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The calculation of vibrational properties of materials from their electronic
structure is an important goal for materials modeling. A wide variety of phys-
ical properties of materials depend on their lattice-dynamical behavior: spe-
cific heats, thermal expansion, and heat conduction; phenomena related to the
electron–phonon interaction such as the resistivity of metals, superconductiv-
ity, and the temperature dependence of optical spectra, are just a few of them.
Moreover, vibrational spectroscopy is a very important tool for the charac-
terization of materials. Vibrational frequencies are routinely and accurately
measured mainly using infrared and Raman spectroscopy, as well as inelastic
neutron scattering. The resulting vibrational spectra are a sensitive probe of
the local bonding and chemical structure. Accurate calculations of frequencies
and displacement patterns can thus yield a wealth of information on the atomic
and electronic structure of materials.

In the Born–Oppenheimer (adiabatic) approximation, the nuclear motion
is determined by the nuclear Hamiltonian H:

H = −∑
I

h̄2

2MI

∂2

∂R2
I

+ E({R}), (1)

where RI is the coordinate of the I th nucleus, MI its mass, {R} indicates the
set of all the nuclear coordinates, and E({R}) is the ground-state energy of the
Hamiltonian, H{R}, of a system of N interacting electrons moving in the field
of fixed nuclei with coordinates {R}:

H{R} = − h̄2

2m

∑
i

∂2

∂r2
i

+ e2

2

∑
i=/j

1

|ri − r j | +∑
i,I

v I (ri − RI )+ EN ({R}),

(2)
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where ri is the coordinate of the i th electron, m is the electron mass, −e is the
electron charge, EN ({R}) is the nuclear electrostatic energy:

EN ({R}) =
e2

2

∑
I =/J

Z I Z J

|RI − RJ | , (3)

Z I being the charge of the I th nucleus, and v I is the electron–nucleus Coulomb
interaction: v I (r) = −Z I e2/r . In a pseudopotential scheme each nucleus is
thought to be lumped together with its own core electrons in a frozen ion
which interacts with the valence electrons through a smooth pseudopotential,
v I (r).

The equilibrium geometry of the system is determined by the condition
that the forces acting on all nuclei vanish. The forces FI can be calculated by
applying the Hellmann–Feynman theorem to the Born–Oppenheimer Hamil-
tonian H{R}:

FI ≡ −∂E({R})
∂RI

= −
〈
�{R}

∣∣∣∣∂H{R}
∂RI

∣∣∣∣�{R}
〉
, (4)

where �{R}(r1, . . . , rN ) is the ground-state wavefunction of the electronic
Hamiltonian, H{R}. Eq. (4) can be rewritten as:

FI = −
∫

n(r)
∂v I (r − RI )

∂RI
dr − ∂EN ({R})

∂RI
, (5)

where n(r) is the electron charge density for the nuclear configuration {R}:
n(r) = N

∫
|�{R}(r, r2, . . . , rN )|2dr2 · · · drN . (6)

For a system near its equilibrium geometry, the harmonic approximation
applies and the nuclear Hamiltonian of Eq. (1) reduces the Hamiltonian of
a system of independent harmonic oscillators, called normal modes. Normal
mode frequencies, ω, and displacement patterns, Uα

I for the αth Cartesian
component of the I th atom, are determined by the secular equation:∑

J,β

(
Cαβ

IJ − MIω
2δIJ δαβ

)
Uβ

J = 0, (7)

where Cαβ
IJ is the matrix of interatomic force constants (IFCs):

Cαβ
IJ ≡ ∂2 E({R})

∂RαI ∂RβJ
= −∂Fα

I

∂RβJ
. (8)

Various dynamical models, based on empirical or semiempirical inter-atomic
potentials, can be used to calculate the IFCs. In most cases, the parameters of
the model are obtained from a fit to some known experimental data, such as a
set of frequencies. Although simple and often effective, such approaches tend
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to have a limited predictive power beyond the range of cases included in the
fitting procedure. It is often desirable to resort to first-principles methods, such
as density-functional theory, that have a far better predictive power even in the
absence of any experimental input.

