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Abstract. Over the past few decades scientists have shown
growing interest in space plasma complexity and in under-
standing the turbulence in magnetospheric and interplanetary
media. At the beginning of the 1980s, Yu. L. Klimontovich
introduced a criterion, named S-Theorem, to evaluate the de-
gree of order in far-from-equilibrium open systems, which
applied to hydrodynamic turbulence showed that turbulence
flows were more organized than laminar ones. Using the
same theorem we have evaluated the variation of the degree
of self-organization in both Alfv́enic and non-Alfv́enic turbu-
lent fluctuations with the radial evolution during a long time
interval characterized by a slow solar wind. This analysis
seems to show that the radial evolution of turbulent fluctu-
ations is accompanied by a decrease in the degree of order,
suggesting that, in the case of slow solar wind, the turbulence
decays with radial distance.

Keywords. Interplanetary physics (Solar wind plasma) –
Space plasma physics (Turbulence)

1 Introduction

The solar wind results from the expansion of the solar at-
mosphere, forming a supersonic flow of ionized plasma and
magnetic field that permeates the interplanetary medium. It
consists mainly of protons and electrons with a small admix-
ture of ionized helium and heavy ions. The solar magnetic
field embedded in the plasma is a weak (a few nano Teslas
near the Earth) and is carried into space by the solar wind.
Although the solar magnetic field is characterized by a com-
plex structure on the Sun within less than 2 solar radii from
the photosphere, in the solar wind it exhibits a simple ra-
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dially directed structure lying near the ecliptic plane in an
Archimedean spiral pattern.

To treat the solar wind properly many approaches have
been tried, each with a different approximation. Indeed, it
is possible to study the solar wind using a fluid approxima-
tion or a kinetic treatment; however, in both cases difficulties
exist (Russel, 2001). The result is that our understanding of
the solar wind is nowadays founded on long term observa-
tions rather than on solid theoretical foundations.

The solar wind was measured for the first time in the 1960s
with the advent of spacecrafts. After the first measurements,
it was clear that it was pervaded by fluctuations on a very
wide range of scales. The subsequent studies of these fluc-
tuations revealed a complex interaction among waves, tur-
bulence and structures (see e.g.Bruno and Carbone, 2005).
Nowadays, it is known that the solar wind is characterized
by the presence of fluctuations in the magnetic and veloc-
ity fields that are often so highly correlated to appear as
nearly perfect Alfv́en waves. The solar wind shows an active
turbulent cascade, which transfers energy from large scales
to small scales and heats the plasma (Verma et al., 1995;
Marino et al., 2008). Finally, it exhibits a turbulence which
is anisotropic with respect to the magnetic field and it is also
characterized by intermittency similar to that found in neutral
fluids.

Focusing on the turbulent nature of the solar wind, the
power spectrum of solar wind fluctuations provides one of
the main evidences for the existence of an active turbulent
cascade (Bruno and Carbone, 2005). Indeed, the power spec-
trum of fluctuations of the magnetic field components, evalu-
ated in the case of high speed solar wind, reveals broadband
fluctuations over all measured scales. These fluctuations are
characterized by a power law spectrum, which depends on
the frequency range: at low frequencies the power law ex-
hibits a spectral index near 1 while at higher frequencies the
spectral index is near 5/3. The presence of a broad range
of scales with anf −5/3 spectrum may be associated with a
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turbulent cascade, being 5/3 the familiar value of the spectral
index in hydrodynamic turbulence. This turbulence follows
from processes occurring in the solar wind and does not sim-
ply reflect the nature of the solar wind emerging from the
solar corona. Indeed, according toBavassano et al.(1982a)
the power spectrum of fluctuations changes its shape with
distance from the Sun, as the breakpoint between the two
regimesf −1 andf −5/3 shifts to lower frequencies (i.e. larger
scales) with the increase of solar distance. Thus, the fluctu-
ation properties evolve with both time and radial distance.
Together with changes in the power spectrum with distance,
there is a decrease in the Alfvénicity character of the fluctua-
tions (Roberts et al., 1987), which seems to be closely related
to the turbulent evolution. These results characterize mainly
the fast solar wind. Conversely, the slow solar wind spectra
are characterized by a spectral index near 5/3 over a wide
range of scales. The broadbandf −5/3 spectrum associated
with a generally low Alfv́enicity (Tu et al., 1989) suggests
that slow solar wind fluctuations represent fully developed
turbulence. For this reason, the solar wind evolution cannot
be reduced to a simple solar wind expansion with the helio-
centric distance, but it involves nonlinear interactions among
propagating Alfv́enic modes (Tu et al., 1984). It has been
shown that intermittency increases with radial distance, prob-
ably due to a change in the anisotropy degree of the magnetic
fluctuations. However, contradictory results have been found
as regards the evolution of the anisotropy degree with radial
distance. For instance,Bavassano et al.(1982b) showed that
in high-speed streams the orthogonal component of the mag-
netic field fluctuations became more dominant with the in-
crease of the distance, whileHorbury et al.(1995) claimed
that turbulence was more isotropic at larger heliospheric dis-
tances in the case of polar solar wind.

