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Preface

This thesis was prepared in partial ful�lment of the requirements for acquiring
the PhD degree at the Technical University of Denmark (DTU). The work
was carried out between July 2011 and July 2014 at the Section for Scienti�c
Computing at the Department of Applied Mathematics and Computer Science
(formerly Department of Mathematics), DTU, under the supervision of Asso-
ciate Professor Kim Knudsen.

During my studies I have co-authored the following papers:

• K. Ho�mann, G. Bal, and K. Knudsen
On the Propagation of Singularities for a Class of Hybrid Inverse Problems
To be submitted

• K. Ho�mann, and K. Knudsen
Iterative Reconstruction Methods for Hybrid Inverse Problems in Imped-
ance Tomography
Sensing and Imaging, Vol. 15, 96, 2014.

The aim of this thesis has been to present and document my work, and more
speci�cally to provide new mathematical insight for a class of hybrid inverse
problems in impedance tomography. As a natural consequence, the key parts of
this thesis therefore build upon the aforementioned papers. Accordingly, most
of the theoretical results stated in the �rst paper are also presented in Chap. 4,
and likewise, the numerical analyses and results of the second paper are to some
extent repeated in Chap. 5. However, in this thesis I provide a much more
thorough theoretical and numerical analysis, and present several unpublished
results, especially related to partial data and limited-view data.
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Summary (English)

This thesis presents a theoretical and numerical analysis of a general math-
ematical formulation of hybrid inverse problems in impedance tomography.
This includes problems from several existing hybrid imaging modalities such as
Current Density Impedance Imaging, Magnetic Resonance Electrical Impedance
Tomography, and Ultrasound Modulated Electrical Impedance Tomography.

After giving an introduction to hybrid inverse problems in impedance tomo-
graphy and the mathematical tools that facilitate the related analysis, we explain
in detail the stability properties associated with the classi�cation of a linearised
hybrid inverse problem. This is done using pseudo-di�erential calculus and
theory for overdetermined boundary value problem. Using microlocal analysis
we then present novel results on the propagation of singularities, which give a
precise description of the distinct features of solutions in the case of a non-elliptic
problem.

To conduct a numerical analysis, we develop four iterative reconstruction methods
using the Picard and Newton iterative schemes, and the uni�ed approach to
the reconstruction problem encompasses several algorithms suggested in the
literature. The algorithms are implemented numerically in two dimensions and
the properties of the algorithms and their implementations are investigated
theoretically. Novel numerical results are presented for both the full and partial
data problem, and they show similarities and di�erences between the proposed
algorithms, which are closely linked to the results of the theoretical analysis.
The �ndings in this thesis justify that the choice of algorithm should be based
on a theoretical analysis of the underlying inverse problem.
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Summary (Danish)

Denne afhandling indeholder en teoretisk og numerisk analyse af en generel
matematisk model for hybrid-inverse problemer i impedanstomogra�. Modellen
beskriver �ere eksisterende metoder fra hybrid billeddannelse, såsom Current
Density Impedance Imaging, Magnetic Resonance Electrical Impedance Tomo-
graphy og Ultrasound Modulated Electrical Impedance Tomography.

Efter en indledende matematisk beskrivelse af problemet, og de relaterede mate-
matiske værktøjer, beskrives stabilitetsegenskaberne af det lineariserede hybrid-
inverse problem. Disse resultater er baseret på teorien for pseudodi�erential-
operatorer og overdeterminerede randværdiproblemer. Ved brug af mikrolokal
analyse udledes herefter nye resultater, som giver en præcis beskrivelse af de
særprægede egenskaber, der hører til løsningerne af et ikke-elliptisk problem.

Den numeriske analyse er baseret på �re iterative rekonstruktionsmetoder, som
udvikles på baggrund af Picard- og Newton-metoden. Den generelle tilgang til
det inverse problem betyder, at rekonstruktionsmetoderne i �ere tilfælde gene-
raliserer metoder, der allerede �ndes i litteraturen. Vi implementerer derefter
de �re algoritmer og laver en teoretisk analyse af deres egenskaber. Herefter
præsenteres nye numeriske rekonstruktionsresultater for det inverse problem
med både komplet og begrænset data. Resultaterne påviser både ligheder og
forskelle mellem metoderne, som kan forklares ved at henlede til den teoretiske
analyse. Resultaterne af den numeriske analyse berettiger, at valget af rekon-
struktionsmetode bør baseres på en teoretisk analyse af det tilgrundliggende
inverse problem.
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Chapter 1

Introduction

Mathematical modelling is often motivated by the wish to shape our under-
standing of physical phenomena and to predict the measurements of quantities
related to known physical systems. Indeed, one can always predict the behaviour
of any deterministic physical system given a su�ciently precise mathematical
model. Likewise, a physical system may be identi�ed and characterised based
on measurements of its behaviour.

The mathematical formulation related to the inversion of measurements is known
as an inverse problem. Here the problem is to recover certain properties of the
physical system based on actual measurements of the behaviour. In situations
where knowledge about such properties is not available, solving the inverse
problem gives valuable information that we otherwise cannot directly observe.

Inverse problems form a multidisciplinary �eld combining mathematics with
many branches of physics, chemistry and biology, and covers a wide range of
applications. Examples are problems from medical imaging, geophysics and
astronomy, where abstract mathematical formulations can be used to devise
procedures to convert exterior measurements into information about interior
properties [28, 33, 88]. Despite their similar appearance, inverse problems
can be based on entirely di�erent mathematical formulations, and there are
inevitably problem dependent challenges associated with both their theoretical
and numerical analysis [41, 48, 73].
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Within the �eld of medical imaging there exists a variety of popular imaging
techniques, and there is a constant development and re�nement of such non-
invasive methods. A new generation of imaging methods formulate procedures
based on measurements obtained from several existing modalities. These are
called hybrid imaging methods. An analysis of the corresponding mathematical
models, described by hybrid inverse problems, can predict how well such methods
will perform and, from the perspective of applications, provides a general guide-
line for further development [8, 11, 83].

The primary subject of this thesis is to present a theoretical and numerical
analysis of a class of hybrid inverse problems related to applications in medical
imaging; or more precisely, impedance tomography. We present many inter-
esting novel theoretical results, primarily concerned with the propagation of
singularities for the non-elliptic linearised inverse problem. Another major
contribution is the development, analysis, implementation and comparison of
several iterative reconstruction methods, among which some are new.

In this chapter we present a short and general introduction to the mathematics
behind inverse problems and give some examples of existing methods from
medical imaging. We introduce hybrid inverse problems, by formulating a simple
mathematical model for impedance tomography, and then give two examples of
hybrid modalities. These work as models for the more general mathematical
formulation of a hybrid inverse problem, which will be the main subject of
analysis in this thesis. In the end of this chapter we provide a reading guide.

1.1 Inverse problems

The mathematical formulation of an inverse problem is often based on a map
between function spaces

Fσ : x 7→ y.

Here Fσ is an operator that models the physical system, which depends on
an underlying function σ usually modelling an unknown physical property, x
represents a chosen physical disturbance, and y the corresponding physical
reaction. Based on knowledge of Fσ and pairs {x, y}, the inverse problem is
to �nd the function σ. This corresponds to an inversion of the map

σ 7→ Fσ.

In mathematical terms, Fσ could be a di�erential or integral operator, or in
more abstract formulations, say, a Poincaré-Steklov operator.
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Most inverse problems are not di�cult to formulate because the physical system
can often be described in terms of mathematical notion and language, but
usually their analysis turns out to be di�cult and relies on advanced techniques
from several �elds of mathematics. This is an interesting feature of inverse
problems.

The mathematical analysis of often related to qualitative features such as exis-
tence, uniqueness and stability of solutions. The question of existence is related
to existence of a physical property that generates the observed data. From
the perspective of a physical system, this is of course always satis�ed, but
the existence of solutions to the mathematical model is always questionable.
In particular, this could be the case if the observed data for some reason is
imprecise. In mathematical terms, this corresponds to data outside the range
of the map that models the physical system. In the mathematical context, one
should also pay close attention to the use of the word solution, because this is
often de�ned in a speci�c formulation of the original problem.

Uniqueness is typically expressed as necessary or su�cient conditions for which
the observed data uniquely determines the physical property. How to actually
reconstruct the physical property, given the observed data, is a completely
di�erent question, but seen from the perspective of applications, this is often
the most important one.

Stability is a measure of how sensitive the model of the physical system is to
changes in the unknown property. A common challenge for inverse problems
is bad stability properties, such that small changes in the observed data, can
correspond to large changes in the physical property. If the observed data is
contaminated by noise, this property is of course a critical element. If an inverse
problem has either bad stability properties, or does not have a unique solution,
then the problem is said to be ill-posed, and special care needs to be taken in
the development of reconstruction methods. Additional challenges are related
to practical limitations of the physical system, which need to be included in the
model and analysis.

This thesis will consider the analysis of certain inverse problems related to
medical imaging, where the recovery of interior properties provides valuable
information that could help in diagnostics, treatment monitoring and response
evaluation. These problems describe methods based on exterior measurements
that in some way quantify how externally imposed physical �elds are a�ected
by an unknown physical property as they propagate inside a given object. This
naturally leads to mathematical models expressed by inverse problems.
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1.1.1 Examples from medical imaging

Within the class of mathematical models from medical imaging we �nd several
examples of inverse problems. A few of these are:

• X-ray tomography, also known as radiography, or the related method of
Computerised Tomography (CT). Here one measures attenuation of a
collimated beam of radiation that passes through an object and this is
used to reconstruct the spatially varying interior absorption coe�cient,
called the radiodensity [46]. The inverse problem from CT is based on
the inversion of the Radon transform, which is a well-known example of a
mildly ill-posed problem [77].

• Magnetic Resonance Imaging (MRI), that uses an oscillating magnetic
�eld to manipulate the magnetic properties of hydrogen atoms inside
an object. The exited atoms emit material dependent radio-frequency
signals which are then recorded. This can be used to generate an image
representing the material composition of the interior. The basic physics
and mathematics behind MRI is explained in detail by Buxton [21]. Note
that the inversion process does not amplify noise, since it is based on a
discrete Fourier transform. The inverse problem in MRI is therefore not
ill-posed [66].

• Medical ultrasound, a well-known method for diagnostic sonography. Ultra-
sonic waves are produced with the purpose of penetrating a chosen medium.
As the waves propagate, some are scattered and re�ected at interior inter-
faces. This wave response is measured and provides information about the
inner structure of the medium. The mathematical formulation is based on
the inverse scattering problem which is generally ill-posed [26]. We refer
to Duck et al. [30] for an introduction to medical ultrasound.

• Electrical Impedance Tomography (EIT), which recovers the interior con-
ductivity distribution of an object, based on current and voltage pairs
measured on electrodes attached on the boundary. The inverse problem
from EIT is known as the Calderón problem, and mathematically it corre-
sponds to reconstructing the coe�cient of a second-order divergence form
elliptic di�erential operator from an associated boundary data map. This
is an example of an inverse problem, where the physical system, which
depends on the unknown interior conductivity distribution, is described
by a Poincaré-Steklov operator. Much work has been used on the the-
oretical and numerical analysis of this problem in order to describe this
dependence. An introduction to the methods, history and applications
of EIT can be found in many texts [19, 44, 73]. Note that the inverse
problem from EIT is severly ill-posed.
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Because the presented imaging methods reconstruct di�erent physical prop-
erties, they all have individual advantages and disadvantages as stand-alone
modalities, and their practicality depends on the speci�c application in mind.
In medical imaging, the goal is to obtain high contrast and high spatial resolution
interior information that makes it possible to classify di�erent parts of the image
and identify small details, which often is necessary for early diagnostics. Note
that contrast is a feature of the reconstructed physical quantity, while the spatial
resolution is determined entirely by the choice of reconstruction method. The
cost and safety of the method is of course also an important parameter.

The ability of an imaging method to produce a high resolution reconstruction
is closely linked the type of physics that the measurements are based on. High
resolution methods often rely on electromagnetic or mechanical waves that, to
a certain extend, can be focused in space and thereby generate measurements
that include spatial information. In the other hand, methods based on electrical
measurements are usually of low resolution, since electric �elds are di�usive by
nature and therefore impossible to focus.

As an example of the individual advantages and disadvantages, we can mention
that medical ultrasound, which is considered a high resolution modality, cannot
be used to detect early stage breast tumours, simply because the behaviour of
acoustic waves is very similar in healthy and cancerous breast tissue; that is, the
contrast in the acoustic property is too low. On the other hand, the electrical
properties between healthy and cancerous breast tissue can di�er by several
factors, which speaks in favour of EIT [54].

Conductivity reconstructions from EIT are typically of low resolution, because
the method is based on a model of the di�usive nature of electric �elds. Further-
more, the inverse problem from EIT is ill-posed, which makes the reconstruction
very sensitive to noise and modelling errors. Reconstruction methods for ill-
posed inverse problems, such as the one from EIT, therefore rely on math-
ematical constructions to reduce the e�ects of the ill-posedness. A common
choice is to impose additional smoothness assumptions or utilise certain a priori
knowledge. This process is known as regularisation [32]. It is not possible to de-
velop a well-performing reconstruction method for EIT without such procedures,
simply because the ill-posedness of the problem is inherited directly from the
physics it models. A di�erent approach is to consider another physical setting,
for which the mathematical model inherits better stability properties and the
reconstruction obtains the best possible contrast and resolution. This is the
motivation behind the development of hybrid imaging methods.
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1.2 Hybrid inverse problems

If a single imaging method does not provide an acceptable reconstruction, it
seems natural to utilise information from multiple modalities. Of course, the
methods should then be chosen such that they complement each other; that is,
they should not share the same disadvantages. If the chosen imaging methods
complement each other, it is possible to increase the contrast, resolution, and
stability of the reconstruction.

A simple approach would be to draw conclusions based on a collection of di�erent
recovered properties. The combined PET/CT scan is an example of such a
procedure [54]. Another possibility is to derive a reconstruction scheme based
on measurements from multiple imaging methods. Here a physical �eld related
to one method, is measured by other methods. In this setting the modelling is
based on existing physical descriptions, but the inverse problem is di�erent and
a new reconstruction scheme has to be developed. Magnetic Resonance EIT
(MREIT) is an example of such a problem. Here the two individual modalities
are used simultaneously to obtain additional interior data, for which a new
reconstruction scheme is developed. We explain the basic idea behind MREIT
on p. 9.

Finally, it is possible to formulate a new model based on an interaction between
certain physical properties and high intensity physical �elds. Here a physical
coupling makes it possible, at least in theory, to obtain very good approximations
of interior physical quantities. This could theoretically produce interior data
with both high resolution and high contrast, if it is based on well-chosen coupled
modalities that include a high resolution method and measurements of a physical
property of high contrast. Again, a new inverse problem is formulated for the
interior data. Ultrasound modulated EIT (UMEIT) is an imaging method that
utilises such a coupling to measure additional interior data. We will explain the
basic idea behind UMEIT on p. 10.

The particular �eld of imaging modalities, that combines two or more existing
methods, is often called hybrid imaging and the associated inverse problems are
called hybrid inverse problems. In some parts of the literature, these methods
are also called multi-physics, coupled physics or multi-wave techniques. Some
choose to use the term hybrid imaging exclusively for methods that rely on
coupled-physics phenomena. A survey of hybrid imaging methods can be found
in the review papers on the subject [8, 12, 54].

A hybrid imaging modality can often mathematically be considered as a two-
step process: The �rst step is related to the modelling of experimental apparatus
and the physical �elds and couplings, and provides a strategy on how to recover
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the interior data. The second step is the reconstruction of the relevant physical
parameters using the available mathematical models, the exterior measurements
and the recovered interior data sets. In this thesis we only consider the second
step and present a theoretical and numerical analysis of a speci�c class of non-
linear hybrid inverse problems augmented with interior data of in�nite precision.
These problems are generalisations of hybrid imaging modalities related to
impedance tomography.

The mathematical model of impedance tomography is based on the fundamental
concepts of electricity and magnetism, being static or time-dependent, which
are naturally related by Maxwell's equations. These equations de�nes the
electromagnetic properties of materials by the constitutive relations between
the electric �eld quantities and the magnetic �eld quantities [47]. Electrically
charged particles exert a force on other electrically charged objects. This phe-
nomena is explained using the concept of electric �elds. The size of the electric
�eld is de�ned as the electric force per unit charge and the direction of the �eld
is de�ned to be the direction of the force it would exert on a stationary positive
charge. In the same way, an electric �eld that changes over time introduces a
local magnetic �eld de�ned by the (Lorentz) force it would exert on a moving
electrically charged particle.

Table 1: Electrical properties of biological tissues at 10kHz [19].

Tissue type Conductivity [S/m] Permittivity [µF m−1]

Muscle 0.131 0.49
Liver 0.146 0.49
Heart 0.167 0.88
Fat < 0.1 0.18
Lung 0.105 0.22

On a macroscopic level, the electrical properties of any biological tissue can be
expressed using the notions of conductivity and permittivity. In the presence of
an external applied electric �eld, the conductivity is a measure of the ability to
transport charge and the permittivity is a measure of the ability to store charge.
In other words, these properties determine the exact pattern �ow of current.
Attributes like cell concentration, cellular structure, molecular composition and
membrane capacitance, all in�uence the electrical properties of tissues [58]. As
an example of this, the conductivity and permittivity of �ve types of biological
tissue are listed in Tab. 1. From this we see that spatial information about
the interior distribution of the electrical properties could make it possible to
characterise and localise the type of tissue. The macroscopic electrical properties
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of biological tissues, is explained in detail in a paper by Miklav£i£ et al. [68].

The object in question is modelled by a conducting body Ω, an open, bounded
subset of Rn, n = 2, 3, having a su�ciently smooth boundary ∂Ω. Note that the
two-dimensional setting is a mathematical abstraction, and does not represent
any real physical object. The conductivity inside Ω is then modelled by the
function σ, which for simplicity is assumed to be a scalar function bounded
above and below in Ω by a positive constant. Thus, we assume that permittivity
is negligible. An imposed �xed boundary potential, expressed by the function
f , generates an interior scalar electric potential u. The current density �eld
is de�ned as J := −σ∇u following Kirchho�'s reformulation of Ohm's law for
stationary conductors [80]. The continuity condition on the current density �eld
is

∇ · J = 0 in Ω,

since no current sources exist inside the object. The electrical potential u can
therefore be modelled as the solution to the generalised Laplace problem{

∇ · σ∇u = 0 in Ω,

u = f on ∂Ω.
(1.1)

This is the boundary value problem behind most mathematical models of im-
pedance tomography. The inverse problem from EIT is to reconstruct σ from
knowledge of the boundary data operator which relates a boundary potential f
and a boundary current σ∇u · ν, where ν denotes the exterior unit normal to
∂Ω.

This formulation is clearly a very simpli�ed model of any real experiment. It
might be necessary to also model the e�ect of the electrodes that are attached
to the boundary, the possible anisotropy of the conductivity and the presence
of measurement noise. We choose not to include any of such properties in this
model, such that mathematical formulation of the inverse problem is as simple
as possible.

We now give two examples of how an additional modality can be used to recover
interior data that allows us to formulate a hybrid inverse problem.
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1.2.1 Magnetic Resonance EIT and Current Density

Impedance Imaging

The �rst example is related to the use of EIT together with MRI. It is based
on Ampere's law from classical electromagnetism that can be expressed in the
di�erential form

J = ∇×B/µ0,

where B is the magnetic �ux density vector and µ0 is the vacuum permeability.
Thus, full knowledge of B in the interior, gives full knowledge of the current
density �eld J .

An MRI scan measures a single component of the magnetic �ux density vector
B inside an object. If we assume that we can rotate the object such that all
components can be measured it is possible to measure the full vectorB. Imagine
that these measurements are done during an EIT measurement. Then the use of
MRI allows us to augment the EIT inverse problem with additional interior data
given by the current density �eld, which can be calculated using Ampere's law.
Thus, for any EIT measurement, expressed mathematically by (1.1), we can
augment the inverse problem with additional interior data given by the current
density �eld

J = σ∇u.

The inverse problem of MREIT is then to reconstruct σ from the knowledge of
this data, corresponding to a number of solutions {uj}Jj=1 to (1.1) for a chosen
set of boundary conditions {fj}Jj=1

The assumption that all components of B can be measured, is often not true. In
many situations, only one or two components can be measured due to practical
limitations in the MRI setup. In this setting the inverse problem is of course
di�erent, and relies on di�erent reconstruction schemes [58, 79, 85]. Note that
some authors reserve the name MREIT for such methods. A related method
that relies on knowledge of the magnitude of J is Current Density Impedance
Imaging (CDII). In this thesis, the analysis will cover the inverse problem for
EIT, where interior knowledge of the magnitude of the current density �eld is
available; thus we treat the problem from CDII.
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1.2.2 Ultrasound Modulated EIT

The second example of a hybrid inverse problem in impedance tomography,
is Ultrasound Modulated EIT. Here one utilises a physical coupling called the
acousto-electric e�ect, that describes the conversion of acoustical energy into
electrical energy; or equivalently, the transfer of momentum from the imposed
acoustic wave to the electrons of the conducting material. This means that high
intensity acoustic pressure waves create a local deformation of the electronic
structure which changes the electrical properties. The e�ect is also partially
caused by changes in the ionic mobility, and changes in the so-called dissociation
equilibrium of partially dissociated ionic species. However, experiments have
showed that the bulk compressibility is responsible for most of the acousto-
electric e�ect [49]. Experiments also show that the acousto-electric e�ect seems
to be rather small [61, 98], and the feasibility of utilising this e�ect in an imaging
method is therefore questionable.

The idea in UMEIT is to conduct a classical EIT measurement, while an known
ultrasonic wave travels through the object. Due to the acousto-electric e�ect,
the EIT boundary measurements will record changes in the electrical properties.
This is now done for a family of known ultrasonic waves, which corresponds to
EIT boundary measurements re�ecting di�erent interior conductivity perturba-
tions.

If the ultrasonic signal is assumed to be in the form of a plane wave with a chosen
amplitude, the following derivation, based on the presentation by Bal [12], shows
how a mathematical expression of the interior power density can be recovered
from boundary measurements. For this we need to make the assumption that
the wave speed is constant.