1. Density-Functional Theory

Within the framework of density-functional theory (DFT), the energy
E({R}) can be seen as the minimum of a functional of the charge density
n(r):

E({R}) = T0[n(r)] + e2

2

∫
n(r)n(r′)
|r − r′| dr dr′ + Exc[n(r)]

+
∫

V{R}(r)n(r)dr + EN ({R}), (9)

with the constrain that the integral of n(r) equals the number of electrons in
the system, N . In Eq. (9), V{R} indicates the external potential acting on the
electrons, V{R} =

∑
I v I (r − RI ), T0[n(r)] is the kinetic energy of a system of

noninteracting electrons having n(r) as ground-state density,

T0[n(r)] = −2
h̄2

2m

N/2∑
n=1

∫
ψ∗

n (r)
∂2ψn(r)
∂r2

dr (10)

n(r) = 2
N/2∑
n=1

|ψn(r)|2, (11)

and Exc is the so-called exchange-correlation energy. For notational simplic-
ity, the system is supposed here to be a nonmagnetic insulator, so that each of
the N/2 lowest-lying orbital states accommodates two electrons of opposite
spin. The Kohn-Sham (KS) orbitals are the solutions of the KS equation:

HSCFψn(r) ≡
(

− h̄2

2m

∂2

∂r2
+ VSCF(r)

)
ψn(r) = εnψn(r), (12)

where HSCF is the Hamiltonian for an electron under an effective potential
VSCF:

VSCF(r) = V{R}(r)+ e2
∫

n(r′)
|r − r′| dr′ + vxc(r), (13)

and vxc – the exchange-correlation potential – is the functional derivative of
the exchange-correlation energy: vxc(r) ≡ δExc/δn(r). The form of Exc is
unknown: the entire procedure is useful only if reliable approximate expres-
sions for Exc are available. It turns out that even the simplest of such expres-
sions, the local-density approximation (LDA), is surprisingly good in many
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cases, at least for the determination of electronic and structural ground-state
properties. Well-established methods for the solution of KS equations,
Eq. (12), in both finite (molecules, clusters) and infinite (crystals) systems, are
described in the literature. The use of more sophisticated and more performing
functionals than LDA (such as generalized gradient approximation, or GGA)
is now widespread.

An important consequence of the variational character of DFT is that the
Hellmann–Feynman form for forces, Eq. (5), is still valid in a DFT framework.
In fact, the DFT expression for forces contains a term coming from explicit
derivation of the energy functional E({R}) with respect to atomic positions,
plus a term coming from implicit dependence via the derivative of the charge
density:

FDFT
I = −

∫
n(r)

∂V{R}(r)
∂RI

dr − ∂EN ({R})
∂RI

−
∫
δE({R})
δn(r)

∂n(r)
∂RI

dr. (14)

The last term in Eq. (14) vanishes exactly for the ground-state charge density:
the minimum condition implies in fact that the functional derivative of E({R})
equals a constant – the Lagrange multiplier that enforces the constrain on the
total number of electrons – and the integral of the derivative of the electron
density is zero because of charge conservation. As a consequence, FDFT

I = FI

as in Eq. (5). Forces in DFT can thus be calculated from the knowledge of the
electron charge-density.

IFCs can be calculated as finite differences of Hellmann–Feynman forces
for small finite displacements of atoms around the equilibrium positions. For
finite systems (molecules, clusters) this technique is straightforward, but
it may also be used in solid-state physics (frozen phonon technique). An alt-
ernative technique is the direct calculation of IFCs using density-functional
perturbation theory (DFPT) [1–3].

2. Density-Functional Perturbation Theory

An explicit expression for the IFCs can be obtained by differentiating the
forces with respect to nuclear coordinates, as in Eq. (8):

∂2 E({R})
∂RI∂RJ

=
∫
∂n(r)
∂RJ

∂V{R}(r)
∂RI

dr + δIJ

∫
n(r)

∂2V{R}(r)
∂RI∂RJ

dr + ∂2 EN ({R})
∂RI∂RJ

.