Besides turbulence an important aspect characterizing
the solar wind is the presence of coherent advected struc-
tures, which can be imagined like flux tubes (Ness et al.,
1966; McCracken and Ness, 1966; Mariani et al., 1973;
Tu and Marsch, 1990, 1993; Bruno et al., 2001; Borovsky,
2008). The presence of such non-Alfvénic coherent struc-
tures, whose origin is not completely understood, becomes
more relevant with radial distance (Bruno et al., 2006).

Recently,Consolini(2010) examined the radial evolution
of magnetic field intensity fluctuations during a long time
interval characterized by a slow solar wind. This analysis
has been based on the S-Theorem byKlimontovich (1983)
in order to examine the changes of the degree of order of
the magnetic field intensity fluctuations at two heliospheric
distances. The preliminary results have pointed toward an
increase in the degree of order with radial distance, which
suggests the formation of coherent structures during the ra-
dial evolution of magnetic field intensity fluctuations.

Here, analyzing the same long time interval of slow solar
wind investigated byConsolini (2010), we carry out an in-
depth analysis of the relative degree of order of the turbulent
fluctuation field. In detail, we investigate the changes in the

probability distribution functions (PDFs) of the total specific
energy of turbulent fluctuations on the time scale of 1 h with
radial distance, demonstrating that the radial evolution of tur-
bulent fluctuations is associated with a chaotization process.

The paper is organized as follows: in Sect. 2, we briefly
describe the Klimontovich S-Theorem; in Sect. 3 we apply
such a theorem to our data and in Sect. 4 we discuss and
summarize our results.

2 Klimontovich’ S-Theorem: a brief introduction

In thermodynamics and statistical mechanics the state of
maximum disorder corresponds to the equilibrium state for
a given condition of the external parameters, as clearly stated
by the principle of maximum entropy. Thus, any deviation
from the equilibrium configuration is associated with a re-
duction of entropy. This happens, for instance, in nonequilib-
rium stationary states, where the degree of order can increase
due to the emergence of a spatial-temporal coherence. In-
deed, in many nonequilibrium systems we assist to the emer-
gence of correlations and self-organization that imply a re-
duction of thephysical chaos(uncorrelated microscopic mo-
tion). In this framework, a crucial importance assumes the
knowledge of a method able to quantify the relative degree
of order in different open nonequilibrium states of the same
system.

Over the last two decades the concept ofdynamic chaos
has gained a particular relevance in the framework of com-
plex motions in relatively simple systems. Dynamic chaos,
which is consequence of dynamic instabilities, has not to be
confused with physical chaos, which is related to the absence
of coherence in the motion of particles in a state of thermo-
dynamic equilibrium according to the original definition by
Boltzmann. Consequently, it would be interesting to have
a criterium to estimate quantitatively if the dynamic chaos,
emerging from dynamic instabilities, could or not lead to
more ordered configurations.