The acousto-electric e�ect which perturbs the conductivity is modelled by the
relation

σε(x) = σ(x)
(

1 + εei(k·x)
)

+O(ε2),

where ε� 1 is the product of a measure of the acousto-electric coupling between
the wave and the electrical conductivity, and the amplitude of the plane wave.
Note that σ−ε can be obtained by simply shifting the phase of the wave. We
denote by uε a solution to (1.1), where σ has been replaced by σε. Using
integration by parts, we �nd the relation∫

Ω

(σε − σ−ε)∇uε · ∇u−ε dx =

∫
∂Ω

σεu−ε∂νuε − σ−εuε∂νu−ε ds, (1.2)

where ∂νu := ν ·∇u. The integral on the right-hand side can be calculated from
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the measured EIT boundary data for di�erent values of ε. We can therefore make
the polynomial expansion in ε∫

∂Ω

σεu−ε∂νuε − σ−εuε∂νu−ε ds = εJ1(k) + ε2J2(k) +O(ε3),

by changing the amplitude of the acoustic wave. Here J1(k) and J2(k) are
coe�cients in the polynomial expansion.

We are interested in an expression of the �rst-order coe�cient J1(k). First note
that a simple perturbation argument for (1.1) shows that

σ∇u = σ
(

1 + εei(k·x)
)
∇uε +O(ε2),

which for ε� 1 implies

∇uε = ∇u− εei(k·x)∇u+O(ε2).

Therefore the �rst-order terms of (1.2) are given by the simple relation∫
Ω

2εσ∇u · ∇u ei(k·x) dx = εJ1(k).

We recognise 1
2J1(k) as the Fourier transform of σ|∇u|2 extended to zero outside

Ω. In theory we can measure J1(k) for all k ∈ Rn, and by the inverse Fourier
transform this corresponds to interior knowledge of σ|∇u|2.

This interior data models the electrical power density distribution inside Ω. The
inverse problem of UMEIT is then to reconstruct σ from the knowledge of this
data, corresponding to a number of solutions {uj}Jj=1 to (1.1) for a chosen set
of boundary conditions {fj}Jj=1.

Note that if one uses perfectly focused waves or spherical waves instead of plane
waves, it is also possible to recover the electrical power density distribution, by
a similar mathematical construction [55].

The feasibility and practicality of both of the presented hybrid methods is
of course questionable, since many assumptions and simpli�cations have been
made. A further analysis of this question is beyond the scope of this thesis, but
it is important to note that the presented methods indeed are based on models
that are way to simple to model any real applications. It should also be noted
that some hybrid inverse problems actually have been shown to work in real-life
applications. Examples are the aforementioned combined PET/CT scan and
so-called Photoacoustic Tomography [97].
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1.2.3 Hybrid inverse problems in impedance tomography

In this thesis we will analyse a hybrid inverse problem from impedance tomo-
graphy, augmented with interior data of the type σ|∇uj |p, p > 0. This is a
more general problem which covers CDII and UMEIT as two special cases.
By considering the inverse problem for a general parameter p > 0, we take a
uni�ed approach that accounts for many modalities in a single formulation. We
will therefore not limit the analysis to the values of p which correspond to a
mathematical model of certain physical quantities. However, from a practical
perspective, the cases p = 1 and p = 2 seem to be the most interesting. Note
that for p ≤ 0 the corresponding problem is closely related to the so-called
p-Laplacian which has already been thoroughly analysed in the literature [64].

To sum up, this thesis is concerned with the mathematical analysis of the
following hybrid inverse problem:

Let Ω be an open, bounded subset of Rn, n = 2, 3 with a su�ciently smooth
boundary ∂Ω and let σ be a scalar function uniformly bounded above and
below by positive constants in Ω. Consider the set of generalised Laplace
problems {

∇ · σ∇uj = 0 in Ω,

uj = fj on ∂Ω,
1 ≤ j ≤ J, (1.3)

and the scalar interior data of the type

Hj = σ|∇uj |p in Ω, p > 0. (1.4)

For a chosen set of boundary conditions {fj}Jj=1 and knowledge of the
corresponding interior data {Hj}Jj=1 we want to reconstruct σ.

1.3 Reading guide

This thesis contributes to the area of theoretical and applied mathematics for
hybrid inverse problems. Speci�cally, it introduces novel results and approaches
for the analysis of hybrid inverse problems in impedance tomography.

The primary contributions are:
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• A precise theoretical explanation of how non-ellipticity a�ects the proper-
ties of solutions to the linearised hybrid inverse problem.

• The development, analysis, implementation, and comparison of iterative
reconstruction methods for hybrid inverse problems with full and partial
data.

The thesis is organised around topics that build upon each other and the aim has
been to present the work in a clear structure that provides a logical progression
of ideas from chapter to chapter.

In the previous part of this chapter, we gave an introduction to inverse problems,
and the �eld of hybrid inverse problems. Based on a simple model for impedance
tomography, we formulated two hybrid inverse problems related to physical
models. We generalised these problems to a purely mathematical inverse prob-
lem, which is the problem analysed in this thesis.

In Chap. 2 we will introduce the mathematical concepts that facilitates the anal-
ysis of linear di�erential problems that is being conducted in this thesis. This
includes the linearisation of maps in Banach spaces, an introduction to pseudo-
di�erential calculus, theory related to the stability of boundary value problems,
and microlocal analysis, here related to the propagation of singularities.

A precise mathematical formulation of the inverse problem, given by a system
of non-linear PDEs and an approximation given by a linear system of PDEs is
presented in Chap. 3.

The theoretical analysis is conducted in Chap. 4. Here we show how the stability
properties of the hybrid inverse problem is related to the value of the parameter
p and the chosen boundary conditions. Novel results on the propagation of
singularities for the non-elliptic linearised hybrid inverse problem are presented
in Sec. 4.4. In the end of the chapter, we shortly explain how certain qualitative
properties of solutions to the forward problem (1.3) can be obtained in two
dimensions, discuss the implications of such properties, and model the situations
of partial and limited-view data.

In Chap. 5 we develop and analyse four iterative reconstruction methods for the
inverse problem. For each method, we analyse and compare their performance
and relate this to the stability results obtained in Chap. 4. We also show how the
loss of ellipticity manifest itself as propagating singularities, exactly as predicted
by the presented theory. Finally, we test the robustness of the developed
reconstruction methods using noisy data, and show how the reconstruction is
a�ected by partial data and limited-view data.
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Concluding remarks are found in Chap 6, were we also discuss the results in
relation to other inverse problems.

A short note on the used notation and symbols can be found in Appendix A.



Chapter 2

Strategies for studying
hybrid inverse problems

In this chapter, we introduce the mathematical concepts that facilitates the
analysis of linear di�erential problems that is being conducted in this thesis. The
presentation is not entirely self-contained; the intention is merely to introduce
the reader to the �elds and approaches needed for a systematic treatment of the
relevant mathematical problems, and to focus the attention on typical structures
and properties of systems of linear di�erential equations. We state important
de�nitions and explain the motivation in a suitable context, but do not include
proofs. Instead we leave room for examples, which should help the reader to
understand the more abstract concepts.

The motivation is the analysis of linear formulations of certain types of hybrid
inverse problems, but the presented methods are formulated without restrictions
to a speci�c approach and can therefore be applied to most mathematical
problems based on di�erential operator equations and related boundary value
problems.
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2.1 Linearisation of non-linear maps in Banach

spaces

Inverse problems can often be formulated in terms of a non-linear map between
Banach spaces. Non-linear maps are by de�nition a class of map, that does not
share the simple structure of linear maps, and as a result their corresponding
analysis often relies on completely di�erent mathematical techniques. For linear
maps we can rely on a well-developed theory, and utilise their characteristic
properties such as additivity and homogeneity, and the fact that linearity is
conserved in compositions. Also if a linear operator has an inverse, we know
that this is also linear [53]. Similar properties does not exist for non-linear maps,
and therefore non-linear maps are considered more di�cult to analyse.

In the study of non-linear inverse problems expressed by non-linear maps, an
analysis of the corresponding linearisation provides a simple framework for
studying the properties of the problem in the vicinity of some reference so-
lution. Linear problems are, by nature, simpler to understand and numerical
methods for linear problems are typically faster, the implementation is often
straightforward, and the robustness and e�ciency of linear solvers are second
to none.

A standard approach is therefore to consider a non-linear problem from the �eld
of di�erential calculus in in�nite-dimensional space; that is to consider a linear
map that in some suitable sense approximates the non-linear map. By analogy,
for a real or complex smooth function, it is well-known that the �rst-order Taylor
expansion is a linear function representing the change in the function value
under in�nitesimal changes in the argument. We can generalise the notion of
derivatives, such that this type of representation can be extended to non-linear
maps between function spaces. If these function spaces are Banach spaces, the
corresponding linearisation is a linear map denoted the Fréchet derivative.

De�nition 2.1 (Fréchet derivative). Let V and W be Banach spaces, and U ⊂
V be open. A map F : U → W is called Fréchet di�erentiable at u ∈ U if there
exists a bounded linear operator dF|u : V →W such that

lim
h→0

‖F(u+ h)−F(u)− dF|u(h)‖W
‖h‖V

= 0.

The linear map dF|u is called the Fréchet derivative of F at u, and its value
at h ∈ V is denoted by dF|u(h). We say that F is Fréchet di�erentiable in an
open domain, if it is di�erentiable at every point in this domain [63].

Remark 2.2. For more general function spaces a similar theory has been devel-
oped using a so-called functional derivative. In locally convex topological vector
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spaces, that are not Banach spaces, the functional derivative is often de�ned by
a so-called Gâteaux derivative. Note that such a derivative is not necessarily a
linear map [63].

In Chapter 3, this type of linearisation will be applied to a non-linear inverse
problem, to obtain a linear inverse problem on which most of the analysis in
this thesis is done.

2.2 Analysis of linear di�erential operators and

boundary value problems

We now give an introduction to the, somewhat abstract, �eld of pseudo-di�erential
calculus, the related operators and an algebra that facilitates convenient sym-
bolic manipulations. Motivated by the wish to analyse operator equations
and boundary value problems on open bounded subsets of Euclidean space,
we continue by de�ning the concept of ellipticity for scalar pseudo-di�erential
operator equations. We extend the theory to determined and overdetermined
boundary value problems under certain additional requirements on the pre-
scribed boundary conditions. For such boundary value problems, we explain
the concept of parametrices and the closely related a priori stability estimates.
After this, we give a short introduction to microlocal analysis, in order to state
the classical result on the propagation of singularities for real principal type
pseudo-di�erential operators, and the less known extension to scalar pseudo-
di�erential operators of constant multiplicity.

2.2.1 Pseudo-di�erential calculus

This section is a very brief introduction to the �eld of pseudo-di�erential cal-
culus, which is among the most powerful tools for analysing partial di�erential
operators. We include the de�nitions and theorems needed for the analysis of
hybrid inverse problems that we conduct in the next chapter. The presentation
is not self-contained and many non-trivial details are skipped. We recommend
the reader to consult some of the many text books on the subject for a more
general introduction to the subject [45, 87, 93, 95]. Note that most literature
treat the concept of pseudo-di�erential operators on euclidean space, and then
afterwards extend the theory to open bounded subsets by the use of certain
cut-o� functions. For brevity, we de�ne it exclusively for open bounded subsets,
since this is what we need for our analysis.
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Consider a linear partial di�erential operator of order m expressed in the form

P (x,D) =
∑
|α|≤m

cα(x)Dα, (2.1)

where cα ∈ C∞(Ω). For the analysis of such partial di�erential operators, the
Fourier integral representation can provide a remarkable simpli�cation, since in
the Fourier domain di�erentiation is replaced by polynomial multiplication in
the dual Fourier variable. For u ∈ C∞0 (Ω) let its Fourier transform û be de�ned
by

û(ξ) =

∫
Rn
u(x)e−ix·ξdx, (2.2)

and the corresponding inverse Fourier transform by

u(x) =

∫
Rn
û(ξ)eix·ξ�ξ,

where u has been extended by zero in Rn \ Ω and �ξ := (2π)−ndξ.

For operators of the form (2.1), the Fourier inversion formula provides the
relation

P (x,D)u(x) =

∫
Rn

p(x, ξ)û(ξ)eix·ξ�ξ,

where

p(x, ξ) =
∑
|α|≤m

cα(x)ξα

is called the symbol of P (x,D) and is a polynomial in ξ of order m. In this way
all partial di�erential operators with smooth coe�cients can be represented by
symbols which are polynomials in ξ and the associated operator calculus is by the
Fourier transform carried over to algebraic manipulations of the associated sym-
bol. It is clear that this construction can be generalised to functions in the dual
variable which are not polynomials. Such a function, or symbol, then becomes a
Fourier representation of an operator which is not a di�erential operator. Thus,
by considering functions p(x, ξ) in appropriate function spaces we get integral
expressions of operators that generalises the concept of di�erential operators and
have a related behaviour. These operators are what we call pseudo-di�erential
operators.

It will be bene�cial to consider symbol classes which provide a convenient algebra
that facilitates standard symbolic manipulations. We begin by introducing the
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symbol class Sm1,0 which is de�ned relative to a growth condition.

De�nition 2.3 (Symbol class Sm1,0(Ω×Rn)). The space Sm1,0(Ω×Rn) of symbols
of degree m and type 1, 0 is de�ned as the set of functions p ∈ C∞(Ω×Rn) with
the property that for any compact K ⊂ Ω and any multi-indices α, β ∈ Nn0 , there
exists a constant CK,α,β such that

|Dβ
xD

α
ξ p(x, ξ)| ≤ CK,α,β(1 + |ξ|2)

m−|α|
2 .

When p ∈ Sm1,0(Ω×Rn) and there exists a sequence of symbols pmj , j ∈ N0, with

pmj ∈ S
mj
1,0 (Ω × Rn), mj ↘ −∞, such that p −

∑
j<M pmj ∈ SmM1,0 (Ω × Rn)

for all M , we say that p has the asymptotic expansion
∑
j∈N0

pmj , in short,
p ∼

∑
j pmj in S

m0
1,0 (Ω× Rn) [38, Def. 7.1].

Remark 2.4. Related symbol classes, often denoted by Sm%,δ, where 0 ≤ %, δ ≤ 1,
turn out to be more appropriate in certain settings, but we will not introduce
these types of symbol classes in this presentation. The de�nition of these spaces
can be found in most text books on pseudo-di�erential calculus [45, 87].

Polynomials of order m with smooth coe�cients are elements of Sm1,0(Ω × Rn)
and therefore this symbol class is a generalisation of Fourier representations of
standard di�erential operators of order m with smooth coe�cients. Note that
the de�nition also directly implies the embeddings

Sm1,0(Ω× Rn) ⊂ Sm
′

1,0(Ω× Rn) when m′ > m.

For every symbol p(x, ξ) ∈ Sm1,0(Ω×Rn) we can express a corresponding operator
P by the integral formulation

Pu(x) =

∫
Rn

p(x, ξ)û(ξ)eix·ξ�ξ, u ∈ C∞0 (Ω). (2.3)

This integral is absolutely convergent, since û ∈ S (Rn) for any u ∈ C∞0 (Ω).
Di�erentiation can therefore be performed under the integration sign and it
follows that Pu ∈ C∞(Ω). Thus, the integral formulation (2.3) de�nes a
continuous linear map

P : C∞0 (Ω)→ C∞(Ω).

By a duality argument (see e.g. [38, p. 171]), we can uniquely extend P to a
continuous linear map

P : E ′(Ω)→ D ′(Ω).
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The operator P : E ′(Ω)→ D ′(Ω) of the form (2.3) with symbol in Sm1,0(Ω × Rn)
is called a pseudo-di�erential operator of order m, and is said to belong to the
class Ψm

1,0(Ω).

For P ∈ Ψm
1,0(Ω) we can also de�ne the adjoint operator P ∗ ∈ Ψm

1,0(Ω) by the
integral formulation

P ∗u(x) =

∫
Rn

p∗(x, ξ)û(ξ)eix·ξ�ξ, u ∈ C∞0 (Ω),

where

p∗(x, ξ) ∼
∑
α∈Nn0

1

α!
∂αxD

α
ξ p(x, ξ)∗ in Sm1,0(Ω) [38, Thm. 7.13].

Also P ∗ can be extended to a bounded linear map P ∗ : E ′(Ω)→ D ′(Ω).

A certain type of pseudo-di�erential operators admits a composition with other
pseudo-di�erential operators and these are called properly supported.

De�nition 2.5 (Properly supported pseudo-di�erential operator). A pseudo-
di�erential operator P is properly supported in Ω when both P and P ∗ have
the property: For each compact K ⊂ Ω there is a compact K ′ ⊂ Ω such that
distributions supported in K are mapped into distributions supported in K ′ [38,
Def. 7.6].

Note that this implies that if P is properly supported, P and P ∗ are maps
C∞0 (Ω)→ C∞0 (Ω) and P and P ∗ therefore both extend to maps D ′(Ω)→ D ′(Ω).
An example of a properly supported pseudo-di�erential operator, is a partial
di�erential operator [38, p. 173].

For a properly supported pseudo-di�erential operator, we can de�ne its compo-
sition with another pseudo-di�erential operator.

Theorem 2.6 (Composition). Let P ∈ Ψm
1,0(Ω) and P ′ ∈ Ψm′

1,0(Ω) and let
P or P ′ be properly supported. Then the composition PP ′ makes sense and

PP ′ ∈ Ψm+m′

1,0 (Ω) [38, Thm. 7.13].

Also, it is not di�cult to show that the composition of two properly supported
pseudo-di�erential operators is again a properly supported pseudo-di�erential
operator.

A subclass of symbols are the classical symbols which is later shown to facilitate
a convenient symbolic calculus.
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De�nition 2.7 (Classical symbols Sm(Ω × Rn)). The space Sm(Ω × Rn) of
classical symbol of degree m is de�ned as the set of symbols p(x, ξ) ∈ Sm1,0(Ω×Rn)
for which there exists a sequence of functions pm−l ∈ C∞(Ω × Rn) for l ∈ N0,
satisfying (i) and (ii):

(i) Each pm−l satis�es

pm−l(x, tξ) = tm−lpm(x, ξ), for |ξ| ≥ 1, t ≥ 1.

(ii) p has the asymptotic expansion

p(x, ξ) ∼
∑
l∈N0

pm−l(x, ξ) in S
m
1,0(Ω× Rn) [38, Def. 7.2].

Note that the de�nition implies that

Sm(Ω× Rn) ⊂ Sm
′
(Ω× Rn) when m′ −m ∈ N0.

Classical symbols are sometimes also called polyhomogeneous symbols in the
literature.

We denote by Ψm(Ω) the class of classical pseudo-di�erential operators of order
m, i.e. operators with classical symbols of order m. From the de�nition, clearly
the partial di�erential operators of order m expressed in the form (2.1) are
elements of Ψm′(Ω) for m′ −m ∈ N0. The leading term pm in the asymptotic
expansion of the symbol is called the principal symbol of a classical pseudo-
di�erential operator P and we will denote this by p(0). We will denote by
P an operator that relates a classical pseudo-di�erential operator P with its
principal symbol p(0), i.e. P(P ) = p(0). One motivation behind introducing
classical pseudo-di�erential operators is that the principal symbol of an operator
composed of such operators has a very simple form.

Theorem 2.8 (Principal symbol of composition). If P ∈ Ψm(Ω) and P ′ ∈
Ψm′(Ω), and the composition PP ′ ∈ Ψm+m′(Ω) makes sense, then P(PP ′) =
P(P )P(P ′) ∈ Sm+m′(Ω× Rn) [38, Thm. 7.13].

For the set of classical symbols of arbitrary high order, de�ned by

S∞(Ω× Rn) :=
⋃
m∈R

Sm(Ω× Rn),

and any properly supported pseudo-di�erential operator P , there exists a cor-
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responding unique symbol given by

p(x, ξ) = e−ix·ξP (eix·ξ) ∈ S∞(Ω× Rn) [38, Lem. 7.7].

However, the correspondence between general symbols in Sm1,0(Ω) and operators
in Ψm

1,0(Ω) is not necessarily unique. It is possible that di�erent symbols can
represent the same operator, and in these situations, the previous treatment of
the symbol classes is not entirely ful�lling. This ambiguity can be studied using
the set of symbols and operators of arbitrary low orders, de�ned by the relations

S−∞(Ω× Rn) :=
⋂
m∈R

Sm(Ω× Rn) =
⋂
m∈R

Sm1,0(Ω× Rn),

Ψ−∞(Ω) :=
⋂
m∈R

Ψm(Ω) =
⋂
m∈R

Ψm
1,0(Ω).

It can be shown that if, and only if, a pseudo-di�erential operator can be
extended to a linear mapping E ′(Ω) → C∞(Ω) then it is an element of
Ψ−∞(Ω × Rn) [38, p. 183]. Such operators are, for obvious reasons, called
smoothing operators. We will identify two pseudo-di�erential operators P and
Q with each other, written as P ∼ Q, if P −Q is a smoothing operator. In some
parts of the literature, smoothing operators are also called negligible operators
or regularising operators.

Many interesting properties follows by the de�nition of smoothing operators. For
example, any pseudo-di�erential operator can be decomposed as the sum of a
properly supported pseudo-di�erential operator and a smoothing operator [38,
Prop. 7.8]. Also, the composition of a properly supported pseudo-di�erential
operator and a smoothing operator gives a smoothing operator [38, Lem. 7.12].

2.2.2 Stability of determined and overdetermined

boundary value problems

Much of the developed theory in pseudo-di�erential calculus was motivated by
the wish to analyse and solve pseudo-di�erential operator equations of the type

Pu = f in Ω, (2.4)

perhaps under additional constraints on the solution u. In appropriate function
spaces, the Fourier transform provides the relation

p(x, ξ)û(ξ) = f̂(ξ), (x, ξ) ∈ Ω× Rn.
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This suggest that the function u can, at least formally, be expressed by the
integral

u(x) =

∫
Rn

p(x, ξ)−1f̂(ξ)eix·ξ�ξ.

However, this approach is likely to fail, simply because the expression on the
right is not well-de�ned.

The previous example illustrates that any zeros of p(x, ξ) in Ω×Rn is problematic
in the inversion of P . A pseudo-di�erential operator for which the principal
symbol has no non-trivial roots allows for an inversion of the highest order term,
and this distinct feature characterises the so-called elliptic pseudo-di�erential
operators.

De�nition 2.9 (Ellipticity). P ∈ Ψm(Ω) is called elliptic, if its principal symbol
p(0) satis�es

p(0)(x, ξ) 6= 0 for all (x, ξ) ∈ Ω× (Rn \ 0) [38, Def. 7.17].

The simplest example of an elliptic partial di�erential operator is the Laplace
operator. For P = ∆, we have p(0) = −|ξ|2 which clearly satis�es the re-
quirement for ellipticity in any dimension. Another example is the �rst-order
operator ∂x1

+ i∂x2
which is elliptic for Ω ⊂ R2.

The de�nition of ellipticity has a natural extension to matrices of classical
pseudo-di�erential operators of the same order.