(15)

The calculation of the IFCs thus requires the knowledge of the ground-state
charge density, n(r), as well as of its linear response to a distortion of the
nuclear geometry, ∂n(r)/∂RI .
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The charge-density linear response can be evaluated by linearizing
Eqs. (11)–(13), with respect to derivatives of KS orbitals, density, and potential,
respectively. Linearization of Eq. (11) leads to:

∂n(r)
∂RI

= 4 Re
N/2∑
n=1

ψ∗
n (r)

∂ψn(r)
∂RI

. (16)

Whenever the unperturbed Hamiltonian is time-reversal invariant, eigenfunc-
tions are either real, or they occur in conjugate pairs, so that the prescription
to keep only the real part in the above formula can be dropped. The derivatives
of the KS orbitals, ∂ψn(r)/∂RI , are obtained from linearization of Eqs. (12)
and (13):

(HSCF − εn)
∂ψn(r)
∂RI

= −
(
∂VSCF(r)
∂RI

− ∂εn

∂RI

)
ψn(r), (17)

where

∂VSCF(r)
∂RI

=
∂V{R}(r)
∂RI

+ e2
∫

1

|r − r′|
∂n(r′)
∂RI

dr′ +
∫
δvxc(r)
δn(r′)

∂n(r′)
∂RI

dr′

(18)

is the first-order derivative of the self-consistent potential, and

∂εn

∂RI
=
〈
ψn

∣∣∣∣∂VSCF

∂RI

∣∣∣∣ψn

〉
(19)

is the first-order derivative of the KS eigenvalue, εn . The form of the right-
hand side of Eq. (17) ensures that ∂ψn(r)/∂RI can be chosen so as to have a
vanishing component along ψn(r) and thus the singularity of the linear system
in Eq. (17) can be ignored.

Equations (16)–(18) form a set of self-consistent linear equations. The lin-
ear system, Eq. (17), can be solved for each of the N/2 derivatives ∂ψn(r)/∂RI

separately, the charge-density response calculated from Eq. (16), and the
potential response ∂VSCF/∂RI is updated from Eq. (18), until self-consistency
is achieved. Only the knowledge of the occupied states of the system is nee-
ded to construct the right-hand side of the equation, and efficient iterative
algorithms – such as conjugate gradient or minimal residual methods – can
be used for the solution of the linear system. In the atomic physics literature,
an equation analogous to Eq. (17) is known as the Sternheimer equation, and
its self-consistent version was used to calculate atomic polarizabilities. Simi-
lar methods are known in the quantum chemistry literature, under the name of
coupled Hartree–Fock method for the Hartree–Fock approximation [4, 5].
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The connection with standard first-order perturbation (linear-response)
theory can be established by expressing Eq. (17) as a sum over the spectrum
of the unperturbed Hamiltonian:

∂ψn(r)
∂RI

=
∑
m=/n

ψm(r)
1

εn − εm

〈
ψm

∣∣∣∣∂VSCF

∂RI

∣∣∣∣ψn

〉
, (20)

running over all the states of the system, occupied and empty. Using Eq. (20),
the electron charge-density linear response, Eq. (16), can be recast into the
form:

∂ψn(r)
∂RI

= 4
N/2∑
n=1

∑
m=/n

ψ∗
n (r)ψm(r)

1

εn − εm

〈
ψm

∣∣∣∣∂VSCF

∂RI

∣∣∣∣ψn

〉
. (21)

This equations shows that the contributions to the electron-density response
coming from products of occupied states cancel each other. As a consequence,
in Eq. (17) the derivatives ∂ψn(r)/∂RI can be assumed to be orthogonal to all
states of the occupied manifold.

An alternative and equivalent point of view is obtained by inserting Eq. (16)
into Eq. (18) and the resulting equation into Eq. (17). The set of N/2 self-
consistent linear systems is thus recast into a single huge linear system for all
the N/2 derivatives ∂ψn(r)/∂RI

(HSCF − εn)
∂ψn(r)
∂RI

+
N/2∑
m=1

(
Knm

∂ψm

∂RI

)
(r) = −∂V{R}(r)

∂RI
ψn(r), (22)

under the orthogonality constraints:〈
ψn

∣∣∣∣∂ψn

∂RI

〉
= 0. (23)

The nonlocal operator Knm is defined as:

(
Knm

∂ψm

∂RI

)
(r) = 4

∫
ψn(r)

(
e2

|r − r′| + δvxc(r)
δn(r′)

)
ψ∗

m(r
′)
∂ψm

∂RI
(r′) dr′.