In 1983 Klimontovich (Klimontovich, 1983, 1995) pro-
posed an entropy-based approach to measure the relative
degree of order between two different states in an open
nonequilibrium system. This approach, formulated as a theo-
rem, named theSelf-organization Theorem(S-Theorem), at-
tempts to solve one of the main tasks of the statistical theory
of open systems, establishing a criterium capable of mea-
suring the degree of self-organization of an open system in
a nonequilibrium configuration. The aim of theS-Theorem
is to distinguish between degradation and self-organization
in different nonequilibrium configurations of open systems,
thus providing a quantitative measure of order with respect
to physical chaos (equilibrium).

The starting point of theS-Theoremis the Boltzmann’s
H-theorem, according to which the entropy variation3S
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between an equilibrium state and a nonequilibrium one in
a system with a fixed value of mean energy is

3S= S0−S(t) = κB

∫
f (X,t)ln

f (X,t)

f0(X)
dX ≥ 0 (1)

under the condition,

d3S

dt
=

d

dt
(S0−S(t)) ≤ 0, (2)

beingκB is the Boltzmann’s constant,S0 (f0(X)) andS(t)

(f (X,t)) the entropies (distribution functions) of the equi-
librium and nonequilibrium states, respectively. This theo-
rem states that a system with fixed mean energy evolves to-
wards an increase of entropy, which reaches its maximum at
the equilibrium state. Based on the condition of fixed mean
energy the above relationship implies that the entropy differ-
ence3S(t) acts as aLyapunov functionalfor the evolution of
a system.

However, the entropy reduction3S is inadequate to es-
timate the relative degree of order in systems whose states
depend on a control parameter that yields different mean en-
ergy values. This is particularly true in the case of open sys-
tems where the mean energy is generally not constant dur-
ing the evolution. For these types of systems an appropriate
Lyapunov functional for the evolution is impossible to define
correctly in terms of entropy difference. In other words, it is
not possible to evaluate the relative degree of order between
two open systems in different nonequilibrium states using the
previous relationship. Klimontovich’s S-Theorem finds a so-
lution to this problem renormalizing the distribution of the
reference state and making use of escort distributions. The
S-Theorem provides a measure of the degree of order rela-
tive to a reference state for open systems, thereby supplying
the correct ordering of entropy values with respect to their
distance from the equilibrium state.

Given two different nonequilibrium states,A(a0) and
A(a0 + δa), of the same open system, which correspond to
two different values (a0 anda0+δa) of a controlling param-
eter, we indicate withf (X;a0) andf (X;a0 + δa) the cor-
respondent time independent distribution functions for the
observableX based on the hypothesis ofstationary exter-
nal conditions(i.e. a time-scale separation between fast pro-
cesses and the slow background evolution). To take into ac-
count the possible change of the mean energy it is necessary
to renormalizethe distribution function associated with one
of the two states, taken as thereference state, before evaluat-
ing the entropy reduction (Klimontovich, 1995).

Thus, we assume as reference state (i.e. as the most chaotic
state) the one witha = a0 and identify withf0 ≡ f (X;a0) its
distribution function, and withf1 ≡ (X;a0 + δa) the distri-
bution function of the other state. Following Klimontovich’s
procedure, we introduce aneffective Hamiltonian or energy
Heff(X;a0) as

Heff(X;a0) = −lnf0(X;a0). (3)

To ensure that the mean effective energy of the reference state
is equal to that associated with the other state, we have to
renormalize the reference state distribution function as fol-
lows,

f̃0(X;a0,δa)= exp

[
Feff −Heff(X;a0)

Teff(δa)

]
, (4)

whereFeff is theeffective free energythat can be expressed
in terms of theeffective temperatureTeff on the basis of the
normalization condition,∫

f̃0(X;a0,δa)dX = 1. (5)

It follows

Feff = −Teff ln
∫

exp

(
−

Heff(X;a0)

Teff

)
dX. (6)

We remark that the effective Hamilton functionHeff is not
representative of the conventional concept of energy.