De�nition 2.10 (Ellipticity for systems). An (k × k′)-system P of classical
pseudo-di�erential operators of order m is called elliptic, if the (k × k′)-matrix
of principal symbols p(0) satis�es

rank p(0)(x, ξ) = k′ for all (x, ξ) ∈ Ω× (Rn \ 0) [38, Def. 7.17].

When P is an (k×k′)-system and elliptic, it is called injectively elliptic if k > k′.

A great deal of the theoretical work on elliptic pseudo-di�erential operators is
based on quantifying the properties of an approximate inversion of the symbol.
For P ∈ Ψm(Ω) elliptic, it can be shown that there exits Q ∈ Ψ−m(Ω) properly
supported and elliptic, such that

QP ∼ PQ ∼ I.

Such an operator Q is called a parametrix to the elliptic operator P and a
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symbol of Q can be constructed explicitly from the symbol of P . One can show
that Q is de�ned uniquely upto a smoothing operator, and the ellipticity of P
is indeed a requirement for such a construction [38, Thm. 7.18].

The concept of ellipticity especially becomes relevant in the analysis of scalar
operators equation of the type (2.4). For instance, with P being an elliptic
pseudo-di�erential operator, all possible solutions are equal modulo smooth
functions and regularity results in certain Sobolev spaces follows as a natural
consequence of the parametrix construction [38, Cor. 7.20].

We now continue with the de�nition of ellipticity for determined and over-
determined systems of linear partial di�erential operators. This also covers
scalar operators as a special case and is a natural extension of the concept
of ellipticity for scalar pseudo-di�erential operators, and systems of pseudo-
di�erential operators of the same order. For boundary value problems, the
presented theory provides important information regarding the stability, and
in certain situations uniqueness, of solutions. The results are mainly based on
the work on overdetermined boundary value problems by Solonnikov [89], on
determined boundary value problems by Agmon, Douglis, and Nirenberg [3, 4],
a review paper on the subject by Agranovich [5], and the somewhat simpler
presentation following Bal's work on hybrid inverse problems [13].

Consider a boundary value problem in the general form{
Lu = f in Ω,

Bu = g on ∂Ω,
(2.5)

where L := L(x,D) is an (I × J)-matrix of partial di�erential operators in Ω
and B := B(x,D) is a (K×J)-matrix of partial di�erential operators on ∂Ω. We
assume that I ≥ J , denote by Lij ,Bkj , i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . ,K
the respective elements of L and B, and consider the problem represented by
the vector functions

u =

u1

...
uJ

 , f =

f1

...
fI

 , and g =

 g1

...
gK

 ,

where f and g are given.

We want to give qualitative information, such as regularity results, for possible
solutions u to the boundary value problem (2.5) under certain conditions on L
and B. The results are based on concepts from pseudo-di�erential calculus,
such as principal symbols, here limited to the special case of linear partial
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di�erential operators. We begin with the de�nition of the principal symbol
of matrix di�erential operators, which is de�ned relative to two sets of integers.

De�nition 2.11 (Principal symbol of matrix di�erential operators). Let L be
the (I × J)-matrix of partial di�erential operators in (2.5). To each row we
assign integers, {si}Ii=1, normalised such that max si = 0, and to each column
integers, {tj}J1 , such that the order of Lij is not greater than si + tj; and if

si + tj < 0 then Lij = 0. Consider the matrix L(0) with elements L(0)
ij that are

the terms of order exactly si + tj of Lij. L(0) is called the principal part of the
matrix L, and we denote by l(0) the principal symbol of the L, i.e. the symbol
of L(0) [89].

It is often possible to choose the integers {si}Ii=1 and {tj}Jj=1 in multiple ways
and this will naturally result in di�erent expressions of the principal symbol. As
we will see in a moment, the analysis is based on existence of a set of integers,
for which the principal symbol satis�es certain conditions.

The concept of ellipticity for matrix di�erential operators is de�ned relative to
the principal symbol.

De�nition 2.12 (Douglis�Nirenberg ellipticity of matrix di�erential operators).
Let L be the (I × J)-matrix of partial di�erential operators in (2.5). L is
called Douglis�Nirenberg (DN) elliptic in Ω̄ if there exist two sets of integers
{si}Ii=1, {tj}Jj=1, such that the principal symbol l(0) (see Def. 2.11) satis�es

rank l(0)(x, ξ) = J for all (x, ξ) ∈ Ω̄× (Rn \ 0) [89].

The existence of sets of integers {si}Ii=1 and {tj}Jj=1 such that l(0) has rank J ,
allows one to transform L into a matrix of partial di�erential operators all being
�rst-order by di�erentiating equations such that each column in L becomes of
the same order, and then introducing additional equations to express higher
order derivatives by coupled �rst-order derivatives.

For the boundary operator B, the principal symbol is de�ned relative to a set
of integers {κk}Kk=1, which depends on {tj}Jj=1.

De�nition 2.13 (Principal part of boundary operator). Consider the boundary
value problem (2.5), and a chosen set of integers {tj}Jj=1. Denote by bkj the
order of Bkj, and de�ne κk := maxj(bkj − tj). The principal part of Bkj is

denoted by B(0), and has entries B(0)
kj de�ned as the elements of Bkj of degree

exactly equal to κk + tj [89].

For boundary value problems, the boundary condition is, by nature, a constraint
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on the solution space and the concept of ellipticity therefore depends on the
properties shared by L and B. Therefore an additional condition need to be
satis�ed for (L,B).

De�nition 2.14 (Lopatinskii condition for (L,B)). Consider the boundary
value problem (2.5), three sets of integers {si}Ii=1,{tj}Jj=1,{κk}Kk=1 and the asso-

ciated principal parts L(0),B(0). For each x ∈ ∂Ω, denote by v the inward unit
normal to Ω at x ∈ ∂Ω, and let z be the parametrisation of the half line x+ zv
for z ≥ 0. Let ζ ∈ Sn−1 with ζ · v = 0, and consider the system of ordinary
di�erential equations given by

L(0)

(
x, iζ + v

d

dz

)
w(z) = 0 for z > 0,

B(0)

(
x, iζ + v

d

dz

)
w(z) = 0 for z = 0.

The Lopatinskii condition is satis�ed for (L,B), if for each x ∈ ∂Ω, ζ ∈ Sn−1,
the only solution to the above system, such that w(z) → 0 as z → +∞, is
w(z) = 0 [89].

If the Lopatinskii condition is satis�ed for (L,B), it is said that B covers L. If L
is DN elliptic, (2.5) is then said to be an elliptic boundary value problem. In the
literature, the Lopatinskii condition is also known as the Shapiro�Lopatinskii
condition, the coerciveness condition or the covering condition [45]. Note that if
a boundary value problem is elliptic, imposing additional boundary conditions
on the solution does not change this property.

At �rst sight, the Lopatinskii condition might seem a bit abstract, but it can be
formulated in the following non-algebraic way [4]: Consider a point x ∈ ∂Ω, and
make a coordinate transformation in a neighbourhood Γ of x into a portion of a
plane, represented by z = 0, with the transformed image of Γ ∩ Ω contained in
a half-plane represented by z ≥ 0. Then consider the boundary value problem
under this transformation, keeping only the principal parts of the di�erential
operator and the boundary operator, and �x the coe�cient of the operators at
their values at x. Now, consider the corresponding homogeneous problem and let
y represent the coordinates in the plane given by z = 0. For any real ζ ∈ Sn−1

in this hyperplane, consider separated solution of the form eiy·ζw(z), where
w(z) is a solution to ordinary di�erential equations with constant coe�cients.
The Lopatinskii condition then requires that the for all ζ, the only solution w,
bounded for z ≥ 0, is w(z) = 0.

As an example of how the Lopatinskii condition can be applied on a speci�c
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problem, consider the scalar boundary value problem{
∆u = f in Ω,

µ · ∇u = g on ∂Ω,

for some real µ ∈ Sn−1. The governing ODE problem related to the Lopatinskii
condition is then 

(
−1 +

d2

dz2

)
w(z) = 0 for z > 0,

µ ·
(
iζ + v

d

dz

)
w(z) = 0 for z = 0.

For z > 0, we �nd that the only solutions satisfying w(z) → 0 as z → +∞ are
of the type

w(z) = ce−z,

where c is a constant. The ODE for z = 0 implies that

(µ · (iζ − v))c = 0.

For n = 2, clearly c = 0 is the only way to satisfy this equation and the
Lopatinskii condition is therefore satis�ed for any vector µ ∈ Sn−1. For n ≥ 3,
the Lopatinskii condition is satis�ed if, and only if, µ · v 6= 0, i.e. if µ is not
tangent to the boundary.

In view of the general boundary value problem (2.5), we will now recast it in
the form of the equivalent operator equation

Au = h,

where A and h are de�ned by the relations

Au =

(
Lu
Bu

)
, h =

(
f
g

)
.

Following this construction, we de�ne A on the Sobolev spaces

D(q, l) := W l+t1,q(Ω)× · · · ×W l+tJ ,q(Ω),

where q > 1 and l ≥ 0 is an integer. It can be shown that if the coe�cients of
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A are su�ciently smooth, then A is a bounded operator from D(q, l) in

R(q, l) := W l−s1,q(Ω)× · · · ×W l−sI ,q(Ω)

×W l−κ1− 1
q ,q(∂Ω)× · · · ×W l−κK− 1

q ,q(∂Ω) [89].

For non-integer order Sobolev spaces, these spaces should be understood as
Bessel potential spaces [1].

Furthermore, we denote by L(m)
ij ,B(m)

ij the parts of Lij ,Bkj that are exactly of
order si + tj −m and κk + tj −m, respectively, such that

Lij =

si+tj∑
m=0

L(m)
ij and Bkj =

κk+tj∑
m=0

B(m)
kj .

We are now ready to state the fundamental stability theorem for elliptic bound-
ary value problem.

Theorem 2.15 (Fundamental stability theorem for elliptic boundary value
problems). Let q > 1 and l ≥ 0 be an integer such that q(l + 1) > n and
q(l − κk + 1) > n for 1 ≤ k ≤ K. Consider the boundary value problem (2.5),
where the coe�cients of the operators L(m)

ij ,B(m)
kj belong to W l−si,q(Ω) and

W l−κk− 1
q ,q(∂Ω), respectively. Furthermore, let the coe�cients of the operators

L(0)
ij ,B

(0)
kj be continuous. Then the three following statements are equivalent:

1. L is DN elliptic in Ω̄ and the Lopatinskii condition is satis�ed for (L,B).

2. The operator A :=

(
L
B

)
has a left parametrix; i.e there exits a bounded

operator P : R(q, l)→ D(q, l) such that

PA = I − T,

where T is a smoothing operator in D(q, l).

3. The following a priori estimate holds:

J∑
j=1

‖uj‖W l+tj ,q(Ω) ≤ c1

(
I∑
i=1

‖fi‖W l−si,q(Ω) +

K∑
k=1

‖gk‖
W
l−κk−

1
q
,q

(∂Ω)

)
+ c2

∑
tj>0

‖uj‖Lq(Ω) [89, Thm. 1.1].

Remark 2.16. This theorem is a slight simpli�cation of the original theo-
rem [89, Thm. 1.1]. In the original paper the requirements on l are less strict.
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We choose to simplify the theorem to avoid the use of so-called Besov spaces.

Note that the possible non-uniqueness of solutions to the elliptic boundary value
problem is clear from the fact that uj is present on the right-hand side of the a
priori estimate. Also, the theorem implies that a uniqueness result for smooth
solutions can be extended to a uniqueness result for all functions.

The presented analysis of ellipticity, and the associated regularity properties,
is done modulo smoothing terms and this motivates a �ner characterisation
of the non-smoothness of solutions to operator equations and boundary value
problems, even in the non-elliptic case. First, note that the di�erential operator
D is local in the sense that it preserves support, i.e.

suppDu ⊆ suppu, u ∈ D ′(Ω).

The property that D is local is also clear from the fact that (Du)(x0) only
depends on u evaluated in a neighbourhood around x0 ∈ Ω. Not all pseudo-
di�erential operators share this local property, but pseudo-di�erential operators
are pseudo-local in the sense that they preserve the so-called singular sup-
port [38, Prop. 7.11]. This property has motivated the development of vari-
ous techniques to analyse how the application of pseudo-di�erential operators
actually change the non-smoothness of functions. These techniques make up
microlocal analysis, which is used to study operators in the pseudo-di�erential
framework. As we will see in the next subsection, this can for instance be used to
provide qualitative information about solutions to both elliptic and non-elliptic
boundary value problems.

2.2.3 Microlocal analysis and propagation of singularities

A compactly supported distribution u ∈ E ′(Ω) is smooth if, and only if, it
satis�es the bound

|û(ξ)| ≤ CN (1 + |ξ|)−N , (2.6)

for some constants CN < ∞ and all ξ ∈ Rn, N ∈ N0. This result is known
as Schwartz's Paley�Wiener theorem [45, Thm. 7.3.1], [82, Thm. 7.22]. It
shows the equivalence of smoothness of a compactly supported distribution and
a Fourier transform that is rapidly decreasing in all directions. The set of points
at which a distribution fails to be smooth is characterised by its singular support.

De�nition 2.17 (Singular support). For a distribution u ∈ D ′(Ω) the singular
support of u, denoted sing suppu, is the set of points in Ω having no open
neighbourhood to which the restriction of u is a smooth function [45, Def. 2.2.3].
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Distributions being non-smooth will violate the bound (2.6) at every point in the
singular support. However, the singular support only gives information about
the spatial localisation of singularities of a given distribution and does not pro-
vide information about in which directions it fails to be smooth. The directions
turn out to be very important in the analysis of pseudo-di�erential operators
applied to non-smooth distributions. This motivates the construction of a set
which besides the spatial localisation of singularities includes the directions in
which smoothness is lost. This set is called the wave front set.

To determine the microlocal smoothness of a distribution u ∈ D ′(Ω) at a point
x0 ∈ Ω we �rst localise in space. For this we multiply the distribution with
smooth cut-o� functions φ ∈ C∞0 (Ω) supported in a neighbourhood around x0.
This creates a distribution having compact support around x0 and the same local
smoothness properties as u, and can thus be analysed using the bound (2.6).
This makes it possible to de�ne microlocal smoothness at a point x0 ∈ Ω, in
direction ξ0 ∈ Rn \ 0.

De�nition 2.18 (Microlocal smoothness). A distribution u ∈ D ′(Ω) is microlo-
cally smooth at (x0, ξ0) if there exists φ ∈ C∞0 (Ω) with φ(x0) 6= 0 and an open
cone Γ containing ξ0 such that v = φu satis�es (2.6) for all ξ ∈ Γ [91, Sec. 8.6].

To localise the directions in which smoothness is lost we introduce the cone Σ(u)
of all ξ0 ∈ Rn \ 0 having no conic neighbourhood Γ such that (2.6) is satis�ed
when ξ ∈ Γ. At every point x0 ∈ Ω we can de�ne the set

Σx0
(u) =

⋂
φ

Σ(φu); φ ∈ C∞0 (Ω), φ(x0) 6= 0.

Note that Σx0
(u) is empty if, and only if, x0 6∈ sing suppu and otherwise closed

in Rn \ 0. At x0 ∈ Ω the conic set Σx0
(u) de�nes the directions where u is

non-smooth, and this is the information which de�nes the wave front set.

De�nition 2.19 (Wave front set). If u ∈ D ′(Ω), then the closed subset of
Ω× (Rn \ 0) de�ned by

WF(u) = {(x, ξ) ∈ Ω× (Rn \ 0); ξ ∈ Σx(u)}

is called the wave front set of u [45, Def. 8.1.2].

Note that the wave front set consist of points and directions and is therefore a
subset of the cartesian product of the two sets Ω and Rn \ 0.

For u ∈ D ′(Ω) the projection of WF(u) in Ω is sing suppu, and for u ∈ E ′(Rn)
the projection of WF(u) in Rn\0 is Σ(u) [45, Def. 8.1.2; Prop. 8.1.3]. Thus, the
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wave front set is a �ner characteristic of the singularities of u than sing suppu
and Σ(u).

In the analysis of pseudo-di�erential operators applied to non-smooth distribu-
tions, the characteristic set plays an important role.

De�nition 2.20 (Characteristic set). Let P be a classical pseudo-di�erential
operator of order m on Ω. The characteristic set is de�ned by

Char(P ) = {(x, ξ) ∈ Ω× (Rn \ 0), p(0)(x, ξ) = 0},

where p(0)(x, ξ) is the principal symbol of P [87, Cor. A.1.2.].

Note that if P is an elliptic operator then Char(P ) is the empty set. In the
following we will denote by (p(0))−1(0) the set of points in Ω×(Rn \0) for which
p(0) = 0.

The de�nitions of the wave front set for distributions and the characteristic set
for pseudo-di�erential operators are very useful in the analysis of both global
and local properties of solution to certain classes of PDEs. An important part
of microlocal analysis is concerned with the extent to which the wave front set
of a solution to a PDE is determined by the wave front set of the right-hand
side and the characteristic set of the governing partial di�erential operator.
For a classical pseudo-di�erential operator, the following theorem provides an
important relation, in which the �rst embedding shows the pseudo-local nature
of pseudo-di�erential operators.

Theorem 2.21 (Pseudo-local nature). Let P be a classical pseudo-di�erential
operator of order m on Ω and let u ∈ D ′(Ω). If either P is properly supported
or u ∈ E ′(Ω), then

WF(Pu) ⊂WF(u) ⊂WF(Pu) ∪ Char(P ) [87, Cor. A.1.4.].

Note that if P is an elliptic di�erential operator then Char(P ) is the empty set
and it follows directly that WF(u) = WF(Pu).

It is possible to give a �ner description of the wave front set of u by considering
so-called bicharacteristics.

De�nition 2.22 (Bicharacteristics). For a smooth real valued function a(x, ξ)
de�ned on an open subset of Ω × (Rn \ 0), an integral curve (x(t), ξ(t)) of the
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system of equations 
d

dt
x(t) =

∂

∂ξ
a(x, ξ),

d

dt
ξ(t) = − ∂

∂x
a(x, ξ),

is called a bicharacteristic of a(x, ξ) [87, Def. 17.1.].

A bicharacteristic of a function a(x, ξ) is called a null bicharacteristic if

a(x(t), ξ(t)) = 0,

and the projections of bicharacteristics into x-space are called the bicharacter-
istic curves or rays.

For a classical pseudo-di�erential operator P , the null bicharacteristic curves of
the principal symbol are only proper curves (i.e. not just a point) if the operator
is of principal type.

De�nition 2.23 (Principal type operators). A classical pseudo-di�erential op-
erator P (or its principal symbol p(0)) is said to be of principal type if, and only
if, ∂

∂ξp
(0) 6= 0 at each point (x, ξ) ∈ (p(0))−1(0) [45, Def. 26.1.8].

We can now state one of the most remarkable results in microlocal analysis,
originally formulated by Duistermaat and Hörmander [31], which is the theorem
on propagation of singularities.

Theorem 2.24 (Propagation of singularities for operators of real principal
type). Let P be a classical pseudo-di�erential operator having a real principal
symbol p(0) and let u ∈ D ′(Ω). Let either P be properly supported or u ∈ E ′(Ω),
such that Pu makes sense. Then if Γ is any connected interval of a null
bicharacteristic of the function p(0)(x, ξ) not intersecting WF(Pu) then either
Γ ⊂WF(u) or Γ ∩WF(u) = ∅ [87, Thm. A.1.1.].

This theorem tells us that if some point along a null bicharacteristic is part of
WF(u), then the whole bicharacteristic is part of WF(u) as long as it does not
intersect WF(Pu).

The stated theorem of propagation of singularities does only cover the case
where P has a principal symbol of real principal type. A similar result can also
be stated for classical pseudo-di�erential operators of constant multiplicity that
satis�es a so-called Levi condition; that is a condition on the lower order terms.



2.2 Analysis of linear di�erential operators and boundary value problems 33

We �rst give the de�nition of operators of constant multiplicity.

De�nition 2.25 (Constant multiplicity). P ∈ Ψm(Ω) is said to have constant
multiplicity if its principal symbol p(0) can be factorised in the form

p(0) =

s∏
j=1

q
rj
j ,

where qj are smooth symbols of real principal type and the curves de�ned by
q−1
j (0) are mutually disjoint in Ω× (Rn \ 0) [23, Def. 2.5.].

The relevant Levi condition for this analysis takes the following form.

De�nition 2.26 (Levi condition). Let P ∈ Ψm(Ω) have a real principal symbol
p(0) of constant multiplicity. We say that P satis�es the Levi condition at a
point (x0, ξ0) ∈ (p(0))−1(0) ⊂ Ω× (Rn \0) if for every solution ϕ to the equation

qj(x,∇ϕ(x)) = 0, (for those j where qj(x0, ξ0) = 0)

in a neighbourhood of x0 where ∇ϕ(x0) = ξ0 satis�es

e−itφP (αeitφ) = O(tm−rj ) t→∞,

for all α ∈ C∞0 (Ω) with support in a neighbourhood x0 where ∇ϕ 6= 0. An
operator that satis�es the Levi condition at a point (x0, ξ0) ∈ (p(0))−1(0) satis�es
the condition for all points in (p(0))−1(0) [24, Def. 1.2.].

For a speci�c operator it can be di�cult to check if it satis�es the stated
Levi condition. A certain type of operators with constant multiplicity can be
decomposed, which makes the analysis of the Levi condition much more simple.

De�nition 2.27 (Decomposition of operators). Let P ∈ Ψm(Ω) have constant
multiplicity. We say that P can be decomposed relative to the factor qj of p

(0) if

P =

rj∑
k=0

BkQ
k
j ,

for certain operators Bk ∈ Ψm−rj (Ω) and where Qj denotes an operator with
principal symbol qj(x, ξ) [23, Def. 2.9.].

The following lemma shows how the presented decomposition is related to the
Levi condition.
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Lemma 2.28. (Levi condition and decomposable operators) Let P ∈ Ψm(Ω)
have constant multiplicity. Then P satis�es the Levi condition for the factor qj
if, and only if, P can be decomposed relative to the factor qj [23, Thm. 2.10.].

We end this chapter with the theorem on the propagation of singularities for
operators of constant multiplicity.

Theorem 2.29 (Propagation of singularities for operators of constant multi-
plicity). Let P ∈ Ψm(Ω) be an operator with a real principal symbol p(0) of
constant multiplicity satisfying the Levi condition and let u ∈ D ′(Ω). Let either
P be properly supported or u ∈ E ′(Ω), such that Pu makes sense. Then if
Γ ∈ Ω × (Rn \ 0) is any connected interval of a null bicharacteristic of one
of the factors qj(x, ξ) not intersecting WF(Pu), then either Γ ⊂ WF(u) or
Γ ∩WF(u) = ∅ [24, Thm. 1.1.].