(24)

The same expression can be derived from a variational principle. The energy
functional, Eq. (9), is written in terms of the perturbing potential and of the
perturbed KS orbitals:

V (uI ) � V{R}(r)+ uI
∂V{R}(r)
∂RI

, ψ(uI )
n � ψn(r)+ uI

∂ψn(r)
∂RI

, (25)

and expanded up to second order in the strength uI of the perturbation. The
first-order term gives the Hellmann–Feynman forces. The second-order one is
a quadratic functional in the ∂ψn(r)/∂RI s whose minimization yields
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Eq. (22). This approach forms the basis of variational DFPT [6, 7], in which all
the IFCs are expressed as minima of suitable functionals. The big linear system
of Eq. (22) can be directly solved with iterative methods, yielding a solution
that is perfectly equivalent to the self-consistent solution of the smaller linear
systems of Eq. (17). The choice between the two approaches is thus a matter
of computational strategy.

3. Phonon Modes in Crystals

In perfect crystalline solids, the position of the I th atom can be written as:

RI = Rl + �s = l1a1 + l2a2 + l3a3 + �s (26)

where Rl is the position of the lth unit cell in the Bravais lattice and �s is the
equilibrium position of the sth atom in the unit cell. Rl can be expressed as
a sum of the three primitive translation vectors a1, a2, a3, with integer coef-
ficients l1, l2, l3. The electronic states are classified by a wave-vector k and a
band index ν:

ψn(r) ≡ ψν,k(r), ψν,k(r + Rl) = eik·Rlψν,k(r) ∀l, (27)

where k is in the first Brillouin zone, i.e.: the unit cell of the reciprocal lattice,
defined as the set of all vectors {G} such that Gl · Rm = 2πn, with n an integer
number.

Normal modes in crystals (phonons) are also classified by a wave-vector
q and a mode index ν. Phonon frequencies, ω(q), and displacement patterns,
Uα

s (q), are determined by the secular equation:∑
t,β

(
C̃αβ

st (q)− Msω
2(q)δstδαβ

)
Uβ

t (q) = 0. (28)

The dynamical matrix, C̃αβ
st (q), is the Fourier transform of real-space IFCs:

C̃αβ
st (q) =

∑
l

e−iq·Rl Cαβ
st (Rl). (29)

The latter are defined as

Cαβ
st (l,m) ≡ ∂2 E

∂uαs (l)∂uβt (m)
= Cαβ

st (Rl − Rm), (30)

where us(l) is the deviation from the equilibrium position of atom s in the lth
unit cell:

RI = Rl + �s + us(l). (31)

Because of translational invariance, the real-space IFCs, Eq. (30), depend on
l and m only through the difference Rl − Rm . The derivatives are evaluated
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at us(l) = 0 for all the atoms. The direct calculation of such derivatives in an
infinite periodic system is however not possible, since the displacement of a
single atom would break the translational symmetry of the system.

The elements of the dynamical matrix, Eq. (29), can be written as second
derivatives of the energy with respect to a lattice distortion of wave-vector q:

C̃αβ
st (q) =

1

Nc

∂2 E

∂u∗α
s (q)∂uβt (q)

, (32)

where Nc is the number of unit cells in the crystal, and us(q) is the amplitude
of the lattice distortion:

us(l) = us(q)eiq·Rl . (33)

In the frozen-phonon approach, the calculation of the dynamical matrix at
a generic point of the Brillouin zone presents the additional difficulty that a
crystal with a small distortion, Eq. (33), “frozen-in,” loses the original period-
icity, unless q = 0. As a consequence, an enlarged unit cell, called supercell,
is required for the calculation of IFCs at any q =/ 0. The suitable supercell for
a perturbation of wave-vector q must be big enough to accommodate q as
one of the reciprocal-lattice vectors. Since the computational effort needed to
determine the forces (i.e., the electronic states) grows approximately as the
cube of the supercell size, the frozen-phonon method is in practice limited to
lattice distortions that do not increase the unit cell size by more than a small
factor, or to lattice-periodical (q = 0) phonons.