Based on the previous mathematical assumptions, the only
free parameter is the effective temperatureTeff(δa), which
can be determined by imposing that the two distribution func-
tions f̃0 andf1 have the same mean effective energy,∫

Hefff̃0(X;a0,δa)dX =

∫
Hefff1(X;a0+δa)dX. (7)

Consequently, we have

Teff(δa) |δa=0= 1, (8)

where the conditionδa = 0 refers to the reference state.
Once we have renormalized the reference state distribu-

tion function according to the condition of constant effective
mean energy, we obtain two distribution functionsf̃0 andf1,
with the same mean energy. The entropy difference between
the two states can be evaluated using Eq. (1), i.e.

δS = S̃0−S =

∫
f1ln

f1

f̃0
dX, (9)

whereδS ≥ 0 if we made the right choice of the reference
state of physical chaos.

The solution of Eq. (7) provides a quantitative measure
of the relative order between two selected states. Indeed, if
the condition of Eq. (7) is satisfied forTeff(δa) > 1, we will
have to raise the effective temperature and add heat to the
reference state “0” to modify it into the more organized state
“1”. Thus, the state “0” is a state with more physical chaos
than the state “1”. To clarify the meaning of the effective
temperatureTeff as a measure of the degree of order we in-
vite the reader to consult the Appendix A where we make all
the above calculations in the case of a simple system. We
note that the concept of state of maximum physical chaos
has to be associate with the equilibrium state, where accord-
ing to Boltzmann the particle motion is chaotic and generally
uncorrelated. In other words, the term “physical chaos” is
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Fig. 1. The X-component of the solar wind velocity at 1 AU (upper panel) and the radial component of the solar wind velocity at 5 AU (lower
panel) for the period from 1 September 1997 to 31 March 1998. Horizontal solid blue lines indicate mean values (blue line); dashed lines
limit ±1 standard deviation intervals.

directly connected with uncorrelated stochastic motions and
not with the sensitivity to initial conditions.

We emphasize that in nonequilibrium systems the emer-
gence ofcomplexityanddynamical complexityis identified
with the tendency to manifest spatio-temporal coherent struc-
tures and features. These generally result from the com-
petition of different basic spatial patterns (Badii and Politi,
1997), and require the intertwining of order and disorder
(Nicolis and Nicolis, 2007). For instance, this happens in
the case of turbulence, where the turbulent eddies are coher-
ent structures. On the other hand, the existence of coherent
structures in a system is the counterpart of a self-organization
process, which increases the coherence and the correlation
in the system and reduces the degree of disorder or physi-
cal chaos, i.e. uncorrelated motions. (Klimontovich, 1991,
1996). Thus, it is reasonable to observe a significant reduc-
tion of the degree of disorder in a complex system, in agree-
ment with the S-theorem.

3 Data and results

To study the relative order and the occurrence of self-
organization in the solar wind turbulence radial evolution we
consider the hourly variances of the interplanetary magnetic
and velocity fields measured in situ at 1 AU and at∼5 AU in
the time interval September 1997–March 1998. Data at 1 AU
come from the OMNI database (NSSDC-USA), while data
at∼5 AU come from theUlyssesmeasurements, available at
NASA-CDAweb. Typical data time resolution is 1 min apart
from Ulysses velocity which is at about 4–8 min.

The chosen period is a long-lasting time interval of quiet
solar wind conditions, already investigated and discussed in
previous works (Consolini et al., 2008; Consolini, 2010).
During this period the solar wind velocity is slow and more
or less constant with small gradients (see Fig.1). For this
reason, as a first approximation, we can assume that the so-
lar wind conditions are quasi-stationary. The average veloc-
ity is 〈vx〉 = [370± 60] km s−1 at 1 AU and〈vR〉 = [370±

20] km s−1 at 5 AU.
Due to the absence of a long-lasting alignment between

the two observational points at 1 AU and 5 AU, we are not
observing the same solar wind, but the choice of such a long
period will guarantee a statistical validity to our analysis. To
take account the approx. 20 days solar wind traveling time
from 1 AU to 5 AU, we cut-off the last 20 days from the 1 AU
data and the first 20 days from the 5 AU data.

To analyze the evolution of the turbulent solar wind fea-
tures with the radial distance, we evaluate the 1 h variances of
the plasma velocity and solar wind magnetic field expressed
in Alfv én units (B → B/

√
4πρ with ρ plasma density), i.e.