Chapter 3

Mathematical formulations
of the hybrid inverse problem

In this chapter we present two formulations of the hybrid inverse problem that
was presented in Sec. 1.2.3. By a simple substitution at the PDE level, it is
possible to formulate the problem as a system of non-linear PDE problems.
Another approach is to make a linearisation of a non-linear map and thereby
formulate the inverse problem as a system of linear PDE problems. Both
problems will be analysed theoretically and numerically in Chap. 4 and 5.

3.1 Non-linear formulation

A way to formulate the problem described by (1.3)-(1.4) is to recast the set of
generalised Laplace problems (1.3) as non-linear PDE problems. For this, we
eliminate the unknown function σ from the PDEs using the interior measure-
ments, σ =

Hj
|∇uj |p . This gives the set of non-linear PDE problems∇ ·

Hj

|∇uj |p
∇uj = 0 in Ω,

uj = fj on ∂Ω,

1 ≤ j ≤ J, (3.1)
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for known functions {Hj}Jj=1. In this setting the procedure for solving the
inverse problem would be to �rst solve the problems for {uj}Jj=1 and then use
the knowledge of {Hj}Jj=1 to determine σ. Note that the problems (3.1) are
actually quasi-linear, but in this text we will not distinguish between quasi-
linear and non-linear problems.

In Sec. 4.1 we classify the problems expressed by (3.1) and discuss the implica-
tions. Later, in Sec. 5.2.1, we explain how to construct an iterative reconstruc-
tion method based on this non-linear formulation, and in Sec. 5.3.1 we present
related numerical results.

3.2 Linear formulation

Consider the non-linear interior data map de�ned by

Hj : σ 7→ σ|∇uj |p, p > 0. (3.2)

In this section we use the theory of linearisations of non-linear maps in Banach
spaces (see Sec. 2.1) to derive a linear approximation of this operator. This
will ultimately lead to a linear inverse problem, expressed by a linear system of
PDE problems, which is the starting point for the classi�cation of the linearised
inverse problem and the analysis of the propagation of singularities which are
presented in the next chapter.

Let C∞+ (Ω̄) be the smooth functions in Ω̄ uniformly bounded below by a strictly
positive constant. We denote the function σ̃ ∈ C∞+ (Ω̄) the reference conductiv-
ity, and denote the corresponding reference potential by ũj ∈ H1(Ω), which is
the solution to (1.3), when σ is replaced by σ̃. Furthermore we de�ne by

H̃j := σ̃|∇ũj |p, p > 0,

the reference interior data.

The interior map operator (3.2) can relate the di�erence σ − σ̃ to the corre-
sponding di�erence in interior data Hj − H̃j by the simple relation

Hj(σ)−Hj(σ̃) = Hj − H̃j . (3.3)

The Fréchet derivative of Hj at σ̃ evaluated at σ− σ̃ is a function that approx-
imates Hj(σ)−Hj(σ̃) to �rst-order in σ − σ̃. In this way, (3.3) is transformed
into a linear relation.
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We begin the derivation by establishing the functional setting. The following
lemma implies that Hj can be considered as a mapping

Hj : L∞+ (Ω)→ L2(Ω),

under certain regularity assumptions on Ω and the imposed boundary condi-
tions. Here L∞+ (Ω) denotes the space of functions in L∞(Ω) that are uniformly
bounded below by a strictly positive constant in Ω.

Lemma 3.1. Let σ ∈ L∞+ (Ω), fj ∈ C∞(∂Ω) and assume that ∂Ω is smooth.
For the solution uj to the problem (1.3), the interior data expressed by σ|∇uj |p
is an L2(Ω)-function for any 0 < p <∞.

Proof. Standard elliptic regularity theory implies that uj ∈ H1(Ω) and therefore
|∇uj | ∈ L2(Ω). By the embedding of Lebesgue spaces, this is su�cient to
conclude that σ|∇uj |p ∈ L2(Ω) for any 0 < p ≤ 1, since σ ∈ L∞+ (Ω).

For the case p > 1, de�ne by F ∈ C∞(Ω̄) a function that satis�es F |∂Ω = f . An
example of such a function would be the (harmonic) solution to the problem (1.3)
for some constant σ. By introducing the function v = uj − F ∈ H1

0 (Ω) the
problem (1.3) can be recast as the homogeneous problem{

∇ · σ∇v = −∇ · σ∇F
v = 0

in Ω,

on ∂Ω.

By the uniform ellipticity of the problem, and the fact that σ|∇F | ∈ L2p(Ω),
the results of Meyers [67, Chap. 3] imply that there exists a unique solution
v ∈ H1

0 (Ω) for which |∇v| ∈ L2p(Ω). This is clearly su�cient to conclude that
σ|∇uj |p ∈ L2(Ω) for 1 < p <∞.

The linearisation of Hj is simpli�ed if we consider it is a two-step mapping

Hj : σ 7→ {σ, uj} 7→ σ|∇uj |p.

First we will analyse how the �rst step can be linearised. For this we linearise
the solution operator

Uj : σ 7→ uj(σ),

for the problem (1.3), near the reference conductivity σ̃ ∈ C∞+ (Ω̄).

Lemma 3.2. The solution operator Uj : σ 7→ uj(σ) for the problem (1.3) is
Fréchet di�erentiable as an operator from L∞(Ω)→ H1

0 (Ω) at σ̃ ∈ C∞+ (Ω̄). The
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Fréchet derivative in the direction δσ ∈ L∞(Ω) is given by

dUj |σ̃(δσ) = δuj , (3.4)

where δu ∈ H1
0 (Ω) is the unique weak solution to the homogeneous problem{

∇ · σ̃∇δuj = −∇ · δσ∇ũj
δuj = 0

in Ω,

on ∂Ω,
(3.5)

where ũj ∈ H1(Ω) denotes the solution to (1.3), when σ is replaced by σ̃.

Proof. It is su�cient to show that dUj |σ̃ given by (3.4) is a bounded linear
operator from L∞(Ω)→ H1

0 (Ω) satisfying

lim
δσ→0

‖Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ)‖H1(Ω)

‖δσ‖L∞(Ω)
= 0. (3.6)

The linearity of dUj |σ̃ is obvious, since by de�nition (see (3.5)) δuj is linear
in δσ. To prove boundedness, note that δσ|∇ũj | ∈ L2(Ω). By the results of
Meyers [67, Chap. 3] this is su�cient to conclude that δu ∈ H1

0 (Ω).

We are left to show that (3.6) is satis�ed. Now, consider the weak form of the
homogeneous problem (3.5) given by∫

Ω

σ̃∇δuj · ∇φdx = −
∫

Ω

δσ∇ũj · ∇φdx, ∀φ ∈ H1
0 (Ω).

By choosing δuj as the test function and since σ̃ ∈ C∞+ (Ω̄) and δσ ∈ L∞(Ω), we
get the relation

‖∇δuj‖2L2(Ω) ≤ c‖δσ‖L∞(Ω)‖∇ũj · ∇δuj‖L1(Ω),

for some positive constant c. We abuse notation a bit and use the letter c
throughout the proof to symbolise some su�ciently large positive constant.
Because ũj ∈ H1(Ω) we get using Hölder's inequality

‖∇δuj‖L2(Ω) ≤ c‖δσ‖L∞(Ω). (3.7)

By the de�nition of Uj , we get the relation

∇ · (σ̃ + δσ)∇(Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ)) = −∇ · δσ∇δuj ,
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which in weak form can be expressed as∫
Ω

(σ̃ + δσ)∇(Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ)) · ∇φdx =

−
∫

Ω

δσ∇δuj · ∇φdx, ∀φ ∈ H1
0 (Ω).

Since Uj(σ̃+ δσ)−Uj(σ̃)− dUj |σ̃(δσ) ∈ H1
0 (Ω) we can use it as a test function.

Together with the theorem of absolutely integrable functions [25, Lem. 1.7.2]
we get the relation

‖∇(Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ))‖2L2(Ω) ≤ (3.8)

‖δσ‖L∞(Ω)

‖σ̃ + δσ‖L∞(Ω)
‖∇δuj · ∇(Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ))‖L1(Ω) .

Now, for ‖δσ‖L∞(Ω) su�ciently small (i.e. ‖δσ‖L∞(Ω) < 1
2‖σ̃‖L∞(Ω)), the

inequality

‖σ̃ + δσ‖L∞(Ω) >
1

2
‖σ̃‖L∞(Ω),

is satis�ed following the reverse triangle inequality, thus

‖δσ‖L∞(Ω)

‖σ̃ + δσ‖L∞(Ω)
≤ c‖δσ‖L∞(Ω).

When applying Hölder's inequality to the right-hand side of (3.8) we end up
with the expression

‖∇(Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ))‖L2(Ω) ≤ c‖δσ‖L∞(Ω)‖∇δuj‖L2(Ω).

Now, Poincaré's inequality [34, Thm. 5.6.1.3] can be applied because

Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ)

has zero trace, and together with (3.7) this gives the desired relation

‖Uj(σ̃ + δσ)− Uj(σ̃)− dUj |σ̃(δσ)‖H1(Ω) ≤ c‖δσ‖2L∞(Ω),

which proves that (3.6) is satis�ed.

Under the stated regularity assumptions, and if |∇ũj | is bounded below by
a positive constant in Ω, we can now show that the operator Hj is Fréchet
di�erentiable at σ̃ as a mapping L∞(Ω)→ L2(Ω). The assumption on |∇ũj | to
be bounded below by a positive constant is a general assumption when analysing
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the presented problem. How to ensure that this assumption is satis�ed, will be
discussed shortly in Sec. 4.5.

Theorem 3.3. Let σ̃ ∈ C∞+ (Ω̄) and denote by ũj ∈ H1(Ω) the solution to (1.3),
when σ is replaced by σ̃. Also let |∇ũ| be bounded below by a positive constant
in Ω. The map

Hj : σ 7→ σ|∇uj |p, p > 0,

is then Fréchet di�erentiable as a map L∞(Ω) → L2(Ω) at σ̃ and the Fréchet
derivative in the direction δσ ∈ L∞(Ω) is given by

dHj |σ̃(δσ) = δσ|∇ũ|p + pσ̃
∇ũj · ∇δuj
|∇ũj |2−p

, (3.9)

where δuj ∈ H1
0 (Ω) is de�ned as in Lem. 3.2.

Proof. It is su�cient to show that dHj |σ̃ given by (3.9) is a bounded linear
operator from L∞(Ω)→ L2(Ω) satisfying

lim
δσ→0

‖Hj(σ̃ + δσ)−Hj(σ̃)− dHj |σ̃(δσ)‖L2(Ω)

‖δσ‖L∞(Ω)
= 0.

The linearity of dHj |σ̃ is obvious, since by de�nition (see Lem. 3.2) δuj is
linear in δσ. Standard elliptic regularity theory implies that ũ ∈ C∞(Ω), which
together with the triangle inequality and the inequality from (3.7) gives

‖ dHj |σ̃(δσ)‖L2(Ω) =

∥∥∥∥δσ|∇ũ|p + pσ̃
∇ũ · ∇δu
|∇ũ|2−p

∥∥∥∥
L2(Ω)

≤ c‖δσ‖L∞(Ω).

This proves the boundedness. For su�ciently small δσ we �nd by Taylor
expansion of | · |p away from zero that

Hj(σ̃ + δσ)−Hj(σ̃) = δσ|∇ũj |p + pσ̃
∇ũj · ∇δuj
|∇ũj |2−p

+O(|δσ|2).

This implies that

‖Hj(σ̃ + δσ)−Hj(σ̃)− dHj |σ̃(δσ)‖L2(Ω) ≤ c‖δσ‖2L∞(Ω),

which proves that (3.9) is satis�ed.

From the previous lemma, we see that the Fréchet derivative of Hj at σ̃ in
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direction δσ ∈ L∞(Ω) is given by

dHj |σ̃(δσ) = δσ|∇ũj |p + pσ̃
∇ũj · ∇δuj
|∇ũj |2−p

in Ω,

where δuj ∈ H1
0 (Ω) solves{

∇ · σ̃∇δuj = −∇ · δσ∇ũj
δuj = 0

in Ω,

on ∂Ω.
(3.10)

It follows that a solution δσ ∈ L∞(Ω) to

dHj |σ̃(δσ) = Hj − H̃j in Ω, (3.11)

is a �rst-order approximation of σ − σ̃. Note that this equation is only in the
appropriate functional setting under the regularity assumption Hj ∈ L2(Ω),
which in turn imposes additional regularity conditions on σ.

The equations (3.10) and (3.11) form a collection of linear PDE problems for
{δσ, {δuj}Jj=1} which can be expressed in the matrix form of a boundary value
problem {

Lu = f

Bu = 0

in Ω,

on ∂Ω,
(3.12)

where L is the sparse 2J × (J + 1) matrix of partial di�erential operators

L(x,∇) =



∇ · ([·]∇ũ1) ∇ · (σ̃∇[·]) · · · 0
...

...
. . .

...
∇ · ([·]∇ũJ) 0 · · · ∇ · (σ̃∇[·])
|∇ũ1|p pσ̃ ∇ũ1·∇[·]

|∇ũ1|2−p · · · 0
...

...
. . .

...
|∇ũJ |p 0 · · · pσ̃ ∇ũJ ·∇[·]

|∇ũJ |2−p


,

B is the boundary operator

B =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,



42 Mathematical formulations of the hybrid inverse problem

and the solution vector u and right-hand side f are given by

u =


δσ
δu1

...
δuJ

 and f =



0
...
0

H1 − H̃1

...
HJ − H̃J


.

The boundary value problem (3.12) is the PDE formulation of the linearised
inverse problem, which will be analysed in the next chapter.



Chapter 4

Stability of hybrid inverse
problems in impedance

tomography

The analysis of linear and non-linear PDEs are often considered as separate
mathematical �elds and this is simply a consequence of the di�erent methods
needed for their respective theoretical and numerical analysis. Along with the
distinction between the linear and non-linear formulation, many PDEs can be
classi�ed.

The point of classi�cation is to �nd categories of PDEs for which the overall
qualitative properties of their respective solutions are similar. Such properties
is often closely tied to concepts like existence, uniqueness and regularity. L.C.
Evans, in his preface to his AMS text on PDEs [94], mentions that he �nds
it unsatisfactory to classify PDEs, since it creates the false impression that
a general classi�cation scheme exists. In fact, several equations cannot be
classi�ed, for instance equations that abruptly change behaviour in time or
space (e.g. the Euler�Tricomi equation) and many PDEs of interest do not
fall into the standard categories. However, if we indeed can classify a partial
di�erential operator or a related boundary value problem, it is possible to state
very powerful results on the properties of any solutions.



44 Stability of hybrid inverse problems in impedance tomography

Certain PDEs can be classi�ed as elliptic, parabolic or hyperbolic, by analogy
with the three conic sections. We already gave a mathematical description
of elliptic operators in Chap. 2, and results from pseudo-di�erential calculus
showed that elliptic PDEs give raise to smooth solutions; at least as smooth as
coe�cients of the equation. Hyperbolic operators are very di�erent, since they
are direction dependent, and they allow discontinuous solutions with distinct
behaviour along certain directions. Parabolic PDEs are the borderline case
between elliptic and hyperbolic PDEs. Elliptic and parabolic PDEs correspond
to global phenomena, such that any local change in a coe�cient can potentially
change the solution globally. In the hyperbolic setting, a local change will only
change the solution locally, but not necessary limited to the same position in
space.

Classi�cation of PDEs has close bonds to the modelling of physical systems. An
elliptic PDE often models a physical system that has reached an equilibrium
state. Parabolic PDEs usually model processes of a di�usive nature, such as the
distribution of heat in a given region over time. Hyperbolic PDEs model wave-
like behaviour from, say, oscillating mechanical systems. Therefore, two PDEs
that are classi�ed di�erently are, in some sense, related to two mathematical
models of systems that describe very di�erent physical phenomena. Note, that
we only study time-independent problems in this thesis, but the close coupling
to time-dependent physical problems is still true, if one spatial dimension in
the mathematical setting corresponds to the direction of time in the physical
setting.

Note that one can experience problems that can be classi�ed di�erently in
space or time, or based on certain directions in the Fourier domain. The
latter situation should mathematically be seen from the perspective of pseudo-
di�erential calculus. Also, for an operator to be classi�ed as elliptic in all but
one direction, or to be classi�ed as parabolic, is based on an equivalent property
of the highest order term. However, the latter type of classi�cation seems to be
used exclusively for operators in time-dependent problems that are second-order
and elliptic in space and �rst-order in time.

In this chapter we classify and analyse the stability properties of the speci�c
type of non-linear and linear hybrid inverse problems that was formulated in
Chap. 3. To be more speci�c, we analyse how the classi�cation and the related
stability properties are related to the value of p and the choice of boundary
conditions. This type of analysis is closely related to the works of Kuchment
and Steinhauer [57], and Bal [13], and to some extent recent work by Moltalto
and Stefanov [71].
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4.1 Classi�cation of the non-linear problem

A simple derivation shows that the non-linear PDE problems (3.1) can be recast
in the equivalent form of a system of non-linear problems
(
I − p∇uj ⊗∇uj

|∇uj |2

)
: ∇⊗∇uj +∇ lnHj · ∇uj = 0 in Ω,

uj = fj on ∂Ω,

1 ≤ j ≤ J,

where I is the identity in Rn, ξ1 ⊗ ξ2 denotes the outer product of the vectors
ξ1 and ξ2, and M1 : M2 denotes the Frobenius inner product of the matrices
M1 and M2.

The classi�cation is determined by the eigenvalues of the matrix in front of the
second-order term. As we now show, these eigenvalues have a very simple form.

Theorem 4.1. For |∇uj | 6= 0, the matrix

I − p∇uj ⊗∇uj
|∇uj |2

,

has eigenvalues (1− p, 1, · · · , 1).

Proof. First note that(
I − p∇uj ⊗∇uj

|∇uj |2

)
∇uj = (1− p)∇uj .

Therefore 1− p is an eigenvalue for the eigenvector ∇uj . Now, pick n− 1 non-
zero vectors {vi}n−1

i=1 all mutually orthogonal and orthogonal to ∇uj . For such
vectors (

I − p∇uj ⊗∇uj
|∇uj |2

)
vi = vi, 1 ≤ i ≤ n− 1.

Thus, 1 is an eigenvalue for all the n− 1 eigenvectors {vi}n−1
i=1 .

This implies that the matrix in front of the second-order term is either (positive)
de�nite, has a one-dimensional kernel or has signature (1, n−1). From the usual
classi�cation scheme for quasi-linear PDEs [94], it follows that each problem
in (3.1) is elliptic for p < 1, degenerate elliptic for p = 1 and hyperbolic for
p > 1. A similar result was found by Bal [13].
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For p < 1, the ellipticity implies that perturbations stay local and the stability is
optimal. In the degenerate elliptic case, ∇uj is the direction of degeneracy and
we cannot expect optimal stability, due to the presence of so-called characteristic
directions aligned with ∇uj . In the hyperbolic case, ∇uj is the time-like
direction and even if each problem in (3.1) is equipped with additional Neumann
boundary data, uniqueness can only be guaranteed in parts of Ω [14]. The
hyperbolic nature of the problem gives rise to solutions with wave-like behaviour,
possibly allowing singularities to propagate along speci�c curves. Actually, in
the non-elliptic case, the so-called light cone, related to the structure of the
corresponding (Lorentzian) metric de�ned by the non-de�nite matrix coe�cient,

consists of the vectors v for which vT
(
I − p∇uj⊗∇uj|∇uj |2

)
v = 0. These can be

considered as the directions in which the problem is non-elliptic and play an
important role in the stability properties of the solution to the quasi-linear
PDE; see also the discussion on this topic by Bal [13]. This is of course closely
linked to the performance of the numerical algorithms working on the non-linear
formulation and we will see an example of this in Sec. 5.3.1.

We should also mention that for p ≤ 1 the non-linear PDEs in (3.1) are each a
Euler�Lagrange equation for the problem of minimizing the functional∫

Ω

Hj |∇uj |2−pdx, 1,≤ j ≤ J.

In this way, uj can be characterised as a minimiser of a variational problem in
an appropriate function space. For p < 1 the functional is strictly convex and
one can actually show that a unique minimiser exists [64].

4.2 Stability and classi�cation of the

linear problem

Based on the derivation of the linearised inverse problem in Sec. 3.2, we now
analyse the stability properties of the solution u to the boundary value problem{

Lu = f

Bu = 0

in Ω,

on ∂Ω.
(4.1)

We follow the scheme that was developed in Sec. 2.2. We �rst show exactly
when the operator L is elliptic in the DN sense for well-chosen DN numbers and
present a geometrical interpretation of the ellipticity condition. We then show
that B covers L, i.e. the Lopatinskii condition is satis�ed, if L is DN elliptic and
then state the associated stability properties which follows from the fundamental
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stability theorem for elliptic boundary value problems; see Thm. 2.15.

Based on the de�nition of the principal symbol of matrix di�erential operators
(Def. 2.11), we �nd that the only possible way to choose the DN numbers for L
is

{si}Ji=1 = 0, {si}2Ji=J+1 = −1, t1 = 1, {tj}J+1
j=2 = 2.

The DN numbers for B are then

κ = {−1,−2, · · · ,−2}.

The principal parts of L and B are then found to be

L(0) =



∇ũ1 · ∇[·] σ̃∆[·] · · · 0
...

...
. . .

...
∇ũJ · ∇[·] 0 · · · σ̃∆[·]
|∇ũ1|p pσ̃ ∇ũ1·∇[·]

|∇ũ1|2−p · · · 0
...

...
. . .

...
|∇ũJ |p 0 · · · pσ̃ ∇ũJ ·∇[·]

|∇ũJ |2−p


and (4.2)

B(0) =


0 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .
The associated principal symbol of L(0) is therefore

l(0) =



∇ũ1 · iξ −σ̃|ξ|2 · · · 0
...

...
. . .

...
∇ũJ · iξ 0 · · · −σ̃|ξ|2
|∇ũ1|p pσ̃ ∇ũ1·iξ

|∇ũ1|2−p · · · 0
...

...
. . .

...
|∇ũJ |p 0 · · · pσ̃ ∇ũJ ·iξ

|∇ũJ |2−p


.

For l(0) to have full rank (here J + 1), it is a necessary and su�cient condition
that at least one ((J+1)× (J+1))-subdeterminant of l(0) is non-zero. A simple
analysis of the matrix structure shows that all these subdeterminants are either
zero or take the form

±(σ̃|ξ|2)J
(

1− p (∇ũj · ξ)2

|∇ũj |2|ξ|2

)
, 1 ≤ j ≤ J.
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This makes it possible to state the following theorem.