The dynamical matrix, Eq. (32), can be decomposed into an electronic and
an ionic contribution:

C̃αβ
st (q) = elC̃αβ

st (q)+ionC̃αβ
st (q), (34)

where:

elC̃αβ
st (q) =

1

Nc

[∫ (
∂n(r)
∂uαs (q)

)∗
∂V{R}(r)
∂uβt (q)

dr

+ δst

∫
n(r)

∂2V{R}(r)
∂u∗α

s (q = 0)∂uβt (q = 0)
dr

]
. (35)

The ionic contribution – the last term in Eq. (15) – comes from the deriva-
tives of the nuclear electrostatic energy, Eq. (3), and does not depend on the
electronic structure. The second term in Eq. (34) depends only on the charge
density of the unperturbed system and it is easy to evaluate. The first term in
Eq. (34) depends on the charge-density linear response to the lattice distortion
of Eq. (33), corresponding to a perturbing potential characterized by a single
wave-vector q:

∂V{R}(r)
∂us(q)

= −∑
l

∂vs(r − Rl − �s)

∂r
eiq·Rl . (36)
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An advantage of DFPT with respect to the frozen-phonon technique is that
the linear response to a monochromatic perturbation is also monochromatic
with the same wave-vector q. This is a consequence of the linearity of DFPT
equations with respect to the perturbing potential, especially evident in Eq. (22).
The calculation of the dynamical matrix can thus be performed for any q−vector
without introducing supercells: the dependence on q factors out and all the
calculations can be performed on lattice-periodic functions. Real-space IFCs
can then be obtained via discrete (fast) Fourier transforms. To this end, dynam-
ical matrices are first calculated on a uniform grid of q-vectors in the Brillouin
zone:

ql1,l2,l3 = l1
b1

N1
+ l2

b2

N2
+ l3

b3

N3
, (37)

where b1,b2,b3 are the primitive translation vectors of the reciprocal lattice,
l1, l2, l3 are integers running from 0 to N1 − 1, N2 − 1, N3 − 1, respectively.
A discrete Fourier transform produces the IFCs in real space: C̃αβ

st (ql1,l2,l3) →
Cαβ

st (Rl1,l2,l3), where the real-space grid contains all R−vectors inside a super-
cell, whose primitive translation vectors are N1a1, N2a2, N3a3:

Rl1,l2,l3 = l1a1 + l2a2 + l3a3. (38)

Once this has been done, the IFCs thus obtained can be used to calculate inex-
pensively via (inverse) Fourier transform dynamical matrices at any q vector
not included in the original reciprocal-space mesh. This procedure is known
as Fourier interpolation. The number of dynamical matrix calculations to be
performed, N1 N2 N3, is related to the range of the IFCs in real space: the real-
space grid must be big enough to yield negligible values for the IFCs at the
boundary vectors. In simple crystals, this goal is typically achieved for rela-
tively small values of N1, N2, N3 [8, 9]. For instance, the phonon dispersions
of Si and Ge shown in Fig. 1 were obtained with N1 = N2 = N3 = 4.

4. Phonons and Macroscopic Electric Fields

Phonons in the long-wavelength limit (q → 0) may be associated with a
macroscopic polarization, and thus a homogeneous electric field, due to the
long-range character of the Coulomb forces. The splitting between longitu-
dinal optic (LO) and transverse optic (TO) modes at q = 0 for simple polar
semiconductors (e.g., GaAs), and the absence of LO–TO splitting in nonpolar
semiconductors (e.g., Si), is a textbook example of the consequences of such
phenomenon.

Macroscopic electrostatics in extended systems is a tricky subject from the
standpoint of microscopic ab initio theory. In fact, on the one hand, the macro-
scopic polarization of an extended system depends on surface effects; on the
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Figure 1. Calculated phonon dispersions and density of states for crystalline Si and Ge.
Experimental data are denoted by diamonds. Reproduced from Ref. [8].

other hand, the potential which generates a homogeneous electric field is both
nonperiodic and not bounded from below: an unpleasant situation when doing
calculations using Born–von Kármán periodic boundary conditions. In the last
decade, the whole field has been revolutionized by the advent of the so called
modern theory of electric polarization [10, 11]. From the point of view of
lattice dynamics, a more traditional approach based on perturbation theory is
however appropriate because all the pathologies of macroscopic electrostatics
disappear in the linear regime, and the polarization response to a homogeneous
electric field and/or to a periodic lattice distortion – which is all one needs in
order to calculate long-wavelength phonon modes – is perfectly well-defined.