〈v2
〉1 h and〈b2

〉1 h, wherev = V −〈V 〉1 h andb = B−〈B〉1 h.
We identify the total specific energyEt of the fluctuation

field with the dynamical variable capable of representing the
turbulence level

Et = Ev +Eb. (10)

This dynamical variable takes into account of the kinetic (Ev)
and magnetic (Eb) specific energies, defined as

Ev =
1

2
〈v2

〉1 h, (11)
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Fig. 2. The kinetic specific energyEv plotted versus the magnetic specific energyEb (left panel) and the scatter plot of the normalized
residual energyσr versus the normalized cross-helicityσc (right panel) for the sample at 1 AU. The solid line in theEv −Eb plot refers to
the condition of complete equipartition.
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Fig. 3. The same of Fig.2 for the sample at 5 AU.

Eb =
1

2
〈b2

〉1 h. (12)

Furthermore to recognize theAlfvénicpart in the solar wind
fluctuations we compute thenormalized cross-helicityσc and
thenormalized residual energyσr,

σc =
2〈v ·b〉1 h

〈v2〉1 h+〈b2〉1 h
, (13)

σr =
Ev −Eb

Et
. (14)

Here, the normalized cross-helicityσc, which can vary from
−1 to +1, quantifies the degree of correlation between the
velocity and magnetic field fluctuations, expected to be maxi-
mum for Alfvénic fluctuations, while the normalized residual
energy is a measure of the energy equipartition between the
kinetic and magnetic fluctuations (Bavassano et al., 2000).

Figures2 and3 exhibit the kinetic specific energyEv as a
function of the magnetic specific energyEb and the normal-
ized residual energyσr versus the normalized cross-helicity
σc for both the data samples at 1 AU and 5 AU. The en-
ergy equipartition is missed both at 1 AU and 5 AU. The
Eb values are generally higher than the correspondingEv
ones. This result suggests that a significant part of the to-

tal energy of fluctuations comes from magnetic component
when a time scale of 1 h is considered. This is more ev-
ident at 5 AU than at 1 AU. Indeed, the density of dots is
higher at 5 AU than at 1 AU in the IV quadrant of theσr −σc
plane, and the mean value of the ratio betweenEv andEb is
higher at 1 AU (〈Ev/Eb〉1 AU = [0.70±0.02]) than at 5 AU
(〈Ev/Eb〉5 AU = [0.64± 0.01]). Furthermore, according to
Fig. 3 the results relative toσc andσr well agree with pre-
vious findings byConsolini et al.(2008), relative to a pre-
dominance of magnetic fluctuations at 5 AU.

Now, we evaluate the probability distribution functions
(PDFs) of the total specific energy (Et) at the two differ-
ent solar distances and, as special cases, the PDFs rela-
tive to Alfvénic and non-Alfv́enic fluctuations. The selec-
tion of Alfv énic/non-Alfv́enic fluctuations is based onσr and
σc values. For example, only data with 0.2≤| σc |≤ 1 and
| σr |≤| σc | are considered for Alfv́enic fluctuations, where
the choice| σc |

min
= 0.2, as the inferior limit of a significa-

tive normalized cross-correlation value, is based on 5 % null-
hypothesys threshold for uncorrelated 3-D-vectors. In con-
trast, those intervals where| σc |≤| σr | and 0.2≤| σr |≤ 1 are
the values used for the selection of non-Alvénic fluctuations.
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In Figs. 4 and 5 we report the PDFsP(Et) of the total
specific energyEt associated with the 3 different data sets:
whole data set, Alfv́enic and non-Alfv́enic subsets. These
PDFs are evaluated at the two different radial distances of
1 AU and 5 AU. The differences among the PDFs at the same
solar distance are not relevant. In contrast, a large effect on
the distribution shapes is observed with the change of the ra-
dial distance. The shape of the PDFs at 5AU appears less flat-
ten than that at 1 AU, suggesting that the radial propagation
of solar wind implies an evolution of the physical properties
apart from those related to expansion.