Theorem 4.2. Consider the boundary value problem given by (4.1). L is DN
elliptic if, and only if, for all (x, ξ) ∈ Ω×Rn \ 0 there exists ∇ũj 6= 0 such that

(∇ũj · ξ)2

|∇ũj |2|ξ|2
6= 1

p
.

The implication of Thm. 4.2 is that the ellipticity of L is determined by the set
{∇ũj}Jj=1. Clearly L is always DN elliptic for p < 1. For p ≥ 1, choosing J ≥ n
is necessary to obtain an elliptic operator. A simple geometrical interpretation
gives the following results [13, 57]: Loss of ellipticity corresponds to the intersec-

tion of the cones (in the ξ-variable) given by the equations (∇ũj ·ξ)2
|∇ũj |2|ξ|2 −

1
p = 0 at

some point away from the apex. In Sec. 4.5 we discuss how ellipticity is related
to the choice of boundary conditions.

We now show that the Lopatinskii condition is satis�ed for the problem (4.1) if
L is DN elliptic.

Theorem 4.3. Consider the boundary value problem given by (4.1). If L is DN
elliptic, i.e. it satis�es the condition in Thm. 4.2, then B covers L.

Proof. We have to show that the requirements of Def. 2.14 is satis�ed. Based
on the principal parts L(0),B(0) given by (4.2), we �nd that the relevant system
of ODE problems takes the form
∇ũj ·

(
iζ + v

d

dz

)
w1 + σ̃

(
iζ + v

d

dz

)
·
(
iζ + v

d

dz

)
wj+1 = 0 for z > 0,

|∇ũj |pw1 + pσ̃
∇ũj ·

(
iζ + v d

dz

)
|∇ũj |2−p

wj+1 = 0 for z > 0,

wj+1 = 0 for z = 0,

,

for 1 ≤ j ≤ J . In this system we can eliminate w1, to get the ODE problemsαj(x)
d2

dz2
wj+1 − βj(x)

d

dz
wj+1 + γj(x)wj+1 = 0 for z > 0,

wj+1 = 0 for z = 0,

(4.3)
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where

αj(x) = 1− p (∇ũj · v)2

|∇ũj |2
,

βj(x) = 2ip
(∇ũj · ζ)(∇ũj · v)

|∇ũj |2
and

γj(x) = p
(∇ũj · ζ)2

|∇ũj |2
− 1.

Since L is DN elliptic, we have that αj0(x) 6= 0 for some 1 ≤ j0 ≤ J . Thus, we
have a second-order ODE with constant coe�cients for wj0+1.

First, we notice that β is purely imaginary and both α and γ are real. This
implies that the corresponding characteristic polynomial has a purely imaginary
root of multiplicity two, or two roots of the form ±k1 + ik2, for some k1, k2 ∈ R.
It follows by a simple calculation that wj0+1 = 0 is then the only possible
solution to the ODE problem, satisfying the additional requirement wj0+1 → 0
for z → +∞. From this it follows by the relation

|∇ũj |pw1 + pσ̃
∇ũj ·

(
iζ + v d

dz

)
|∇ũj0 |2−p

wj0+1 = 0 for z > 0,

that also w1 = 0. We are then left with the problems
(
iζ + v

d

dz

)
·
(
iζ + v

d

dz

)
wj+1 = 0 for z > 0,

wj+1 = 0 for z = 0,

1 ≤ j ≤ J.

Since ζ · v = 0 we can recast this as
d2

dz2
wj+1 − wj+1 = 0 for z > 0,

wj+1 = 0 for z = 0,

for which the only solutions satisfying wj+1 → 0 for z → +∞ are wj+1 = 0
for 1 ≤ j ≤ J . Thus, we can conclude that {wj}J+1

j=1 = 0 and therefore the
Lopatinskii condition is satis�ed.

Remark 4.4. In a paper by Bal [13], the solutions to the ODE problem (4.3)
seem to be compared to the solutions to the corresponding ODE setting for the
Laplace problem with Dirichlet boundary conditions, to show that the Lopatinski
condition is satis�ed. But it is not su�cient to consider only the highest order
term in the ODE problem to analyse the vector space of possible solutions,
because lower order terms can in�uence the asymptotic behaviour. A simple
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example is the ODE problem
d2

dz2
w + 2

d

dz
w + 2w = 0 for z > 0,

w = 0 for z = 0,

which has the non-zero solution w = e−z sin(z) that indeed satis�es w → 0 for
z → +∞.

Now that we have shown the condition for DN ellipticity of L and shown that
this implies that the Lopatinskii condition is satis�ed for the problem (4.1),
we can state a stability estimate for the inverse problem, based on the results
of Thm. 2.15.

Theorem 4.5. Consider the boundary value problem given by (4.1), where L
is DN elliptic. Let q > 1 and l ≥ 0 be an integer such that q(l + 1) > n. If

L(k)
ij ∈ W l−si,q(Ω),L(0)

ij are continuous functions and Hj − H̃j ∈ W l+1,q(Ω),
then the following a priori estimate holds:

‖δσ‖W l+1,q(Ω) +

J∑
j=1

‖δuj‖W l+2,q(Ω) ≤ c1
J∑
j=1

‖Hj − H̃j‖W l+1,q(Ω)

+ c2

‖δσ‖Lq(Ω) +

J∑
j=1

‖δuj‖Lq(Ω)

 .

The implication of the stated stability result is that a DN elliptic problem gives
optimal stability properties for the reconstruction, since we can reconstruct
δσ with exactly the same regularity as the given data. Of course, this is
only applicable to an inverse problem where the given data has the required
regularity.

4.3 Stability and classi�cation of the normal form

The symbolic calculus, and especially operator compositions, becomes less com-
plicated if we express the linearised inverse problem as a �rst-order system. As
proved by Cosner [27], a DN elliptic matrix operator can always be expressed
by an equivalent �rst-order matrix that is elliptic in the classical sense; see
Def. 2.10. The transformation is done by di�erentiation of rows and by intro-
ducing additional variables, related to the two sets of DN numbers {si} and
{tj}, respectively.
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In our case, we take the gradient of the equations in (3.11), but as a techni-
cality we �rst multiply the equations by (|∇ũ1|−p, · · · , |∇ũJ |−p)

T to make the
calculation of the principal symbol more simple. For this, we assume that the
interior data has the required regularity, such that the performed operations
make sense. Furthermore, we introduce {∇δuj}Jj=1 as unknowns. We can then
express the second-order linear problem in terms of the equivalent �rst-order
problem {

Ĺú = f́

B́ú = 0

in Ω,

on ∂Ω,
(4.4)

where Ĺ is the sparse 3J × (2J + 1) matrix of operators

Ĺ =



∇ · ([·]∇ũ1) ∇ · (σ̃[·]) · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

∇ · ([·]∇ũJ) 0 · · · ∇ · (σ̃[·]) 0 · · · 0

∇ ∇
(
pσ̃∇ũ1·[·]
|∇ũ1|2

)
· · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

∇ 0 · · · ∇
(
pσ̃∇ũJ ·[·]|∇ũJ |2

)
0 · · · 0

0 −I · · · 0 ∇ · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · −I 0 · · · ∇



,(4.5)

and the solution vector ú and right-hand side f́ are given by

ú =



δσ
∇δu1

...
∇δuJ
δu1

...
δuJ


and f́ =



0
...
0

∇(|∇ũ1|−p(H1 − H̃1))
...

∇(|∇ũJ |−p(HJ − H̃J))
0
...
0


.

With this notation, the boundary operator B́ is de�ned by the relation

B́ú = (0, · · · , 0, δu1, · · · , δuJ)T .
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We use the acute accent (́ ) as the notation for operators and vector functions in
this �rst-order setting. Note that the transformation into the �rst-order system
has not introduced additional boundary conditions. Also note that when we take
the gradient of the equations in (3.11) we di�erentiate the data. This should, if
possible, always be avoided in practical applications, where measurement noise
could be present.

The �rst part of the analysis concerns the ellipticity of Ĺ, and this follows
directly by the construction that leads to the de�nition of DN ellipticity [27].
Therefore we state the following theorem without a proof.

Theorem 4.6. Ĺ is elliptic at (x, ξ) ∈ Ω × (Rn \ 0) if, and only if, L is DN
elliptic.

For J > 1, the linearised inverse problem (4.4) is not a square system of
equations, and such a system is di�cult to analyse. In this case, it is the
standard approach to de�ne a solution of such overdetermined systems using
the method of least squares.

A simple analysis of the operator Ĺ shows that it acts as an operator

Ĺ : H1(Ω)× [Hdiv(Ω)]J × [H1(Ω)]J → [L2(Ω)](1+2n)J ,

for su�ciently smooth σ̃. Here Hdiv(Ω) denote the usual (Hilbert) space of
vector functions in [L2(Ω)]n for which the divergence is also an L2(Ω) function;
see e.g. [92, Chap. 20]. Thus, it speci�es the appropriate function space setting
which satis�es the homogeneous boundary conditions:

ú ∈ H1(Ω)× [Hdiv(Ω)]J × [H1
0 (Ω)]J .

To this formulation we assign the energy functional

I(ú) = ‖Ĺú− f́‖2L2(Ω).

A least squares solution to the linearised inverse problem (4.4) is then a function

ú? = argmin
ú

I(ú), (4.6)

for ú satisfying the previously de�ned homogeneous boundary conditions in
appropriate function spaces. We want to classify and state stability results
for solutions to this least squares formulation. In order to do so, we want to
transform it into a boundary value problem for ú?.

It is a classical result from quadratic minimisation that for a standard matrix
equation, a solution to the normal equation is a solution that minimises the
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residual in the least squares sense [62]. For a matrix operator equation, this
is often also the case, but additional boundary conditions might need to be
imposed on the solution space.

For ú? to be a minimiser of (4.6), a necessary condition is that the �rst variation
vanishes, which means that

lim
t→0

d

dt
I(ú? + tφ) = 0, ∀φ ∈ H1(Ω)× [Hdiv(Ω)]J × [H1

0 (Ω)]J .

This leads to the least squares weak formulation of (4.4). We want to �nd
ú? ∈ H1(Ω)× [Hdiv(Ω)]J × [H1

0 (Ω)]J such that∫
Ω

Ĺú? Ĺφdx =

∫
Ω

f́ Ĺφ dx, ∀φ ∈ H1(Ω)× [Hdiv(Ω)]J × [H1
0 (Ω)]J . (4.7)

We now show how the solutions to this weak formulation are related to the
solutions of a certain boundary value problem. For this we need an expression
for the adjoint Ĺ∗ in a suitable functional setting.

Lemma 4.7. Denote by V and W the function spaces H1(Ω) × [Hdiv(Ω)]J ×
[H1(Ω)]J and [L2(Ω)](1+2n)J , respectively, and denote the scalar and vector
elements of the functions v ∈ V,w ∈W by

v = (v1,v2, · · · ,vJ+1, vJ+2, · · · , v2J+1)T ,

w = (w1, · · · , wJ ,wJ+1, · · · ,w3J)T .

Let the operator Ĺ : V →W be given by (4.5). If v = 0 on ∂Ω, then the adjoint
Ĺ∗ : W ∗ → V ∗ can then be identi�ed by the L2-inner product

〈v, Ĺ∗w〉V,V ∗ = (Ĺv,w)W , ∀v ∈ V,w ∈ V,

where

Ĺ∗w =



∑J
j=1−∇ũj · ∇wj −∇ ·wJ+j

−σ̃∇w1 − pσ̃∇ũ1∇·wJ+1

|∇ũ1|2 −w2J+1

...
−σ̃∇wJ − pσ̃∇ũJ∇·w2J

|∇ũJ |2 −w3J

−∇ ·w2J+1

...
−∇ ·w3J


∈ V ∗.
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Proof. The adjoint of Ĺ is de�ned as a mapping Ĺ∗ : W ∗ → V ∗ satisfying

(Ĺv,w)W = 〈v, Ĺ∗w〉V,V ∗ , ∀v ∈ V,w ∈W.

Note that W ∗ =
(
[L2(Ω)](1+2n)J

)∗
can be identi�ed by W . By integration by

parts we �nd that

(Ĺv,w)W =

∫
Ω

(Ĺv) ·w dx

=

J∑
j=1

∫
Ω

[
(∇ · v1∇ũj +∇ · σ̃vj+1)wj

+∇
(
v1 + pσ̃

∇ũj · vj+1

|∇ũj |2

)
·wJ+j

+(−vj+1 +∇vJ+j+1) ·w2J+j

]
dx

=

J∑
j=1

∫
Ω

[
v1(−∇ũj · ∇wj −∇ ·wJ+j)

+ vj+1 ·
(
−σ̃∇wj − pσ̃

∇ũj∇ ·wJ+j

|∇ũj |2
−w2J+j

)
+vJ+j+1 (−∇ ·w2J+j)

]
dx

+

∫
∂Ω

[
(v1(∇ũj · n) + σ̃(vj+1 · n))wj

+

(
v1 + pσ̃

∇ũj · vj+1

|∇ũj |2

)
(wJ+j · n) + vJ+j+1(w2J+j · n)

]
ds,

∀v ∈ V,w ∈W.

If v = 0 on ∂Ω all boundary terms vanish, and we are left with

(Ĺv,w)W =

J∑
j=1

∫
Ω

[
v1(−∇ũj · ∇wj −∇ ·wJ+j)

+ vj+1 ·
(
−σ̃∇wj − pσ̃

∇ũj∇ ·wJ+j

|∇ũj |2
−w2J+j

)
+vJ+j+1 (−∇ ·w2J+j)

]
dx, ∀v ∈ V,w ∈W,

and we can therefore give a precise description of Ĺ∗ using the L2-inner product.
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In this setting we can identify the duality pairing, such that

〈v, Ĺ∗w〉V,V ∗ := (v, Ĺ∗w)W , ∀v ∈ V,w ∈W,

where

Ĺ∗w =



∑J
j=1−∇ũj · ∇wj −∇ ·wJ+j

−σ̃∇w1 − pσ̃∇ũ1∇·wJ+1

|∇ũ1|2 −w2J+1

...
−σ̃∇wJ − pσ̃∇ũJ∇·w2J

|∇ũJ |2 −w3J

−∇ ·w2J+1

...
−∇ ·w3J


∈ V ∗.

From the de�nition of the adjoint Ĺ∗ it is possible to show a correspondence
between solutions to the normal form and the weak form of the least squares
formulation.

Lemma 4.8. A solution ú? to{
Ĺ∗Ĺú? = Ĺ∗f́

ú? = 0

in Ω,

on ∂Ω,
(4.8)

is also a solution to the weak form of the least squares formulation (4.7), for
φ = 0 on ∂Ω.

Proof. Let ú? ∈ H1(Ω)× [Hdiv(Ω)]J × [H1(Ω)]J satisfy the boundary condition
ú? = 0 on ∂Ω. From the de�nition of Ĺ∗ (see Lem. 4.7), we can then express
the boundary value problem (4.8) in the weak form:

(Ĺú?, Ĺφ) = (f́ , Ĺφ), ∀φ ∈ H1(Ω)× [Hdiv(Ω)]J × [H1(Ω)]J ,

where φ = 0 on ∂Ω. Thus, a weak solution to the normal equation equipped
with homogeneous Dirichlet boundary conditions corresponds to a solution to
the weak form of the least squares formulation.
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Now we will continue the analysis of the boundary value problem{
Ĺ∗Ĺú = Ĺ∗f́

ú = 0

in Ω,

on ∂Ω.
(4.9)

We will now show that the ellipticity results for Ĺ can be extended to the normal
operator Ĺ∗Ĺ.

Theorem 4.9. The normal operator Ĺ∗Ĺ is elliptic if, and only if, Ĺ is elliptic,
or equivalently L is DN elliptic.

Proof. Because the di�erential equations that constitutes Ĺ are all �rst-order,
we have (́l∗ ĺ)(0) = (́l∗)(0)́l(0) = (́l(0))∗ ĺ(0). Since all elements of ĺ(0) are complex

expressions we have that (́l(0))∗ = (́l(0))T , where · denotes complex conjugation.
The determinant det(́l∗ ĺ)(0) can then be calculated using the Cauchy�Binet
formula [36, p. 119]

det((́l∗ ĺ)(0)) = det((́l(0))T ĺ(0)) =
∑

α=2J+1

|det
α

ĺ(0)|2,

where the sum is taken over all (2J + 1)×(2J + 1) subdeterminants of the matrix
ĺ(0). Thus, (́l∗ ĺ)(0) is invertible if, and only if, at least one of the subdeterminants
of ĺ(0) is non-zero, and this is exactly the necessary and su�cient condition for
ellipticity of Ĺ.

We continue to show that the Lopatinskii condition is satis�ed for (4.9) if Ĺ is
elliptic.

Theorem 4.10. If Ĺ is elliptic, or equivalently if L is DN elliptic, then the
Lopatinskii condition is satis�ed for the problem (4.9).

Proof. If Ĺ is elliptic, then Ĺ∗Ĺ is an elliptic second-order square matrix oper-
ator. For such an operator, the corresponding Dirichlet problem satis�es the
Lopatinskii condition [6, Sec. 1.1.4].

When Ĺ∗Ĺ is elliptic it is therefore possible to state the associated stability
properties of solutions to (4.9), which follows from the fundamental theorem for
elliptic boundary value problems; see Thm. 2.15.

Theorem 4.11. Consider the boundary value problem given by (4.9), where
Ĺ is elliptic. Let q > 1 and l ≥ 0 be an integer such that q(l + 1) > n. If



4.4 Propagation of singularities 57

(Ĺ∗Ĺ)
(k)
ij ∈ W l,q(Ω), (Ĺ∗Ĺ)

(0)
ij are continuous functions and Ĺ∗f́ ∈ W l,q(Ω),

then the following a priori estimate holds:

‖ú‖W l+2,q(Ω) ≤ c1
J∑
j=1

‖Ĺ∗f́‖W l,q(Ω) + c2‖ú‖Lq(Ω).

Note that Ĺ∗f́ includes two di�erentiations of the data, thus again we see that
this implies optimal stability for δσ. But in terms of regularity, we need one
addition derivative for δσ, δuj and Hj − H̃j .

Again, ellipticity is not a su�cient condition for injectivity of the operator.
However, for the problem (4.9), injectivity of Ĺ∗Ĺ can be proved under certain
conditions. If Ĺ is a matrix of di�erential operators with coe�cients that are
analytic, or su�ciently close to being analytic, or if the domain Ω is su�ciently
small, then if Ĺ∗Ĺ is elliptic it is also invertible with a bounded inverse. If the
domain is large or the coe�cients are not su�ciently close to being analytic,
the unique continuation principle can be applied to state uniqueness when the
principal symbol of Ĺ satis�es certain requirements. This is explained in detail
by Bal [13].

4.4 Propagation of singularities

Even though the concept of ellipticity can be extended to over-determined
systems of PDEs, any established theory on the propagation of singularities
for over-determined systems does not seem to exist in the literature. To circum-
vent this challenge, we are going to analyse a third type of formulation of the
linearised inverse problem.

4.4.1 Transformation into a system of scalar problems

For this analysis, the symbolic calculus becomes less complicated if we express
the linearised inverse problem by a system of scalar equations. Looking at the
boundary value problem (3.12), we see that it consists of J equations which,
by the Frechét derivative of Hj , express how δσ and {δuj}Jj=1 are related to
perturbations in the interior data and J equations which relate δσ and {δuj}Jj=1.
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An elimination of {δuj}Jj=1 gives the set of scalar pseudo-di�erential equations

Pjδσ = Hj − H̃j , 1 ≤ j ≤ J, (4.10)

where Pj is the non-local pseudo-di�erential operator

Pj = |∇ũj |p + pσ̃
∇ũj · ∇L−1

σ (∇ · ([·]∇ũj))
|∇ũj |2−p

. (4.11)

Here L−1
σ denotes a parametrix of the elliptic operator Lσ := −∇ · (σ̃∇[·]).

Note that a parametrix is not unique, but only unique modulo smoothing
terms [95, Cor. 4.3]. Since smoothing terms can be discarded in the analysis of
ellipticity and propagation of singularities, the non-uniqueness is not of concern
in this context.

The following theorem shows that Pj is both classical and properly supported.

Theorem 4.12. Let σ̃ ∈ C∞+ (Ω) and ∂Ω be smooth. Then the pseudo-di�erential
operator Pj given by (4.11) is a classical and properly supported pseudo-di�erential
operator in Ω of order zero with principal symbol

p
(0)
j = |∇ũj |p

(
1− p (∇ũj · ξ)2

|∇ũj |2|ξ|2

)
. (4.12)

Proof. It follows from standard elliptic regularity that σ̃ ∈ C∞+ (Ω) implies
ũj ∈ C∞(Ω). Therefore ∇ · [·]∇ũj and ∇ũj · ∇[·] are �rst-order di�erential
operators with smooth coe�cients and as a result both classical and properly
supported pseudo-di�erential operators in Ψ1(Ω) [52, p. 11],[87, p. 16]. Because
Lσ is a second-order elliptic di�erential operator, it follows that there exists a
parametrix, denoted by L−1

σ , which is a classical and properly supported pseudo-
di�erential elliptic operator and an element of Ψ−2(Ω) [38, Thm. 7.18]. The
operator

∇ũj · ∇L−1
σ (∇ · ([·]∇ũj))

is therefore a composition of pseudo-di�erential operators that are both classical
and properly supported in Ω and therefore also such an operator. It follows
that Pj ∈ Ψ0(Ω) is also both classical and properly supported. The principal
symbol of Pj is then the product of the principal symbols of each operator in the
composition and this is easily found to be the expression given by (4.12).

The linear scalar equations (4.10) are for J > 1 a redundant set of equations for
δσ. In this case we are going to analyse the normal form of (4.10) given by the
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single scalar equation

J∑
j=1

P ∗j Pjδσ =

J∑
j=1

P ∗j (Hj − H̃j). (4.13)

Here P ∗j ∈ Ψ0(Ω) denotes the formal adjoint of Pj [95, p. 21]. Note that
by Thm. 4.12, Pj is classical and properly supported, which means that the
composition P ∗j Pj makes sense.

4.4.2 Classi�cation of the scalar operator and the scalar

normal operator

The microlocal analysis is related to the properties of the principal symbol of
Pj . As we now show, the ellipticity of Pj depends on the parameter p.

Theorem 4.13. Suppose |∇ũj | 6= 0. Then Pj is elliptic in Ω if, and only if,
p < 1.