In the long-wavelength limit, the most general expression of the energy as
a quadratic function of atomic displacements, us(q = 0) for atom s, and of a
macroscopic electric field, E, is:

E({u},E) =
1

2

∑
st

∑
αβ

us · anC̃st · ut − �

8π
E · �∞ · E − e

∑
s

us · Z�s · E,

(39)
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where � is the volume of the unit cell; �∞ is the electronic (i.e., clamped
nuclei) dielectric tensor of the crystal; Z�s is the tensor of Born effective charges
[12] for atom s; and anC̃ is the q=0 dynamical matrix of the system, calculated
at vanishing macroscopic electric field. Because of Maxwell’s equations, the
polarization induced by a longitudinal phonon in the q → 0 limit generates
a macroscopic electric field which exerts a force on the atoms, thus affecting
the phonon frequency. This, in a nutshell, is the physical origin of the LO–TO
splitting in polar materials. Minimizing Eq. (39) with respect to the electric
field amplitude at fixed lattice distortion yields an expression for the energy
which depends on atomic displacements only, defining an effective dynamical
matrix which contains an additional (“nonanalytic”) contribution:

C̃αβ
st =anC̃αβ

st +naC̃αβ
st , (40)

where

naC̃αβ
st =

4πe2

�

∑
γ Z �γαs qγ

∑
ν Z �νβt qν∑

γ,ν qγ ε
γ ν∞ qν

=
4πe2

�

(q · Z�s)α (q · Z�t)β
q · �∞ · q

(41)

displays a nonanalytic behavior in the limit q → 0. As a consequence, the
resulting IFCs are long-range in real space, with a dependence on the inter-
atomic distance, which is typical of the dipole–dipole interaction. Because of
this long-range behavior, the Fourier technique described above must be mod-
ified: a suitably chosen function of q, whose q → 0 limit is the same as in
Eq. (41), is subtracted from the dynamical matrix in q-space. This procedure
makes residual IFCs short-range and suitable for Fourier transform on a rel-
atively small grid of points. The nonanalytic term previously subtracted out
in q-space is then readded in real space. An example of application of such
procedure is shown in Fig. 2, for phonon dispersions of some III–VI semicon-
ductors.

The link between the phenomenological parameters Z � and ε∞ of Eq. (39)
and their microscopic expression is provided by conventional electrostatics.
From Eq. (39) we obtain the expression for the electric induction D:

D ≡ −4π

�

∂E

∂E
=

4πe

�

∑
s

Z�s · us + �∞E, (42)

from which the macroscopic polarization, P, is obtained via D = E + 4πP.
One finds the known result relating Z � to the polarization induced by atomic
displacements, at zero electric field:

Z �αβs =
�

e

∂Pα
∂uβs (q = 0)

∣∣∣∣∣E=0

; (43)
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Figure 2. Calculated phonon dispersions and density of states for several III-V zincblende
semiconductors. Experimental data are denoted by diamonds. Reproduced from Ref. [8].
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while the electronic dielectric-constant tensor ε∞ is the derivative of the
polarization with respect to the macroscopic electric field at clamped nuclei:

εαβ∞ = δαβ + 4π
∂Pα
∂Eβ

∣∣∣∣∣
us (q=0)=0

. (44)

DFPT provides an easy way to calculate Z � and ε∞ from first principles
[8, 9]. The polarization linearly induced by an atomic displacement is given
by the sum of an electronic plus an ionic term:

∂Pα
∂uβs (q = 0)

= − e

Nc�

∫
r

∂n(r)
∂us(q = 0)

dr + e

�
Zsδαβ . (45)

This expression is ill-defined for an infinite crystal with Born–von Kármán
periodic boundary conditions, because r is not a lattice-periodic operator.
We remark, however, that we actually only need off-diagonal matrix elements
〈ψm |r|ψn〉 with m =/ n (see the discussion of Eqs. 20 and 21). These can be
rewritten as matrix elements of a lattice-periodic operator, using the following
trick:

〈ψm |r|ψn〉 =
〈ψm |[HSCF, r]|ψn〉

εm − εn
, ∀ m=/ n. (46)

The quantity |ψ̄α
n 〉 = rα|ψn〉 is the solution of a linear system, analogous to

Eq. (17):