In order to estimate the relative degree of order for the
two radial distances through the S-theorem, we fit the PDFs
using an empirical model able to reproduce accurately the
overall shape of the PDFs. In this way, we reduce some com-
putational problems due to the discrete nature of PDFs. We
choose the following empirical shape for the PDFs,

P(x) = A1x
αe−(x/x0)

β

+A2e
−((lnx−a)2/σ). (15)

This choice, which is done for computational reasons without
any physical consideration, provides PDFs that agree with
the actual PDFs. Furthermore, the obtained results are not in-
fluenced by the PDFs empirical shape, and agree with those
obtained analysing the actual discrete PDFs computed by his-
togram method.

The condition of constant mean effective energy (i.e.
Eq. 7) can be expressed using Eqs. (4) and (6) in terms of
f0, f1 andTeff,

∫
f

1
Teff

0∫
f

1
Teff

0 dX′

lnf0dX =

∫
f1lnf0dX. (16)

Equation (16) can be solved numerically for the effective
temperatureTeff once the reference distributionf0 is chosen.
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Fig. 5. The probability distribution functionsP(Et) of the total
specific energyEt, relative to Alfv́enic fluctuations (upper panel)
and non-Alfv́enic fluctuations (lower panel), for the two distances.
Dashed lines are empirical model fits using Eq. (15).

An example of numerical solution of Eq. (16) is reported in
Fig. 6. In this case, we consider the total data set and se-
lect as PDF of the reference state that relative to 1AU. The
quantitiesI1 andI2(T ) are

I1 ≡

∫
f1lnf0dX, (17)

I2(T ) ≡

∫
f

1
T

0∫
f

1
T

0 dX′

lnf0dX, (18)

and permit us to find the effective temperatureTeff by impos-
ing I2(Teff) = I1. The numerical value of the effective tem-
perature obtained from this case is less than 1 (Teff = 0.36).
Consequently, our choice to consider the PDF at 1AU as the
reference one is not right. The PDF at 1 AU is not associated
with the situation of maximum physical chaos as it has been
supposed.

The effective temperatures, obtained from the numerical
solution of Eq. (16) are reported in Table1, assuming as
reference both the 1 AU-PDF and the 5 AU-PDF. Effective
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temperatures greater than 1 are obtained only assuming for
f0 the PDFs at 5 AU.

According to Klimontovich’s S-Theorem, the process of
self-organization evolves towards the state in whichTeff > 1.
Consequently our results (see Table1) suggest that the solar
wind turbulent fluctuations correspond to a situation of less
order (i.e. of higher physical chaos) at 5 AU than at 1 AU.
In other words, the evolution of the solar wind turbulence
with radial distance can be thought in terms of a chaotization
process.

Using Eq. (9) we estimate the entropy reductionδS =

S̃0 − S, obtainingδS = 0.129, δS = 0.062 andδS = 0.250
for the total, Afv́enic and non-Alfv́enic dataset, respectively.
The entropy reduction is positive in all cases, although the
largest variation is associated with the non-Alfvénic dataset.
This result clearly indicates how the evolution of the solar
wind turbulent fluctuations is accompanied by an entropiza-
tion process.

4 Conclusions

The application of the S-Theorem to the radial evolution of
the slow solar wind turbulence indicates that the state of the
fluctuations of the solar wind at 1 AU is characterized by an
higher degree of order than the state of the fluctuations at
5 AU. In other words, the slow solar wind fluctuation field
exhibits a higher degree of self-organization (coherence) and
complexity at 1 AU than at 5 AU. Thus, the radial evolution
of the solar wind is accompanied by an entropization pro-
cess, i.e. an increase in physical chaos and an energy degra-
dation with radial distance in the fluctuation field. We em-
phasize that our analysis provides a quantitative evaluation
of the coherence loss of the solar wind fluctuation field with
radial distance by means of the entropy reductionδS. The

Table 1. The effective temperatureTeff as obtained by numerically
solving Eq. (16)
.

f0 → f1 Total Alfvénic non-Alfv́enic

1 AU → 5 AU Teff = 0.36 Teff = 0.27 Teff = 0.45
5 AU → 1 AU Teff = 2.06 Teff = 2.94 Teff = 2.05

observed energy degradation, which is the signature of a loss
of coherence in the fluctuations of the magnetic and velocity
field, could be the counterpart of a conversion of energy into
heat, which shows up as an uncorrelated and less coherent
fluctuation field.