Proof. Pj is elliptic in Ω if, and only if, its principal symbol is non-zero for all
(x, ξ) ∈ Ω×(Rn \0). When |∇ũj | 6= 0 a vanishing principal symbol is equivalent
to

(∇ũj(x) · ξ)2

|∇ũj(x)|2|ξ|2
=

1

p
,

for some (x, ξ) ∈ Ω × (Rn \ 0). The expression of the left-hand side is clearly
bounded by 1. Thus if p < 1 the equality is never satis�ed and Pj is therefore
elliptic in Ω. If p ≥ 1, set ξ = v(x) where v(x) is the vector ∇ũj(x) rotated
by an angle αj , satisfying cosαj = 1√

p . Then the principal symbol vanishes for

all (x, v(x)) ∈ Ω × (Rn \ 0) and Pj is therefore nowhere elliptic; see also the
discussion after Thm. 4.2.

A similar result has been found by Kuchment and Steinhauer [57], and Bal [13].
The theorem implies that if p ≥ 1, more than one measurement of the interior
data is necessary to get an elliptic operator. In this situation it makes sense to
consider the problem formulated in the scalar normal form presented in (4.13).
The condition that ensures ellipticity of the operator associated with the normal
equation is stated in the following theorem.

Theorem 4.14.
∑J
j=1 P

∗
j Pj is elliptic at (x, ξ) ∈ Ω × (Rn \ 0) if, and only if,

there exists |∇ũj(x)| 6= 0 such that
(∇ũj(x)·ξ)2
|∇ũj(x)|2|ξ|2 6=

1
p .
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Proof. Since all Pj are classical, the principal symbol of
∑J
j=1 P

∗
j Pj is the sum of

squares of the modulus of the principal symbols of each operator Pj . Therefore
the principal symbol is given by

J∑
j=1

|∇ũj |2p
(

1− p (∇ũj · ξ)2

|∇ũj |2|ξ|2

)2

. (4.14)

This expression is clearly positive at (x, ξ) ∈ Ω × (Rn \ 0) if, and only if, at
least one of the operators Pj is elliptic. The result then follows by the proof of
Thm. 4.13.

4.4.3 Propagation of singularities for two operators

When a scalar problem is not elliptic it is possible that the solution has sin-
gularities besides those present in the right-hand side. However, the additional
singularities can only be present along curves where the principal symbol van-
ishes. This is a simple interpretation of the classical result on the propagation
of singularities; see Thm. 2.24. As we will see in the following analysis, it is
possible to calculate these curves for the linearised inverse problem and state
necessary conditions for the presence of singularities along such curves.

4.4.3.1 The scalar operator

When only a single interior data set is available, the relevant equation to analyse
is

P1δσ = H1 − H̃1.

Thus, the propagation of singularities depends on the principal symbol of P1.
As seen from Thm. 4.12, the principal symbol of P1 is given by

p
(0)
1 = |∇ũ1|p

(
1− p (∇ũ1 · ξ)2

|∇ũ1|2|ξ|2

)
.

We now show that P1 is a real principal type operator if p 6= 1.

Lemma 4.15. P1 is of real principal type if, and only if, p 6= 1.

Proof. Elliptic operators are trivially of principal type, so it su�ces to consider
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the case p ≥ 1. Clearly p0
1 is real and we �nd that

p
(0)
1 (x, ξ) = 0⇔ (∇ũ1 · ξ)2

|∇ũ1|2|ξ|2
=

1

p
, (4.15)

and therefore

∂

∂ξ
p

(0)
1 (x, ξ)

∣∣∣∣
p
(0)
1 =0

=
2|∇ũ1|p

|ξ|2

(
ξ − p∇ũ1 · ξ

|∇ũ1|2
∇ũ1

)
.

This means that p(0)
1 is of real principal type if, and only if, p(0)

1 (x, ξ) = 0 implies

ξ − p∇ũ1 · ξ
|∇ũ1|2

∇ũ1 6= 0. (4.16)

When p = 1, it can be seen from (4.15) that the vectors ξ and ∇ũj are parallel
when ellipticity is lost and one �nds that the inequality is not satis�ed. When
p > 1, the non-zero vectors ∇ũ1 and ξ cannot be parallel, and this is su�cient
to conclude that (4.16) is satis�ed.

The classical theorem on the propagation of singularities for pseudo-di�erential
operators of real principal type, Thm. 2.24, explains how singularities will
propagate along the bicharacteristics. In the following theorem we show that
the bicharacteristic curves are perpendicular to the direction in which ellipticity
is lost.

Lemma 4.16. For p > 1, the bicharacteristic curves of P1 are perpendicular to
the directions in which ellipticity is lost.

Proof. By Def. 2.22, we �nd the bicharacteristics (x(t), ξ(t)) ∈ Ω×(Rn\0), t ∈ R
as integral curves of the system of equations

dx(t)

dt
=

∂

∂ξ
p

(0)
1 (x(t)), ξ(t)),

dξ(t)

dt
= − ∂

∂x
p

(0)
1 (x(t)), ξ(t)),

where p
(0)
1 (x, ξ) = 0. We �nd that

dx(t)

dt
=

2|∇ũ1(x(t))|p

|ξ(t)|2

(
ξ(t)− p∇ũ1(x(t)) · ξ(t)

|∇ũ1(x(t))|2
∇ũ1(x(t))

)
.

Note that dx(t)
dt · ξ(t) = 0, when p

(0)
1 (x, ξ) = 0, which means that x(t) is a curve

perpendicular to the direction in which ellipticity is lost.
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The previous lemma implies that singularities can only propagate in directions
perpendicular to the direction in which ellipticity is lost. Thus, by Thm. 2.24,
we can state the following theorem.

Theorem 4.17. For p > 1, a solution δσ to the equation

P1δσ = H1 − H̃1,

has singularities propagating in directions perpendicular to the direction in which
ellipticity is lost.

4.4.3.2 The normal operator

For the analysis of propagation of singularities for the normal operator we
restrict ourselves to the situation with two measurements (J = 2) in two
dimensions (n = 2). If one had a single measurement (J = 1) the normal
formulation would not need to be introduced and if more than two measurements
were available (J > 2), then one can ensure that the normal operator is elliptic
by a speci�c choice of boundary conditions. This will also be discussed brie�y
in Section 4.5.

When J = 2, the normal formulation is the equation

(P ∗1 P1 + P ∗2 P2)δσ = P ∗1 (H1 − H̃1) + P ∗2 (H2 − H̃2). (4.17)

The propagation of singularities depends on the symbol of P ∗1 P1 + P ∗2 P2. The
normal form increases the order of the zeros of the principal symbol, as seen
by (4.14). As a result, the principal symbol of P ∗1 P1 + P ∗2 P2 is not of principal
type, and the classical propagation theory does not provide any information
on the propagation of singularities. Instead we are going to use the theory for
principal symbols of constant multiplicity.

We �rst show that the operator P ∗1 P1+P ∗2 P2 can be decomposed in the form of a
polynomial of an operator of real principal type. Then we show that this implies
that P ∗1 P1 + P ∗2 P2 is of constant multiplicity and that it satis�es the relevant
Levi condition. We then calculate the bicharacteristic curves along which the
singularities propagate.

Theorem 4.18. Let p > 1, Ω ⊂ R2 and let P ∗1 P1 + P ∗2 P2 be the pseudo-
di�erential operator from the scalar normal equation (4.17). Assume that ellip-
ticity is lost in the direction v(x) ∈ R2, |v| = 1, in a neighbourhood of a point
x0 ∈ Ω. De�ne by vT a unit vector perpendicular to v. Then in a neighbourhood
of (x0,v(x0)), the pseudo-di�erential operator P ∗1 P1 + P ∗2 P2 can be factorised,
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such that

P ∗1 P1 + P ∗2 P2 = (EQ)2 + FQ+G,

where E ∈ Ψ−1(Ω) is elliptic, Q ∈ Ψ1(Ω) is an operator with principal symbol
ξ · vT (x) and F,G ∈ Ψ−2(Ω).

Proof. The full symbol of P ∗1 P1 + P ∗2 P2 is given by

|p1|2 + |p2|2 =
∣∣∣p(0)

1 + p
(−1)
1 +O(|ξ|−2)

∣∣∣2 +
∣∣∣p(0)

2 + p
(−1)
2 +O(|ξ|−2)

∣∣∣2 ,
where p

(−1)
j denotes the terms of pj that are exactly one order lower than the

principal symbol.

Since the principal symbols p(0)
j are real, we �nd that

|p1|2 + |p2|2 = (p
(0)
1 )2 + (p

(0)
2 )2 + 2

(
p

(0)
1 Re

(
p

(−1)
1

)
+ p

(0)
2 Re

(
p

(−1)
2

))
+O(|ξ|−2).

By the de�nition of v we know that

(∇ũj · v)2 =
1

p
|∇ũj |2 and (∇ũj · vT )2 =

(
1− 1

p

)
|∇ũj |2.

Since {v,vT } = {v(x),v(x)T } is an orthonormal basis for R2 we can make the
expansions

|ξ|2 =(ξ · v)2 + (ξ · vT )2,

(∇ũj · ξ)2 =(∇ũj · v)2(v · ξ)2 + (∇ũj · vT )2(vT · ξ)2

+ 2(∇ũj · v)(v · ξ)(∇ũj · vT )(vT · ξ).

This makes it possible to write the principal symbol of Pj as

p
(0)
j = |∇ũj |p

(
1− p (∇ũj · ξ)2

|∇ũj |2|ξ|2

)
=
|∇ũj |p

|ξ|2

(
(2− p)(vT · ξ)2 − 2p

|∇ũj |2
(∇ũj · v)(v · ξ)(∇ũj · vT )(vT · ξ)

)
= ej(v

T · ξ).

Here ej ∈ S−1(Ω × R2) is non-zero in a neighbourhood of (x0,v(x0)), because
for p > 1 neither (∇ũj · v) nor (∇ũj · vT ) vanishes. The principal symbol
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of P ∗1 P1 + P ∗2 P2 then takes the simple form(
p

(0)
1

)2

+
(
p

(0)
2

)2

= (e21 + e22)(vT · ξ)2

= e2(vT · ξ)2,

where e :=
√

e21 + e22 ∈ S−1(Ω × R2) is also non-zero in a neighbourhood of
(x0,v(x0)). In a similar way we can write

2
(
p

(0)
1 Re

(
p

(−1)
1

)
+ p

(0)
2 Re

(
p

(−1)
2

))
= 2

(
e1Re

(
p

(−1)
1

)
+ e2Re

(
p

(−1)
2

))
(vT · ξ)

= f(vT · ξ),

where f := 2
(
e1Re

(
p

(−1)
1

)
+ e2Re

(
p

(−1)
2

))
∈ S−2(Ω× R2). This shows that

|p1|2 + |p2|2 = e2(vT · ξ)2 + f(vT · ξ) + g,

where g ∈ S−2(Ω × R2). It follows that P ∗1 P1 + P ∗2 P2 in a neighbourhood of
(x0,v(x0)) can be written in the form

P ∗1 P1 + P ∗2 P2 = (EQ)2 + FQ+G,

where E ∈ Ψ−1(Ω) is elliptic, Q ∈ Ψ1(Ω) is an operator with principal symbol
ξ · vT and F,G ∈ Ψ−2(Ω).

The previous theorem implies that the operator P ∗1 P1 + P ∗2 P2 is an operator
of constant multiplicity because its principal symbol can be written in the
form

(
e
(
vT · ξ

))2
. This type of factorisation of P ∗1 P1 + P ∗2 P2 also implies that

the relevant Levi condition is satis�ed; see Lem. 2.28. In turns out that the
bicharacteristic curves are similar to those of both P1 and P2, as the following
theorem shows.

Lemma 4.19. For p > 1, the bicharacteristic curves of EQ are perpendicular
to the directions in which ellipticity is lost.

Proof. The (principal) symbol of EQ is e(ξ ·vT ) which is clearly of real principal
type. We �nd that

dx(t)

dt

∣∣∣∣
e(ξ·vT )=0

=
∂

∂ξ
e(ξ · vT )

∣∣∣∣
e(ξ·vT )=0

= evT .

Clearly x(t) is a curve perpendicular to v which de�nes the direction in which
ellipticity is lost.
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As a result of Thm. 2.29, we can therefore �nally state the following theorem.

Theorem 4.20. Let Ω ⊂ R2. If P ∗1 P1 + P ∗2 P2 is not elliptic and p > 1, then a
solution δσ to the equation

(P ∗1 P1 + P ∗2 P2)δσ = P ∗1 (H1 − H̃1) + P ∗2 (H2 − H̃2),

has singularities propagating in directions perpendicular to the direction in which
ellipticity is lost.

In Sec. 5.4.1, we will see several numerical examples of how the loss of ellip-
ticity for an equivalent boundary value problem, manifest itself as propagating
singularities exactly in the directions predicted by this theorem.

4.4.4 The wave front set of the right-hand side

To further investigate how singularities propagate, we need to know the wave
front set of the right-hand side of the normal equation for the linearised inverse
problem. The following theorem shows how the wave front sets of P ∗1 (H1 −
H̃1) + P ∗2 (H2 − H̃2) and σ are related.

Theorem 4.21. If {|∇uj |}2j=1 are all bounded below by a positive constant in
Ω and σ̃ is smooth, then

WF(P ∗1 (H1 − H̃1) + P ∗2 (H2 − H̃2)) ⊆WF(σ).

Proof. The wave front set of a sum of distributions is at most the union of their
respective wave front sets [81, Thm. IX.44]. This implies

WF(P ∗1 (H1 − H̃1) + P ∗2 (H2 − H̃2)) ⊆
WF(P ∗1 (H1 − H̃1)) ∪WF(P ∗2 (H2 − H̃2)).

Because pseudo-di�erential operators can at most decrease the wave front set
of properly supported distributions, see Thm. 2.21, we have the inclusions

WF(P ∗j (Hj − H̃j)) ⊆WF(Hj), j ∈ {1, 2}. (4.18)

Now, since σ ∈ L∞+ (Ω), we have for the operator Lσ := ∇ · σ∇ that

Char(Lσ) ⊆WF(σ),
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which by Thm. 2.21 implies

WF(uj) ⊆WF(σ), j ∈ {1, 2}. (4.19)

Consider the pseudo-di�erential operator P de�ned by

Pv := σ|∇v|p, p > 0, v ∈ E ′(Ω).

For |∇v| uniformly boundary below by a positive constant, P is elliptic away
from WF(σ) ∪WF(v), and it follows from Thm. 2.21 that

WF(Pv) ⊆WF(σ) ∪WF(v). (4.20)

Note that Hj = Puj = σ|∇uj |p. Therefore, using (4.19) and (4.20) we get the
relation

WF(Hj) ⊆WF(σ), j ∈ {1, 2},

which by (4.18) completes the proof.

4.5 Critical points, partial data, and noise

The main theoretical results of this chapter rely on certain qualitative properties
of the solutions to the reference forward problem (1.3). An example is the
absence of critical points. Also, the ellipticity condition for the linearised
problem, Thm. 4.2, implies that it is not desirable to generate a set of reference
solutions with parallel gradients. In this section we will therefore present some
results on how the choice of boundary conditions can control such qualitative
properties.

As an extension of the mathematical model and analysis, we also rede�ne the
mathematical setting for the linearised inverse problem to cover constrains on
either the interior data or on the imposed boundary conditions. This is thought
as a simple model of possible practical limitations imposed on the experimental
setup. In the end of the section, we also rede�ne the model of the measurement
data to include noise. This will later be used to test the sensitivity of numerical
reconstruction methods to such non-systematic errors.
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4.5.1 Critical points

A solution to the reference forward problem (1.3) possess several interesting
qualitative properties which can be deduced from the ubiquitous nature of
second-order divergence form linear elliptic di�erential operators. In the two
dimensional case, the following lemma describes certain properties of the gradi-
ent for a speci�c type of boundary condition.

Lemma 4.22. Let u1 and u2 be solutions of (1.3), with Ω ⊂ R2 and boundary
conditions f1 = x1, f2 = x2, respectively. Here x1, x2 are Cartesian coordinates
on Ω. If σ is su�ciently smooth, then u1, u2 have no critical points (there is
a uniform lower bound for the size of their gradients in Ω̄), and ∇u1,∇u2 are
non-parallel in Ω̄ [7, 74].

The lemma implies that critical points can be avoided by a simple choice of
boundary conditions. Furthermore, it implies that three boundary conditions
are su�cient to ensure that the linearised inverse problem is elliptic in two
dimensions for any p > 0.

Theorem 4.23. Let Ω ⊂ R2 and σ̃ be su�ciently smooth. The boundary
conditions f1 = x1, f2 = x2, f3 = x1 + x2, then generate a set of reference
solutions ũ1, ũ2, ũ3 for which the ellipticity condition of the linearised inverse
problem, given by Thm. 4.2, is satis�ed for any p.

Proof. It is simple consequence of Lem. 4.22, because ũ1, ũ2, ũ3 will have no
critical points and their gradients are non-parallel in Ω̄ as a result of the lin-
earity of the forward problem. This is clearly su�cient to satisfy the ellipticity
condition, given by Thm. 4.2, for any p in two dimensions.

Remark 4.24. If ∇ũ1 and ∇ũ2, corresponding to the imposed boundary con-
ditions f1 and f2, are known to be nowhere parallel, then making a third mea-
surement with the boundary condition f1 +f2 ensures that the linearised inverse
problem becomes elliptic in any dimension n ≥ 2 [13].

In dimension n ≥ 3 these results generally does not hold. Actually, it is possible
to show that a result similar to Lem. 4.22 cannot exist [14, Prop. 4.4]. However,
by a certain mathematical construction, corresponding to choosing boundary
conditions as traces of so-called complex geometric optics (CGO) solutions, it is
possible to show that an open set of boundary conditions give similar qualitative
properties for solutions to the reference problem. This is explained in detail by
Bal [12, Sec. 5].
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4.5.2 Partial data and limited-view data

If we turn the attention to a (pseudo-)physical system modelled by a hybrid in-
verse problem, it is clear that practical limitations imposed on the measurements
correspond to certain constraints on the mathematical model. Such constraints
could be of many types and would often be related to the speci�c application in
mind.

It is not our intention consider a speci�c application, but of interest is a hybrid
inverse problem modelling a system, where, say, the interior data acquisition
is only possible in subsets of the domain, or only a part of the boundary is
available for electrode positioning in the EIT measurements. In this thesis we
restrict the attention to these two situations.

The term partial data is not a precise description of the latter case, because
for a hybrid inverse problem in impedance tomography it gives the impression
that not all interior data is available. This is not the case, since the restriction
clearly corresponds to a constraint on the chosen boundary conditions in the
mathematical model. However, the term is often used in the setting of imped-
ance tomography, where the data is given by a number of boundary data pairs.
Here a restriction of the space of boundary conditions is indeed a restriction
on the data, such that it becomes partial. To avoid any confusion between the
two mentioned situations, we use the term limited-view to describe the setting in
which only a subset of the boundary is available for the electrical measurements.

The only existing treatment of partial and limited-view data, related to hybrid
inverse problems in impedance tomography, seems to be the work by Ammari
et al [10]. Here a very simple model problem is analysed theoretically using
Fourier modes to show invertibility of a normal operator for p = 2 for two well-
chosen boundary conditions, which, in some sense, corresponds to ellipticity in
the pseudo-di�erential setting.

4.5.2.1 Partial data

Consider the situation where the interior data is only given in a subset of the
domain Ω. From an practical perspective, this could model a setting where
certain restrictions limit the data acquisition to a point-wise evaluation in parts
of the interior.

Let the interior data be given in a simply connected subset of Ω, here denoted
by Γ ⊂ Ω and let its boundary ∂Γ be su�ciently smooth. Consider the hybrid
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inverse problem with interior data

Hj = σ|∇uj |p in Γ, p > 0.

To de�ne a mathematical formulation in the partial data setting, we now con-
sider the non-linear data map (3.2) as a map

Hj : L∞+ (Ω)→ L2(Γ).

A linearisation of this map is equivalent to the one we presented in Sec. 3.2; the
only di�erence is that the linear equations for the Fréchet derivative of the data
map is now restricted to Γ, i.e.

dHj |σ̃(δσ) = Hj − H̃j in Γ.

In exactly the same way as it was done in Sec. 3.2 and Sec. 4.3, we can then
form a system of linear equations and transform it into a �rst-order system.

In Sec. 5.4.2 we will use this mathematic setting to develop a reconstruction
method for the partial data case.

4.5.2.2 Limited-view data

Now, consider a situation where we only have access to a proper subset of
the boundary. At the part of the boundary where electrode positioning is not
possible, there cannot be any current �ux through the boundary. Therefore in
the mathematical model, the part of the boundary which is not available, has
to be equipped with a homogeneous Neumann boundary condition. If we de�ne
this part of the boundary Υ ⊂ ∂Ω, the forward problems are now of the type

∇ · σ∇uj = 0 in Ω,

uj = fj on ∂Ω \Υ,

∂νuj = 0 on Υ,

1 ≤ j ≤ J. (4.21)

For such problems, existence of a solution uj ∈ H1(Ω) is true, if f ∈ H 1
2 (Ω) and

∂Ω is su�ciently smooth. For the details we refer to the standard reference of
Gilbarg and Trudinger [p. 198][37]. That the solution is also unique follows from
the fact that for any two solutions uj and ŭj to (4.21), the function v = uj − ŭj
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has to be zero. To see this, note that v solves
∇ · σ∇v = 0 in Ω,

v = 0 on ∂Ω \Υ,

∂νv = 0 on Υ.

Multiplying the top equation by v and integrating by parts gives the relation∫
Ω

σ|∇v|2 dx = 0,

which implies that v is constant in Ω. Since v = 0 on ∂Ω \Υ, there is only the
possibility that v = 0 in Ω.

The forward problem is the only mathematical description that is constrained
in the hybrid inverse problem. However, the fact that the qualitative properties
of solutions to the constrained forward problem are not covered by Lem. 4.22
and Thm. 4.23, makes it di�cult to ensure ellipticity for the inverse problem; at
least in a general domain Ω. Also, the possible presence of critical points limits
the validity of the presented theorems and is a challenge in the development of
reconstruction methods.

We will not conduct a through theoretical analysis of the problem with limited-
view data in this thesis, but in Sec. 5.4.2 we present numerical reconstruction
results based on a model where only half of the boundary can be equipped with
a chosen Dirichlet boundary condition.

4.5.3 Noisy data

Measurement noise is inevitable in any practical application, but the analysis
and modelling of physical phenomena, that introduce noise in practical measure-
ments, is often neglected in the mathematical treatment of inverse problems [50].
Therefore, theoretical results are often only stated for the ideal and unrealistic
situation of noise-free data.