(HSCF − εn)|ψ̄α
n 〉 = Pc[HSCF, rα]|ψn〉, (47)

where Pc = 1 −∑N/2
n=1 |ψn〉〈ψn| projects out the component over the occupied-

state manifold. If the self-consistent potential acting on the electrons is local,
the above commutator is simply proportional to the momentum operator:

[HSCF, r] = − h̄2

m

∂

∂r
. (48)

Otherwise, the commutator will contain an explicit contribution from the
nonlocal part of the potential [13]. The final expression for the effective charges
reads:

Z �αβs = Zs + 4

Nc

N/2∑
n=1

〈
ψ̄α

n

∣∣∣∣∣ ∂ψn

∂uβ(q = 0)

〉
. (49)

The calculation of ε∞ requires the response of a crystal to an applied
electric field E. The latter is described by a potential, V (r) = eE ·r, that is nei-
ther lattice-periodic nor bounded from below. In the linear-response regime,
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however, we can use the same trick as in Eq. (46) and replace all the occur-
rences of r|ψn〉 with |ψ̄α

n 〉 calculated as in Eq. (47). The simplest way to cal-
culate ε∞ is to keep the electric field E fixed and to iterate on the potential:

∂VSCF(r)
∂E

=
∂V (r)
∂E

+
∫ (

e2

|r − r′| + δvxc(r)
δn(r′)

)
∂n(r′)
∂E

dr′. (50)

One finally obtains:

εαβ∞ = δαβ − 16πe

Nc�

N/2∑
n=1

〈
ψ̄α

n

∣∣∣∣∣∂ψn

∂Eβ

〉
. (51)

Effective charges can also be calculated from the response to an electric field.
In fact, they are also proportional to the force acting on an atom upon appli-
cation of an electric field. Mathematically, this is simply a consequence of the
fact that the effective charge can be seen as the second derivative of the energy
with respect to an ion displacement and an applied electric field, and its value
is obviously independent of the order of differentiation.

Alternative approaches – not using perturbation theory – to the calculation
of effective charges and of dielectric tensors have been recently developed.
Effective charges can be calculated as finite differences of the macroscopic
polarization induced by atomic displacements, which in turn can be expressed
in terms of a topological quantity – depending on the phase of ground-state
orbitals – called the Berry’s phase [10, 11]. When used at the same level of
accuracy, the linear-response and Berry’s phase approaches yield the same
results. The calculation of the dielectric tensor using the same technique is pos-
sible by performing finite electric-field calculations (the electrical equivalent
of the frozen-phonon approach). Recently, practical finite-field calculations
have become possible [14, 15], using an expression of the position operator
that is suitable for periodic systems.

5. Applications

The calculation of vibrational properties in the frozen-phonon approach
can be performed using any methods that provide accurate forces on atoms.
Localized basis-set implementations suffers from the problem of Pulay forces:
the last term of Eq. (14) does not vanish if the basis set is incomplete. In
order to obtain accurate forces, the Pulay term must be taken into account.
The plane-wave (PW) basis set is instead free from such problem: the last
term in Eq. (14) vanishes exactly even if the PW basis set is incomplete.
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Practical implementations of DFPT equations is straightforward with PW’s
and norm-conserving pseudopotentials (PPs). In a PW-PP calculation, only
valence electrons are explicitly accounted for, while the electron-ionic cores
interactions are described by suitable atomic PPs. Norm-conserving PPs
contain a nonlocal term of the form:

V NL
{R} (r, r′) =

∑
sl

∑
n,m

Dnmβ
∗
n (r − Rl − �s)βm(r′ − Rl − �s). (52)

The nonlocal character of the PP requires some generalizations of the formulas
described in the previous section, which are straightforward. More extensive
modifications are necessary for “ultrasoft” PPs [16], which are appropriate
to effectively deal with systems containing transition metal or other atoms
that would otherwise require a very large PW basis set when using norm-
conserving PPs. Implementations for other kinds of basis sets, such as LMTO,
FLAPW, mixed basis sets (localized atomic-like functions plus PWs) exist
as well.