Recently, some works have appeared on the relation be-
tween the dependence of the solar wind temperature on the
radial distance, and the possible role that turbulent energy
transfer rate could play in solar-wind heating (Marino et al.,
2008). The first models of solar wind expansion in the helio-
sphere were based on the hypothesis of a simple adiabatic ex-
pansion. According to these models the proton temperature
was expected to decrease with the heliocentric distancer as
T (r) ∼ r−4/3. Nevertheless, the first spacecraft observations
revealed a decrease in the solar wind proton temperature
slower than expected (Schwenn, 1983; Freeman et al., 1992;
Goldstein et al., 1996), i.e.T ∼ r−γ with γ ∈ (0.7,1.0). The
highly non-adiabatic temperature profile suggested that some
heating mechanism is at play to supply energy to the solar
wind (Verma et al., 1995). In this framework, a recent study
by Marino et al.(2008) has provided evidence of the role of
the MHD turbulent cascade in solar wind heating, suggesting
that the MHD turbulent energy cascade may contribute from
8 % up to 50 % to in situ solar wind heating.

Our finding of a degradation of the fluctuation field with
radial distance could be, to some extent, related to the re-
sults of Marino et al.(2008). Indeed, the reduction of the
self-organization degree in favor of a state characterized by
a higher physical chaos would imply a transformation of the
energy related with correlated motions into heat. However,
in our analysis the most relevant loss of coherence with ra-
dial distance is found in the case of non-Alfvénic fluctuations
(δS = 0.250). Thus, if the suggestion of an active role of
MHD turbulence in solar wind heating is accepted, not only
the MHD turbulence but also other types of energy degra-
dation mechanisms will contribute to solar wind heating in
a consistent manner. Clearly, at the present stage, this hy-
pothesis is only speculative. It is, indeed, not possible from
our analysis to infer the physical mechanisms which are ca-
pable of converting into heat the loss of coherence and the
energy degradation in the fluctuation field. The possible link
between particle heating and chaotization of the fluctuation
field demands a more accurate theoretical investigation that
is beyond of the aim of this work.
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In connection with the evolution of the turbulence
anisotropy character, the observed loss of coherence could
suggest that, in agreement with the results ofHorbury et al.
(1995) for the polar wind, the radial evolution is accompa-
nied by an increase in isotropy at larger heliospheric dis-
tances also in the case of slow equatorial solar wind. More-
over, the overall decrease in the degree of order with radial
distance suggests that we could be in the presence of a pro-
cess of decaying turbulence in the case of slow solar wind.
This hypothesis is supported by the following arguments.

The S-Theorem application to hydrodynamic turbulent
flows (Prigogine and Stengers, 1984; Ebeling and Klimon-
tovich, 1984; Klimontovich, 1984; Ebeling, 1989) demon-
strates that, in contrast to the almost universally accepted
view, turbulent flows at high Reynolds numbers are more or-
dered than laminar ones at low Reynolds numbers. This can
be explained considering that in the first case a large percent-
age of energy is concentrated in the collective modes of hy-
drodynamic motions (Ebeling, 1989; Klimontovich, 1996).
This point is confirmed by the S-Theorem that, when ap-
plied to the transition from laminar to turbulent flow, exhibits
a positive value of the entropy difference between the two
states. Indeed, as it is clearly shown byKlimontovich(1996),
we have:

T [Slam−Sturb] =
mn

2
〈(δu)2

〉 > 0. (19)

where〈(δu)2
〉 depends the sum of the diagonal elements in

the Reynolds stress tensor. Thus, steady turbulent motions
are more ordered than laminar ones, i.e. the transition to tur-
bulence is an example of self-organization process emerging
from a collective dynamics. However, the emergence of self-
organization in turbulence flows can also be understood in
terms of an increase in coherence in macroscopic motions ac-
companied by a decrease in the degree of spatial symmetries.