As explained in Chap. 1, a common challenge in the mathematical treatment
of inverse problems is that noisy data is not in the range of the operator that
models the physical system. In such situations existence of solutions clearly
does not hold, and the development of reconstruction schemes needs to re�ect
this fact.

In the next chapter we will develop and analyse several iterative reconstruction
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methods based on a noise-free interior data model. However, to test the robust-
ness of the methods, we will also try them on interior data contaminated by
noise. In this analysis we model the noisy data as

Ḣj := Hj(1 + ρrj), 1 ≤ j ≤ J, (4.22)

where ρ is the noise level and rj is a function, which for each point in Ω attains a
uniformly random value between −1 and 1. This type of noise has probably no
physical meaning, but we choose this model because of the simple mathematical
formulation. In Sec. 5.2.5 we will explain how to numerically implement the
noise model and in Sec. 5.3.5 we present convergence results for reconstructions
based on noisy data. As we will see, the algorithms behave very di�erently,
when the data is contaminated by noise.
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Chapter 5

Iterative reconstruction
methods for hybrid inverse

problems

Most hybrid inverse problems have a mathematical formulation that is based on
an underlying non-linear model. To develop a numerical algorithm that �nds ap-
proximate solutions to such non-linear formulations, we have to decide whether
to work directly on the non-linear model or, by symbolic manipulations on the
algebraic or PDE level, derive a linear approximation of the original model. In
all cases the decision is always based on a compromise between accuracy of the
model and the simplicity of the associated analysis and implementation.

Algorithms designed to approximately solve non-linear problems are usually
of iterative nature, such that they produce a series of simpler problems that
can be solved approximately by applying standard numerical tools. In this
chapter we will explain the idea behind a few of such reconstruction algorithms,
among which some have been used to solve various hybrid inverse problems in
impedance tomography with great success. Based on the theory presented in
Chap. 4, we will also explain why some of these methods fail to work in certain
cases. It is common feature of all the presented methods, that they are based
on a transformation of non-linear mathematical formulations into a series of
linear boundary value problems for which the corresponding solutions, under



74 Iterative reconstruction methods for hybrid inverse problems

appropriate conditions, converge to a solution to the original problem.

We will develop algorithms based on two well-known procedures to solve such
problems, namely the so-called Picard iterative scheme and the Newton iter-
ative scheme. These schemes are often chosen because they have an intuitive
formulation and they can be applied to most types of non-linear problems. In
the following chapter, we investigate the properties of the suggested methods,
present a numerical implementation, and relate the numerical results to a the-
oretical classi�cation of the underlying non-linear or linear inverse problems.

Just as di�erent techniques are needed for the theoretical analysis of linear and
non-linear PDEs, numerical methods are often designed to perform optimally
for a speci�c class of problems, such that the a priori known distinctive features
of solutions are captured. This is true whether the numerical method is based
on a linear or non-linear formulation. Our analysis and numerical results are
therefore also used to determine the similarities and di�erences between the
proposed algorithms, and to justify that the choice of algorithm should be based
on a theoretical analysis of the underlying problem.

Several reconstruction algorithms for problems that �ts in the presented math-
ematical framework already exists in the literature. They all consider a model
where the interior data correspond to meaningful physical quantities, because
the development of these algorithms was motivated by the wish to solve hybrid
inverse problems modelling novel imaging methods. As a consequence of our
general formulation of the hybrid inverse problem, we can take a uni�ed recon-
struction approach that accounts for both existing modalities and new problems
in a single formulation.

As explained in the introduction, when p = 1 the interior data model measure-
ments of the interior electrical current density. The mathematical formulation
is then identical to the one found in CDII and certain formulations of MREIT.
For these problems, reconstruction algorithms have been developed on both the
continuous [59, 76] and disctrete level [17]. The cited algorithms are variants of
a Picard iterative scheme applied to a non-linear PDE problem. An algorithm
based on the minimisation of a non-convex energy functional, has also been
suggested and implemented [72]. For a di�erent mathematical formulation of
MREIT, where the interior data models a single component of the magnetic
�ux density vector, several related reconstruction methods have also been de-
veloped [78, 84, 86].

For p = 2, the interior data model measurements of the interior electrical power
density. The inverse problem then coincides with the one from UMEIT. For this
problem we �nd that most existing reconstruction algorithms are of the Newton-
type; thus they are based on an linearisation of an underlying non-linear model.
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The simplest algorithms consider a single measurement in each iterative step and
are based on an approximate inverse to solve a coupled linear system [9, 35].
It is also possible to consider an appropriate least squares functional, which
can be minimised among piecewise constant conductivities [22]. Under certain
assumptions, symbolic manipulations of the underlying equations can produce
a Poisson-type problem for the unknown conductivity which can then be solved
numerically [56]. For multiple measurements, the normal form of the linearised
problem can also be solved using a so-called Levenberg-Marquardt iterative
scheme [16]. We should also mention that there has recently been developed
reconstruction algorithms for both p = 1 and p = 2 when the conductivity is
anisotropic [43, 69, 70].

Note that the aforementioned list of algorithms is not complete and several
additional reconstruction procedures for hybrid inverse problems have been
proposed, among which some have yet to be implemented numerically.

In Sec. 5.2.1, a reconstruction algorithm based on the Picard iterative scheme
is developed for the general non-linear mathematical setting and in Sec. 5.3.1
we analyse its performance and explain how this is related to the properties
of the underlying PDE formulation. In Sec. 5.2.2-5.2.4 we will develop three
iterative algorithms which are based on a successive linearisation of the inverse
problem. Two are directly related to the inversion of square linear systems,
while the last algorithm is a general inversion framework taking advantage of all
available measurements in each iteration. For the last algorithm, the numerical
implementation is based on the least squares �nite element method (LSFEM).
In these settings, the interior data is tacitly assumed to have the necessary
regularity.

In Sec. 5.3.2-5.3.4 we analyse the performance of these algorithms and explain
how this is related to the properties of the linearised problem. In Sec. 5.3.5 we
give a summary of the features of the four developed reconstruction methods
and also show convergence results for the situation with noisy interior data.
Additional results related to the propagation of singularities, partial data, and
limited-view data can be found in Sec. 5.4.

5.1 Iterative schemes for non-linear PDEs and

maps

In this section we will derive a family of iterative reconstruction algorithms
for the presented inverse problem. In Sec. 5.1.1 we explain how to use the
Picard iterative scheme to reformulate the inverse problem and in Sec. 5.2.1,
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we develop an iterative reconstruction algorithm and explain the key parts
of the corresponding numerical implementation. A theoretical analysis of the
reformulated problem is used to predict the performance of this method. We
explain the basic idea behind the Newton iterative scheme in Sec. 5.1.2, and in
Sec. 5.2.2-5.2.4 we develop three reconstruction algorithms based on an increas-
ing level of mathematical abstraction. Again, a theoretical analysis can predict
the performance of these three algorithms. Note that in all cases, the analysis
is done on the continuous level.

5.1.1 Picard iteration

A explained in Sec. 3.1, it is possible to recast the hybrid inverse problem as a
system of non-linear PDE problems∇ ·

Hj

|∇uj |p
∇uj = 0 in Ω,

uj = fj on ∂Ω,

1 ≤ j ≤ J. (5.1)

Now, consider the case of a non-linear problem for a function v, expressed in
the general algebraic form:{

F (q(v), v) = 0 in Ω,

v = f on ∂Ω,
(5.2)

where q is a non-linear functional of v, and F is an operator linear in v. In this
setting F could for instance be a partial di�erential operator on v satisfying one
or more boundary conditions and q a non-linear PDE coe�cient. It is well-known
that there is no general theory for solving such non-linear PDE problems [34].
Note that the general algebraic problem (5.2) corresponds to the problems (5.1)
when

qj =
Hj

|∇uj |p
and F (qj , uj) = ∇ · qj∇uj ,

for functions {uj}Jj=1 satisfying the appropriate boundary conditions.

One of the simplest approaches to approximate solutions to a non-linear PDE
problem such as (5.2) is to use a standard Picard iterative scheme, also known as
the method of successive substitutions [60]. The idea behind the Picard scheme
is basically to make an initial guess on the solution v0 and then use this guess
to approximate all non-linear coe�cients in the equation. This results in the
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series of linear problems

F (q(vk), vk+1) = 0 in Ω, k = 0, 1, 2, . . . ,

which are then solved successively for vk+1 satisfying vk+1 = f on ∂Ω. Here we
use a notation, where the superscript denotes the iteration number. This means
that the solution to the linear problem is used to update the approximation of
the non-linear coe�cient in each iteration. It is important to notice that the
transformation of the non-linear problem into a series of linear problems is not
a result of any algebraic or symbolic manipulations; it is simply a consequence
of a substitution made directly in the non-linear PDE.

The Picard iterations end when some stopping criteria is satis�ed. The usual
choice is dependent on the tolerance norm ‖vk+1−vk‖ in some suitable function
space and the iteration number k. However, for problems where the objective
is to estimate the PDE coe�cient q, and not the function v, it is more natural
to choose a stopping criteria based on the tolerance of this coe�cient. For a
collection of problems that are coupled by a common non-linear coe�cient, like
the derived non-linear PDE problems (5.1), the scheme can be applied to one
equation at a time in a successively manner, where the non-linear coe�cient is
updated in each step.

The performance of the Picard scheme relies on an initial guess that provides a
su�ciently good starting point, such that the successive approximation of the
non-linear coe�cient is improved in each iteration. In this way one expects
that the series of solutions to the linear problems converges to a solution to the
original non-linear problem. The convergence properties of the Picard iterative
scheme can be studied using contraction maps and the application of the Banach
�xed point theorem, however the practicality of applying this theory on a general
non-linear PDE problem seems rather limited [60]. Nonetheless, for the case p =
1, the convergence properties of the Picard scheme have been analysed [51, 75].

The Picard iterative scheme was the main idea behind one of the �rst recon-
struction algorithms for the hybrid inverse problems expressed in the form
of the non-linear PDE problems given by (5.1). In the setting of MREIT
(p = 1) with two interior measurements (J = 2), the non-linear problems
were solved approximately by successively applying the Picard procedure to
each of the corresponding PDE problems. The resulting algorithm was denoted
the J-substitution algorithm, due to the fact that the functions Hj models
measurements of the magnitude of the current density vector �eld, often denoted
by J [59]. Note that the original formulation of the J-substitution algorithm
considered the corresponding Neumann problem. A similar implementation of
the Dirichlet problem has also been used to solve the equivalent inverse problem
from CDII [75, 76].



78 Iterative reconstruction methods for hybrid inverse problems

In Sec. 4.1, the classi�cation of non-linear PDEs problems showed that each
problem is elliptic for p < 1, degenerate elliptic for p = 1 and hyperbolic for p >
1. The expected performance of the reconstruction algorithm is closely linked
to this classi�cation. For instance, as we are considering iterative algorithms, a
well-performing algorithm cannot successively propagate or amplify errors, and
therefore the classi�cation will be important when we analyse the performance
of the algorithm in Sec. 5.3.1.

5.1.2 Newton iteration

A di�erent way to reformulate the inverse problem is to ask for a procedure to
invert the non-linear data map de�ned by

H : σ 7→ [Hj ]
J
j=1.

Here we use the notation [Hj ]
J
j=1 =

(
H1, · · · , HJ

)T
.

Now, let us step back and consider this problem in the general sense of a non-
linear map between certain function spaces:

F : V →W.

For a given function w ∈ W in the image of F , there is no general theory for
�nding v ∈ V such that

F(v) = w.

However, it is well-known that Newton's method can be used to approximate
solutions to such operator equations. From an initial guess v0 of the solution v,
Newton's method utilises a �rst-order approximation of the map between v−v0

and F(v)−F(v0) based on a linearisation of F at v0.

The �rst-order approximation in V of v − v0 is a solution δv0 to the linear
operator equation

dF|v0(δv0) = w −F(v0),

where dF|v0 denotes the functional derivative of F at v0. Note that if V andW
are Banach spaces, the functional derivative should be understood in the sense
of the Fréchet derivative; see Sec. 2.1. The Newton iterative scheme is to apply
this linearisation in an iterative manner, such that it forms a sequence of linear
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problems

dF|vk(δvk) = w −F(vk), k = 0, 1, 2, . . . ,

where vk+1 = vk + δvk. Under favourable properties of the non-linear map,
Newton's method is known to ensure convergence if v0 is su�ciently close to
v [29].

A linearisation of the non-linear data map H gives the linear equations for δσk

dH|σk(δσk) = [Hj ]
J
j=1 −H(σk), k = 0, 1, 2, . . . . (5.3)

As derived in Sec. 3.2, the functional derivative of H at σk in direction δσk is
given by

dH|σk(δσk) =

[
δσk|∇ukj |p + pσk

∇ukj · ∇δukj
|∇ukj |2−p

]J
j=1

, (5.4)

where δukj solves the PDE problem{
∇ · σk∇δukj = −∇ · δσk∇ukj

δukj = 0

in Ω,

on ∂Ω.
(5.5)

The equations (5.3), (5.4) and (5.5) form a collection of linear PDE problems
for the k'th iterate (δσk, {δukj }Jj=1), and they can be expressed in the matrix
form

Ax = b, (5.6)
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where

A =



∇ · ([·]∇uk1) ∇ · (σk[·]) · · · 0
...

...
. . .

...
∇ · ([·]∇ukJ) 0 · · · ∇ · (σk[·])
|∇uk1 |p pσk

∇uk1 ·∇[·]
|∇uk1 |2−p

· · · 0

...
...

. . .
...

|∇ukJ |p 0 · · · pσk
∇ukJ ·∇[·]
|∇ukJ |2−p


,

x =


δσk

δuk1
...

δukJ

 , b =


0
...
0

[Hj ]
J
j=1 −H(σk)

 ,
and homogeneous Dirichlet boundary conditions are imposed on {δukj }Jj=1. Note
that this system consists of 2J equations and J + 1 unknowns.

This is equivalent to the linear system that was classi�ed in Sec. 4.2. For
instance, by Thm. 4.2, we know that each 2 × 2 subsystem for (δσk, δukj ) is
DN elliptic if, and only if, p < 1.

In Sec. 5.2.2-5.2.4 we will develop three di�erent reconstruction algorithms using
the presented linearisation. The algorithms are designed to solve the matrix
equation (5.6), and they therefore depend on the properties of the governing
matrix. The �rst two algorithms consider a square system of equations. These
algorithms are not necessary limited to the case J = 1, since they can be applied
iteratively to square subsystems if the system is not square; thus for p ≥ 1 they
work on a collection of non-elliptic subsystems. To take advantage of all data
sets in each iteration, and thereby the possible DN ellipticity of the full system,
the third algorithm is designed to �nd a least squares minimising solution which
is suitable in the case of an overdetermined system.

5.2 Iterative reconstruction algorithms

In this section we explain how the presented theory can be applied to con-
struct four iterative reconstruction algorithms for hybrid inverse problems in
impedance tomography. The �rst algorithm is based on Picard iterations, and
the next three algorithms are based on Newton iterations. We also present
a mathematical formulation of each algorithm, which allows for a numerical
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implementation using the �nite element method.

5.2.1 Picard-type algorithm

The Picard iterative scheme, presented in Sec. 5.1.1, can be applied directly to
the non-linear PDE formulation of the inverse problem to produce the following
algorithm:

Algorithm 1 Picard-type algorithm

De�ne σ0, maximum number of iterations K and tolerance level T .
Set k = 0 and ε = 2T .

while k < K and ε > T do
j = (k mod J) + 1
Solve for ukj in {

∇ · σk∇ukj = 0 in Ω,

ukj = fj on ∂Ω,

and update

σk+1 =
Hj

|∇ukj |p
.

Set ε = ‖σk+1 − σk‖ and k = k + 1.
end while

We tacitly assume that σk is uniformly bounded above and below in Ω for
all k, such that the PDE problems for ukj are all well-posed. Note that the
modulo operation (mod) is used to successively iterate between the J interior
measurements, and for each increment in k a single data set is used. As
mentioned earlier, for p = 1 this algorithm is similar to existing work [59, 75, 76].

Numerical implementation

It is fairly simple to implement Algorithm 1, since each iteration only involves
some arithmetic operations on known functions and the solution of a linear PDE
problem. We now explain how to derive the mixed weak form of the linear PDE
problem which can be implemented using the �nite element method.
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First, let the imposed boundary conditions be smooth, i.e. fj ∈ C∞(∂Ω). For
σk ∈ L∞+ (Ω), we want to solve for ∇ukj in the linear inhomogeneous problem{

∇ · σk∇ukj = 0 in Ω,

ukj = fj on ∂Ω.
(5.7)

We use a mixed formulation, such that we get a problem for the gradient ∇ukj ,
which is crucial for the reconstruction algorithm. In this way, we do not need
to numerically di�erentiate ukj , which can introduce additional errors. With the
help of the function vkj = ukj−Fj , where Fj denotes the harmonic extension of fj
into Ω, and the vector functionwk

j , we can reformulate (5.7) as the homogeneous
mixed problem 

∇ ·wk
j = −∇ · σk∇Fj in Ω,

wk
j = σk∇vkj in Ω,

vkj = 0 on ∂Ω.

(5.8)

The solution (vkj ,w
k
j ) to (5.8) then de�nes the pair (ukj ,∇ukj ) using the de�nition

of vkj . The mixed weak formulation of (5.8) is then to �nd (vkj ,w
k
j ) ∈ H1

0 (Ω)×
Hdiv(Ω) such that∫

Ω

[
(σk)−1wk

j ·ψ + vkj∇ ·ψ + φ∇ ·wk
j

]
dx =∫

Ω

σk∇Fj · ∇φdx, ∀ (φ,ψ) ∈ H1
0 (Ω)×Hdiv(Ω).

This weak form is implemented in a �nite dimensional setting with appropriate
conforming element functions via the �nite element method. Note that ∇Fj
should be implemented using its analytical expression, if it is known, to avoid
errors from numerical di�erentiation.

5.2.2 Newton-type algorithm for square subsystems

When the linearised inverse problem (5.6) is a square system of equations, it is
most likely not invertible. In the elliptic case (p < 1), it is only possible to show
optimal stability properties of solutions to the linearised system and uniqueness
does not hold in general. This was explained in detail in Chap. 4.

In the following algorithm we treat this problem of non-uniqueness, by asking
for a norm minimising solution to the linearised system. As we will show in a
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moment, this produces a unique solution, at least in the elliptic case. Also, it
works as a motivational factor for the development of the next two algorithms.

Algorithm 2 Newton-type algorithm for square subsystems

De�ne σ0, maximum number of iterations K and tolerance level T .
Set k = 0 and ε = 2T .

while k < K and ε > T do
j = (k mod J) + 1
Solve for ukj in {

∇ · σk∇ukj = 0 in Ω,

ukj = fj on ∂Ω.

Find a norm minimising solution (δσk, δukj ) that satis�es
[
∇ · [·]∇ukj ∇ · σk∇[·]
|∇ukj |p pσk

∇ukj ·∇[·]
|∇ukj |2−p

] [
δσk

δukj

]
=

[
0

Hj − σk|∇ukj |p
]

δukj = 0

in Ω,

on ∂Ω,

and update

σk+1 = σk + δσk.

Set ε = ‖δσk‖ and k = k + 1.
end while

Again, we tacitly assume that σk is uniformly bounded above and below in Ω for
all k, such that the PDE problems for ukj are all well-posed. In this algorithm,
for each increment in k a single data set is used.

Numerical implementation

To solve for ukj we use the implementation that was presented for the Picard
iteration in 5.2.1. The only new part in the implementation is therefore to
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numerically �nd a norm minimising solution to the system
[
∇ · [·]∇ukj ∇ · σk∇[·]
|∇ukj |p pσk

∇ukj ·∇[·]
|∇ukj |2−p

] [
δσk

δukj

]
=

[
0

Hj − σk|∇ukj |p
]

δukj = 0

in Ω,

on ∂Ω.

(5.9)

We ask for a solution that is norm minimised in L2(Ω) by adding an appropriate
Lagrange multiplier term to the weak form. Under the assumption that the
linear operator in (5.9) is closed, the solution is then unique [40]. For p < 1
it can be shown that this assumption is indeed satis�ed [57]. Analysing the
appropriate functional setting, multiplying each equation by a test function and
integrating by parts, lead to the weak formulation. We want to �nd (δσk, δukj ) ∈
L∞(Ω)×H1

0 (Ω) such that

∫
Ω

[(
δσk|∇ukj |p + pσk

∇ukj · ∇δukj
|∇ukj |2−p

)
φ

+
(
δσk∇ukj + σk∇δukj

)
· ∇ψ + α(δσkφ+ δukjψ)

]
dx =∫

Ω

(
Hj − σk|∇ukj |p

)
φdx, ∀ (φ, ψ) ∈ L∞(Ω)×H1

0 (Ω).

Here α works as a regularisation parameter, that enforces the norm penalty.
In our implementation we use a value of α = 10−6, but testing with di�erent
values in the interval [10−12, 10−3] did not change the qualitative properties of
the found solution. This weak form is also implemented in a �nite dimensional
setting with appropriate conforming element functions via the �nite element
method.

5.2.3 Newton-type algorithm for square subsystems using

an approximate inverse

A di�erent way to overcome the problem of non-uniqueness for solutions to the
linearised system, is to derive an analytic expression for an approximate inverse
for the matrix equation. In the following paragraph, we will construct such an
approximate inverse, based on certain assumptions about the solution.

Each square subsystem of the linearised inverse problem for (δσk, δukj ) can be
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expressed as the scalar operator equation for δσk

(Mk
j + P kj )δσk = Hj − σk|∇ukj |p,

where

Mk
j [·] = |∇ukj |p[·], P kj [·] = pσk

∇ukj · ∇δukj ([·])
|∇ukj |2−p

,

and δukj ([·]) solves {
∇ · σk∇δukj ([·]) = −∇ · [·]∇ukj

δukj = 0

in Ω,

on ∂Ω.

We can �nd an approximation of δσk if we can approximate the operator
(Mk

j + P kj )−1. First note that (Mk
j )−1 is well-de�ned and therefore

(Mk
j + P kj )−1 = (I + (Mk

j )−1P kj )−1(Mk
j )−1,

where I denotes the identity map. Now, we want to construct an approximate
inverse of (I + (Mk

j )−1P kj ). We make the assumption σk∇δukj ([·]) ≈ −[·]∇ukj ,
which allows us to write

(Mk
j )−1P kj [·] ≈ −pσk

∇ukj ·
[·]
σk
∇ukj

|∇ukj |2
= −pI[·].