Presently, phonon spectra can be calculated for materials described by unit
cells or supercells containing up to several tens atoms. Calculations in simple
semiconductors (Fig. 1 and 2) and metals (Fig. 3) are routinely performed with
modest computer hardware. Systems that are well described by some flavor
of DFT in terms of structural properties have a comparable accuracy in their
phonon frequencies (with typical error in the order of a few percent points) and
phonon-related quantities. The real interest of phonon calculations in simple
systems, however, stems from the possibility to calculate real-space IFCs also
in cases for which experimental data would not be sufficient to set up a reliable
dynamical model (as, for instance, in AlAs, Fig. 2). The availability of IFCs
in real space and thus of the complete phonon spectra allows for the accurate
evaluation of thermal properties (such as thermal expansion coefficients in the
quasi-harmonic approximation) and of electron–phonon coupling coefficients
in metals.

Calculations in more complex materials are computationally more demand-
ing, but still feasible for a number of nontrivial systems [2]: semiconduc-
tor superlattices and heterostructures, ferroelectrics, semiconductor surfaces
[18], metal surfaces, high-Tc superconductors are just a few examples of sys-
tems successfully treated in the recent literature. A detailed knowledge of
phonon spectra is crucial for the explanation of phonon-related phenomena
such as structural phase transitions (under pressure or with temperature) driven
by “soft phonons,” pressure-induced amorphization, Kohn anomalies. Some
examples of such phonon-related phenomenology are shown in Fig. 4–6.
Figure 4 shows the onset of a phonon anomaly at an incommensurate q-vector
under pressure in ice XI, believed to be connected to the observed amorphiza-
tion under pressure. Figure 5 displays a Kohn anomaly and the related lat-
tice instability in the phonon spectra of ferromagnetic shape-memory alloy
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Figure 3. Calculated phonon dispersions, with spin-polarized GGA (solid lines) and LDA
(dotted lines), for Ni in the face-centered cubic structure and Fe in the body-centered cubic
structure. Experimental data are denoted by diamonds. Reproduced from Ref. [17].

Ni2MnGa. Figure 6 shows a similar anomaly in the phonon spectra of the
hydrogenated W(110) surface.

DFT-based methods can also be employed to determine Raman and
infrared cross sections – very helpful quantities when analyzing exper-
imental data. Infrared cross sections are proportional to the square of the po-
larization induced by a phonon mode. For the νth zone-center (q = 0) mode,
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characterized by a normalized vibrational eigenvector Uβ
s , the oscillator

strength f is given by

f =
∑
α

∣∣∣∣∣∣
∑
sβ

Z �αβs Uβ
s

∣∣∣∣∣∣
2

. (53)
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The calculation of Raman cross sections is difficult in resonance conditions,
since the knowledge of excited-state Born–Oppenheimer surfaces is required.
Off-resonance Raman cross sections are however simply related to the change
of the dielectric constant induced by a phonon mode. If the frequency of the
incident light,ωi , is much smaller than the energy band gap, the contribution of
the νth vibrational mode to the intensity of the light diffused in Stokes Raman
scattering is:

I (ν) ∝ (ωi − ων)
4

ων
rαβ(ν), (54)

where α and β are the polarizations of the incoming and outgoing light
beams, ων is the frequency of the νth mode, and the Raman tensor rαβ(ν)
is defined as:

rαβ(ν) =

〈∣∣∣∣∣∂χ
αβ

∂eν

∣∣∣∣∣
2〉
, (55)

where χχχ = (�∞ − 1)/4π is the electric polarizability of the system, eν is the
coordinate along the vibrational eigenvector Uβ

s for mode ν, and 〈〉 indicates
an average over all the modes degenerate with the νth one. The Raman tensor
can be calculated as a finite difference of the dielectric tensor with a phonon
frozen-in, or directly from higher-order perturbation theory [22].
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6. Outlook

The field of lattice-dynamical calculations based on DFT, in particular in
conjunction with perturbation theory, is ripe enough to allow a systematic
application to systems and materials of increasing complexity. Among the
most promising fields of application, we mention the characterization of ma-
terials through the prediction of the relation existing between their atomistic
structure and experimentally detectable spectroscopic properties; the study of
the structural (in)stability of materials at extreme pressure conditions; the pre-
diction of the thermal dependence of different materials properties using the
quasi-harmonic approximation; the prediction of superconductive properties
via the calculation of electron–phonon coupling coefficients. We conclude
mentioning that sophisticated open-source codes for lattice dynamical calcu-
lations [23] are freely available for download from the web.
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