In the previous work on magnetic field intensity fluctu-
ations byConsolini (2010) it was observed an increase in
the degree of order with radial distance. This result was
read in terms of an increasing relevance of magnetic coher-
ent structures with radial distance. As noted inBruno et al.
(2006) there could be two different mechanisms responsi-
ble for the increasing relevance of coherent magnetic struc-
tures: (i) these could be a byproduct of Alfvénic turbulence
or (ii) the remnants of structures produced at the Sun. Al-
thoughConsolini (2010) suggested that coherent structures
may be generated from turbulence evolution with radial dis-
tance, the hypothesis that coherent magnetic structures are
remnants of structures produced at the solar surface cannot
be excluded in light of our results on the decrease of the rel-
ative order in the turbulent fluctuation field. Indeed, the de-
caying/degradation of the solar wind turbulence with radial
distance, which is accompanied by a decrease in the turbulent
fluctuation amplitude, could imply the emergence of the un-
derlining solar wind structures originated at the Sun. Clearly,

at the present stage this aspect is still only speculative and de-
serves a more accurate analysis.

In conclusion, we clearly show that the evolution of slow
solar wind turbulence with radial distance is accompanied
by a degradation process. More work is necessary to extend
these results to different solar wind conditions, although the
extension to fast streams is not straightforward.

Appendix A

On the meaning of the effective temperatureT eff

To clarify the meaning of the effective temperatureTeff as a
measure of the degree of order, a simple illustrative exam-
ple, that can also be found inKlimontovich (1991), is here
extensively discussed

Let it be f0(v) andf1(v) the velocity distribution func-
tions for two 1-D systems consisting of particles of massm

and at the same temperatureT , i.e.

f0(v) =

√
m

2πκBT
exp

(
−

mv2

2κBT

)
, (A1)

f1(v) =

√
m

2πκBT
exp

(
−

m(v−u)2

2κBT

)
, (A2)

where the velocityu is relative to a coherent bulk motion.
Consider the distribution functionf0 as the reference one.
According to Eq. (3), we introduce the effective Hamiltonian
Heff,

Heff = −lnf0 '
mv2

2κBT
, (A3)

where the last equality is valid unless of a constant factor.
From this expression we evaluate the mean effective energy
for the two states;

〈Heff〉0 =
1

2
, (A4)

〈Heff〉1 =
κBT +mu2

2κBT
. (A5)

These two states do not have the same mean effective energy,
being〈Heff〉1 > 〈Heff〉0, and, consequently it is not possible
to evaluate directly the relative entropyδS.

According to the Klimontovich’s S-Theorem procedure,
we can renormalize the distribution of the reference state,
represented byf0, so that the renormalized distributioñf0
acquires the same mean effective energy of the state “1”. To
do this, following the renormalization procedure, we intro-
duce an effective temperatureTeff (see Eqs.3and5) and write
the new renormalized distributioñf0 in the form,

f̃0(v) =

√
m

2πκBTeff
exp

(
−

mv2

2κBTeff

)
, Teff = τT . (A6)
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Taking into account Eq. (6), we get

τκBT = κBT +mu2
→ τ > 1. (A7)

Thus, to have the same mean effective energy, the effective
temperatureTeff of the normalized reference state must be
higher than that of the state “1”,Teff > T . This means that
while in the case of the reference state “0”, the energy is
spent all in uncorrelated motions (thermal energy), for the
state “1”, part of the energy is spent in correlated motion (the
mean kinetic drift energy). Consequently, the level ofphysi-
cal chaosin the state “0”, is higher than in the state “1”, and
the energy spent in the collective motions, which is a signa-
ture of self-organization, yields a state of higher degree. This
result is also confirmed by the computation of the entropy
variationδS, evaluated using Eq. (8), which results

δS = S̃0−S1 =
1

2
lnτ. (A8)

Hence, beingτ > 1 it follows δS > 1, i.e. the state “1”, is as-
sociated with an entropy reduction and with a higher degree
of order. Equation (A8) can be also written in the form,

δS =
1

2
ln

(
1+

mu2

κBT

)
, (A9)

so that it is evident that the quantitymu2/κBT acts as an
order parameter, gettingδS = 0 in the limitu → 0.
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