as a whole, the differences are not so obvious due to 

the high percentage of inliers.  

 

The percentage of inliers in Dataset 2 (e.g. point cloud pair I-II) 

reduces to 38% (Tab.6). The number of iterations for RANSAC 

varies between 283 and 437. The random part of BaySAC-

LMedS takes between 4 and 26 iterations. As presented in 

Section 2, after the determination of the initial inlier probability 

for each correspondence, the strategy of hypothesis set 

evaluation changes from RANSAC to BaySAC. Therefore, the 

total number of iterations, compared to those for a plain 

RANSAC strategy, sharply reduces to the range from 14 to 76. 

The results show that, although the number of possible 

correspondences is only 61 (Tab.6), the decrease of percentage 

of inliers leads to large differences between the performance of 

RANSAC and BaySAC-LMedS. When the percentage of inliers 

for Dataset 3 and 4 reduces further to 23% and 25%, the 

computational efficiency of RANSAC becomes much lower 

compared to BaySAC-LMedS. Tab. 6 compares the different 

statistics for the evaluated strategies. The average consumed 

time of the three strategies is listed in Tab. 7. As shown in Tab. 

7, the random parts of the time consumed by BaySAC-LMedS 

was to determine the prior inlier probabilities of data points, 

which are the core of BaySAC-CONV.  

After the determination of the prior inlier probabilities, the use 

of BaySAC remarkably reduced the computational time needed 

to find a good model compared with the time consumed by 

plain RANSAC. For instance, in Tab.7 60 milliseconds were 

spent by BaySAC-LMedS to find a good transformation from 

Dataset 3, while the time costed by plain RANSAC is 982 

milliseconds. 

 

7. CONCLUSIONS 

In this paper, we have proposed conditional sampling algorithm 

for point cloud registration using the threshold-independent 

BaySAC framework. The measure of the average point-to-

surface residual was employed to evaluate the registration 

accuracy for the purpose of reducing the random measurement 

error and thus approaching the real registration error. 

 

The proposed algorithms were implemented and evaluated on 

four TLS data sets in terms of their computational efficiency 

and the quality of the registration results. The results show that, 

compared to the performance of the original RANSAC 

framework, the computational efficiency of BaySAC-LMedS 

scales with the percentage of inliers. The smaller this percentage, 

the higher the computation efficiency gain of BaySAC-LMedS 

on RANSAC. When the percentage of inliers becomes very 

large (e.g. 81%), the BaySAC-LMedS strategy may fail and thus 

degrades to a RANSAC process. The registration results also 

indicate that, among the two different considered strategies, 

BaySAC-LMedS achieves the highest registration quality on all 

experimental datasets.  

 

The proposed algorithm aims at robustly estimating a single 

transformation between two scans. Future work will consider 

how BaySAC-LMedS can be applied for the co-registration of 

multiple point clouds in the simultaneous estimation of multiple 

transformations.  
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