For p 6= 1 we then have that
(
I + 1

p−1 (Mk
j )−1P kj

)
(Mk

j )−1 is an approximate

inverse of Mk
j + P kj because(

I +
1

p− 1
(Mk

j )−1P kj

)
(Mk

j )−1(Mk
j + P kj ) =(

I +
1

p− 1
(Mk

j )−1P kj

)
(I + (Mk

j )−1P kj ) =

I +

(
1 +

1

p− 1

)
(Mk

j )−1P kj +
1

p− 1

(
(Mk

j )−1P kj
)2 ≈

I

(
1−

(
1 +

1

p− 1

)
p+

1

p− 1
p2

)
= I.

We therefore have that

δσk ≈
(
I +

1

p− 1
(Mk

j )−1P kj

)
(Mk

j )−1
(
Hj − σk|∇ukj |p

)
, p 6= 1.
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This approximate inverse can be used to construct the following reconstruction
algorithm:

Algorithm 3 Newton-type algorithm using an approximate inverse

De�ne σ0, maximum number of iterations K and tolerance level T .
Set k = 0 and ε = 2T .

while k < K and ε > T do
j = (k mod J) + 1
Solve for ukj in {

∇ · σk∇ukj = 0 in Ω,

ukj = fj on ∂Ω.

De�ne

τ =
Hj

|∇ukj |p
− σk.

Solve for δukj (τ) in{
∇ · σk∇δukj (τ) = −∇ · τ∇ukj

δukj (τ) = 0

in Ω,

on ∂Ω,

and update

σk+1 =
Hj

|∇ukj |p
+

p

p− 1
σk
∇ukj · ∇δukj (τ)

|∇ukj |2
.

Set ε = ‖σk+1 − σk‖ and k = k + 1.
end while

Again, we tacitly assume that σk is uniformly bounded above and below in Ω
for all k, such that the PDE problems for ukj are all well-posed. Note that for
each increment in k a single data set is used.

This type of algorithm is closely related to, and inspired by, the works of Ammari
et al. [8, 9] and Gebauer et al. [35]. They both used a similar algorithm to solve
the inverse problem from UMEIT. Up to a sign di�erence, the algorithms are in
fact similar for p = 2. Note that for p close to zero, Algorithm 3 is very similar
to Algorithm 1.
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Numerical implementation

Again, to solve for ujk we use the implementation that was presented for the Pi-
card iteration in 5.2.1. Besides some arithmetic operations on known functions,
the only new part of this implementation is to numerically solve for δukj (τ) in:{

∇ · σk∇δukj (τ) = −∇ · τ∇ukj
δukj (τ) = 0

in Ω,

on ∂Ω.

We make an implementation based on a mixed formulation because σk∇δukj
is needed for the approximate inverse. Expressing the PDE as a �rst-order
system for (δukj , σ

k∇δukj ), multiplying each equation by a test function and
integrating by parts, lead to the weak formulation. We want to �nd (v,w) ∈
H1

0 (Ω)×Hdiv(Ω) such that∫
Ω

[
(∇ ·w)φ+ (σk)−1w ·ψ + (∇ ·ψ)v

]
dx =∫

Ω

τ∇ukj · ∇φdx, ∀ (φ,ψ) ∈ H1
0 (Ω)×Hdiv(Ω).

Here, σk∇δukj (τ) is de�ned by the relation (δukj (τ), σk∇δukj (τ)) = (v,w). This
weak form is also implemented in a �nite dimensional setting with appropriate
conforming element functions via the �nite element method.

5.2.4 Newton-type algorithm for the full linearised system

When we have access to multiple measurements, the linearised inverse prob-
lem (5.6) is not a square system of equations. In this case, it is the standard
approach to de�ne a solution of such overdetermined systems using the method
of least squares. A least squares solution to the linearised inverse problem (5.6),
is a function

x? = argmin
x
‖Ax− b‖2L2(Ω),

for x satisfying the previously de�ned homogeneous boundary conditions in
appropriate function spaces. With this framework, it is possible to utilise all
measurements simultaneously in each step in the Newton algorithm. Thus, for
square and overdetermined systems we can de�ne the following algorithm:

Algorithm 4 Newton-type algorithm for the full linearised system
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De�ne σ0, maximum number of iterations K and tolerance level T .
Set k = 0 and ε = 2T .

while k < K and ε > T do
for (j = 1, . . . , J)

Solve for ukj in {
∇ · σk∇ukj = 0 in Ω,

ukj = fj on ∂Ω.

end for
Find

x? = argmin
x
‖Ax− b‖2L2(Ω),

and update

σk+1 = σk + δσk.

Set ε = ‖δσk‖ and k = k + 1.
end while

Again, we tacitly assume that σk is uniformly bounded above and below in Ω
for all k, such that the PDE problems for ukj are all well-posed. Note that for
each increment in k all J data sets are used.

This algorithm seems to be new, but for p = 2 it is related to work by Bal et
al. [16], where the so-called Levenberg�Marquardt algorithm is used to �nd a
solution that minimises a regularised residual. It also have some resemblance to
work by Capdeboscq et al., where σ is assumed to be piecewise constant [22].

Numerical implementation

Again, to solve for ukj we use the implementation that was presented for the
Picard iteration in 5.2.1. A straightforward numerical implementation of the
least squares problem is not practical, because it turns out that H2-conforming
�nite element spaces are necessary to approximate the functions {δuj}Jj=1. This
follows from the fact that A is a second-order operator. H2-spaces are known
to be impractical to implement and as a technical step the matrix equation

Ax = b in Ω,
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is therefore expressed in the mixed form of a �rst-order system{
Áx́ = b

Gx = x́

in Ω,

in Ω,
(5.10)

where G = diag(1,∇, . . . ,∇) and Á is de�ned by the relation A = ÁG. A
simple analysis of the operators Á and G shows that they act as operators

Á : H1(Ω)× [Hdiv(Ω)]J → [L2(Ω)]2J ,

G : H1(Ω)× [H1(Ω)]J → H1(Ω)× [L2(Ω)]J .

Thus, they specify the appropriate function space setting which satis�es the
boundary conditions:

(x, x́) ∈ H1(Ω)× [H1
0 (Ω)]J ×H1(Ω)× [Hdiv(Ω)]J .

To this formulation we assign the energy functional

I(x, x́) = ‖Áx́− b‖2L2(Ω) + ‖Gx− x́‖2L2(Ω).

We do not know if this functional admits a unique minimiser. We therefore ask
for a function x? that is norm minimised in L2(Ω) by adding an appropriate
Lagrange multiplier term to the weak form. Under the assumption that A
is a closed operator, the problem is then known to admit an unique solution,
that is equivalent to the one found by applying the continuous form of the
Moore�Penrose pseudoinverse to the linear system [40]. When A is DN elliptic,
it can be shown that this assumption is indeed satis�ed [57]. For a minimiser
(x?, x́?) of I(x, x́) the �rst variation vanishes, which means that

lim
t→0

d

dt
I(x? + tφ, x́? + tφ́) = 0,

∀ (φ, φ́) ∈ H1(Ω)× [H1
0 (Ω)]J ×H1(Ω)× [Hdiv(Ω)]J .

Altogether, this leads to the least squares weak formulation of (5.10). We want
to �nd (x?, x́?) ∈ H1(Ω)× [H1

0 (Ω)]J ×H1(Ω)× [Hdiv(Ω)]J such that∫
Ω

[
Áx́?Áφ́+ (Gx? − x́?)(Gφ− φ́) + αx?φ

]
dx =

∫
Ω

b Áφ́ dx, (5.11)

∀ (φ, φ́) ∈ H1(Ω)× [H1
0 (Ω)]J ×H1(Ω)× [Hdiv(Ω)]J .

This is the norm minimising continuous LSFEM weak formulation applied to the
�rst-order system (5.10) with appropriate trial and test functions. We choose
the Lagrange multiplier α = 10−6, but again testing with di�erent values in
the interval [10−12, 10−3] did not change the qualitative properties of the found
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solution. Note that the homogeneous Dirichlet boundary conditions for {δuj}Jj=1

are imposed by the chosen function spaces H1
0 (Ω). Again, the weak form is also

implemented in a �nite dimensional setting with appropriate conforming element
functions via the �nite element method.

The weak formulation implicitly requires that the so-called concomitant of Áx́?−
b and φ́ vanishes for the weak formulation to be identi�ed with the corresponding
normal equation. This is a direct consequence of the LSFEM formulation [18,
Rem. 3.12]. As it was shown in Sec. 4.3, a problem of the type (5.11) can be
identi�ed with a weak formulation of the normal equation

A∗Ax? = A∗b in Ω,

for x? satisfying the additional boundary condition

x? = 0 on ∂Ω.

5.2.4.1 Partial data

Based on the mathematical setting described in Sec. 4.5.2.1, we want to extend
the previous algorithm to work on the partial data problem.

Now, in the partial data case we rede�ne a least squares solution to the linearised
�rst-order problem (4.6), as a minimiser of the least squares functional

I(x, x́) = ‖Áx́− b‖2V + ‖Gx− x́‖2L2(Ω), (5.12)

where

V = [L2(Ω)]J × [L2(Γ)]nJ .

By a derivation similar to the one leading to (5.11), we get the least squares
weak formulation of (5.12). We want to �nd (x?, x́?) ∈ H1(Ω) × [H1

0 (Ω)]J ×
H1(Ω)× [Hdiv(Ω)]J such that∫

Ω,Γ

Áx́?Áφ́ dx+

∫
Ω

[
(Gx? − x́?)(Gφ− φ́) + αx?φ

]
dx =

∫
Ω,Γ

b Áφ́ dx,

∀ (φ, φ́) ∈ H1(Ω)× [H1
0 (Ω)]J ×H1(Ω)× [Hdiv(Ω)]J .

Here, what we mean by
∫

Ω,Γ
is that the integration is over Ω for the top J

equations, over Γ for the bottom nJ equations. Again, we choose the Lagrange
multiplier α = 10−6, and the weak form can be implemented in a �nite di-
mensional setting with appropriate conforming element functions via the �nite
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element method.

By a suitable de�nition of the adjoint Á
∗
it is possible to show a correspondence

between solutions to the normal form and the weak form of the least squares
formulation, if, for example, δσk and {δukj }Jj vanishes on ∂Ω, and δσk and
{∇δukj }Jj vanishes on ∂Γ. This can be seen by a calculation similar to the one
performed in the proof of Lem. 4.7.

5.2.4.2 Limited-view data

The mathematical setting for limited-view data was explained in Sec. 4.5.2.2.
Here we present a way to rede�ne the numerical implementation of the forward
problem to cover this situation.

In the problem with limited-view data, we need to solve a forward problem of
the type 

∇ · σ∇u = 0 in Ω,

u = f on ∂Ω \Υ,

∂νu = 0 on Υ.

(5.13)

First, we transform (5.13) into the �rst-order system
∇ ·w = 0 in Ω,

w = σ∇u in Ω,

u = f on ∂Ω \Υ,

∂νu = 0 on Υ.

(5.14)

Since we are dealing with mixed boundary conditions, we cannot formulate
the problem in a corresponding homogeneous form, as we did in Sec. 5.2.1.
Instead we use integration by parts to write up the weak form, and treat the
Dirichlet condition as a natural condition; that is, it is included in the weak
form, and treat the Neumann condition as a strong condition that is enforced
on the solution space. The mixed weak formulation of (5.14) is then to �nd
(u,w) ∈ H1

0 (Ω)×Hdiv(Ω) such that∫
Ω

[
σ−1w ·ψ + u∇ ·ψ + φ∇ ·w

]
dx =

∫
∂Ω\Υ

f∂νφds,

∀ (φ,ψ) ∈ H1(Ω)×Hdiv(Ω),



92 Iterative reconstruction methods for hybrid inverse problems

for (u, φ) satisfying a homogeneous Neumann boundary condition on Υ. Again,
the weak form can be implemented in a �nite dimensional setting with appro-
priate conforming element functions via the �nite element method.

5.2.5 Noise model

To test the robustness of the presented reconstruction methods, we want to anal-
yse the convergence properties of the four algorithms when the measurements
are corrupted by noise.

For this, we use the simple noise model that was introduced in Sec. 4.5.3. In the
numerical �nite element setting, we denote by Hj the vector of discrete values
of Hj and denote its noisy counterpart by Ḣj , which is de�ned by the relation

Ḣj = Hj + ρrTj Hj , 1 ≤ j ≤ J. (5.15)

Here rj is a vector of uniformly distributed random numbers between −1 and
1. For the results in the next section, we the use the two noise levels ρ =
0.1 and ρ = 0.5. Note that the random vectors rj are generated before the
analysis begins, such that exactly the same noisy measurements are used in all
computations.

5.3 Numerical results

In this section, we apply the four presented iterative reconstruction methods
to the class of non-linear inverse problems and analyse their performance. The
implementation of the discrete �nite dimensional weak formulation of the linear
problem for uj , the linearised inverse problem and all numerical operations have
been done using The FEniCS Project [65].

For the numerical analysis we consider Ω = D, the unit disc in the plane.
Meshing is done automatically in FEniCS. For this work we use a uniform mesh
of 6084 elements, because it provides a good compromise between the �nite
element methods ability to capture local phenomena and the computational
cost. It should, however, be noted that the interior measurements {Hj}Jj=1

are calculated on a di�erent mesh with 6400 elements and afterwards projected
onto the mesh of 6084 elements. This is done to avoid committing an inverse
crime. For all visualising purposes we use the open-source visualisation software
Paraview [42].
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As a phantom we use the function σ shown in Fig. 5.1, which is based on the
Matlab code for the heart-and-lungs phantom [73]. It has a background value
of 1.0 that is perturbed in two ellipses where the value is 0.5 and in a circular
region where the value is 2.0. A smoothing layer around each perturbation is
de�ned using quintic Hermite blending functions, such that σ ∈ C2(Ω) [39]. For
the initial guess on σ, we use σ0 = 1. In all the plots of reconstructions we will
use the same colorbar as the one shown in Fig. 5.1.

0.4

2.1

0.8

1.2

1.6

2

Figure 5.1: The phantom σ.

For the presented algorithms of the noise-free and full data problem, we consider
�ve values of p corresponding to two elliptic (p = 0.5 and p = 0.75), one
degenerate elliptic (p = 1) and two hyperbolic (p = 1.5 and p = 2) problems. In
all reconstructions the boundary conditions f1 = x/2 and f2 = (x+y)/(2|x+y|)
are used, such that the linearised systems are all DN elliptic when J = 2. This
is easy to conclude for the initial iteration, but by a visual inspection of the
directions of the computed gradients ∇uk1 ,∇uk2 it seems that the systems indeed
stay DN elliptic for all the presented results. The factor 1/2 in the boundary
conditions is chosen to reduce the successive ampli�cation of errors. For the
stopping criteria we use a �xed number of ten iterations.

In Sec. 5.3.1-5.3.4 will go though the results from the four algorithms one by one
and in Sec. 5.3.5 we give a summery of the �ndings and also show convergence
results using noisy data. Additional results in Sec. 5.4 show reconstructions
that visualise how the loss of ellipticity for the linearised problem manifest
itself as propagating singularities in the reconstruction, exactly as explained by
theory. We also present additional reconstructions based on the partial data
and limited-view data models.
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5.3.1 Picard-type algorithm

Fig. 5.2 shows four plots of the reconstructions for p = 0.5 and p = 1 after
ten Picard iterations (Algorithm 1), utilising a single measurement (Fig. 5.2a
- 5.2b) and two measurements (Fig. 5.2c - 5.2d). For p = 0.5, the algorithm
provides a nearly perfect reconstruction. When p = 1 we get a reconstruction
where we can identify the three perturbations in the domain, but the contrast
is too low when we only use a single measurement. Utilising a second interior
measurement increases the contrast and the reconstruction is very good.

(a) p = 0.5, J = 1 (b) p = 1, J = 1

(c) p = 0.5, J = 2 (d) p = 1, J = 2

Figure 5.2: Plots of reconstructions of σ after ten Picard iterations, with a sin-
gle interior measurement (J = 1) and two interior measurements
(J = 2).

On Fig. 5.3 we have plotted the relative L2(Ω) error in the reconstruction as
a function of the iteration number. This clearly depends on the parameter p.
For the chosen values of p ≤ 1, the algorithm seems to converge, however the
convergence rate is slow for p = 1. Note that the convergence rate increases
when we utilise a second interior measurement. Also note that the error does
not seem to converge to zero for p = 0.5, which is expected since the inverse
problem is not solved on the same mesh as the one we use to generate the interior
measurements. The four reconstructions for p = 0.5 and p = 0.75 have pairwise
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similar convergence plots simply because the problems are already elliptic when
J = 1, and the additional measurement is in some sense redundant. However,
the convergence rate is improved slightly. For p = 1.5 and p = 2 we do not get
convergence for this algorithm.
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Figure 5.3: Convergence plots for the Picard iterations with one and two
interior measurements. Note how the convergence rate depends
on the parameter p.

In Sec. 4.1 we classi�ed the non-linear PDE problems. When we apply the
Picard scheme, we expect that the solution found in each iteration has properties
that are related to the solutions of the non-linear PDE problems. Based on
the classi�cation as elliptic, degenerate elliptic and hyperbolic, and the known
associated properties of solutions to such PDE problems, it seems reasonable
that the Picard iteration works best in the elliptic case (p = 0.5 and p = 0.75)
and does not converge when we have hyperbolic problems (p = 1.5 and p = 2). In
the degenerate elliptic case (p = 1, J = 1), it was shown in the proof of Thm. 4.1,
that the non-linear problem (3.1) is degenerate in the direction of ∇u1 [12]. For
the chosen set (σ, f1), the degeneracy is therefore close to being horizontal.
This most likely accounts for the low contrast and what looks like vertical
smoothing, especially near the boundaries of the perturbations where the normal
is also horizontal. When the algorithm iterates between two degenerate elliptic
problems that do not share degenerate directions (p = 1, J = 2), we see that
the reconstruction has no visible artifacts.

The Picard iteration is not only simple to implement, it is also computationally
inexpensive. We use a standard laptop for the computations, and each iteration
takes around 1.0 second.
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5.3.2 Newton-type algorithm for square subsystems

Fig. 5.4 shows four plots of the reconstructions for p = 0.5 and p = 1 after
ten Newton iterations (Algorithm 2), utilising a single measurement (Fig. 5.4a -
5.4b) and two measurements (Fig. 5.4c - 5.4d). Again, we see that the algorithm
gives a nearly perfect reconstruction for p = 0.5. For p = 1, J = 1, we
get a reconstruction that has some artifacts, but the contrast is better than
the reconstruction obtained with the Picard iteration. For p = 1, J = 2, the
reconstruction is improved, but the Picard iteration gives a reconstruction with
less artifacts.

(a) p = 0.5, J = 1 (b) p = 1, J = 1

(c) p = 0.5, J = 2 (d) p = 1, J = 2

Figure 5.4: Plots of reconstructions of σ after ten Newton iterations, with a
single interior measurement (J = 1) and two interior measure-
ments (J = 2).

Looking at the convergence plots in Fig. 5.5, we see that after just two iterations
the reconstruction error is almost constant for p ≤ 1. Also note that the use
of an additional data set (J = 2) does not seem to improve the reconstruction
error or the convergence rate very much for the elliptic problems (p < 1). For
p = 1.5 and p = 2, again we have an algorithm that does not converge.

This algorithm is based on a linearisation of the underlying non-linear hybrid
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Figure 5.5: Convergence plots for the Newton iterations with one and two
interior measurements.

inverse problem, and we know exactly how to classify this linearised system. This
implies that the stability properties and possible non-uniqueness of the problem
is captured by this method. When p < 1 we have uniqueness up to smoothing
terms for the linearised problem, and this can explain the good reconstruction.
For the degenerate elliptic case (p = 1, J = 1), we showed in Sec. 4.2 that the
linearised problem (5.6) is degenerate elliptic in the direction of∇uk1 . Again, this
most likely accounts for the vertical smoothing, especially near the boundaries
of the perturbations where the normal is horizontal. When p = 1.5 and p = 2,
we have a hyperbolic system, only equipped with Dirichlet boundary data, that
permits propagation of singularities and this can also explain why the algorithm
does not converge.

This Newton type algorithm is a bit more computational expensive than the
Picard algorithm (Algorithm 1), since it requires solving a coupled PDE system
in each iteration. In our case, each iteration takes around 1.3 seconds.

5.3.3 Newton-type algorithm for square subsystems using

an approximate inverse

Fig. 5.6 shows four reconstructions produced after ten Newton iterations using
an approximate inverse (Algorithm 3), again utilising a single measurement
(Fig. 5.6a - 5.6b) and two measurements (Fig. 5.6c - 5.6d). The approximate
inverse is only de�ned for p 6= 1, thus we do not consider the case p = 1.

In all four reconstructions we see that the three perturbations are clearly visible.
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In the elliptic case (p = 0.5) the reconstructions and the convergence plot is
very similar to the ones for the Picard algorithm and the Newton algorithm
presented in the last sections. For p = 2 we now have what appears to be a
converging algorithm, but in the case of a single measurement we have several
visible artifacts in the reconstruction. This is due to the hyperbolic nature of
the problem. We will give a �ner characterisation of such artifacts in Sec. 5.4.1,
where we also explain the link to the theoretical result of Thm. 4.17.

(a) p = 0.5, J = 1 (b) p = 2, J = 1

(c) p = 0.5, J = 2 (d) p = 2, J = 2

Figure 5.6: Plots of reconstructions of σ after ten Newton iterations using an
approximate inverse, with a single interior measurement (J = 1)
and two interior measurements (J = 2).

By looking at the convergence plots in Fig. 5.7, we see that the use of an
additional data set does not change much when p < 1, but decrease the re-
construction error signi�cantly when p > 1. For p < 1, J = 2 the error reaches
a almost constant level after three iterations. Again, the classi�cation of the
linearised inverse problem can explain why the reconstructions for p < 1 are
better than the ones produced when p > 1. When the linear system is (DN)
elliptic (p < 1 or J = 2) the reconstruction errors after ten iterations are
comparable. Also, note that the algorithm seems to perform best for p = 0.5 and
p = 2 when J = 2. A possible explanation, is that the norm of the approximate
inverse increases when p approaches 1. Thus, for values of p close to 1, errors
are to a certain extend ampli�ed more in the iterative scheme.



5.3 Numerical results 99

0 2 4 6 8 10

k
10-3

10-2

10-1

100

101

102

‖σ
−σ

k
‖ L

2
(Ω

)

‖σ
‖ L

2
(Ω

)

p=2

p=1.5

p=0.75

p=0.5

(a) J = 1

0 2 4 6 8 10

k
10-3

10-2

10-1

100

101

102

‖σ
−σ

k
‖ L

2
(Ω

)

‖σ
‖ L

2
(Ω

)

p=2

p=1.5

p=0.75

p=0.5

(b) J = 2

Figure 5.7: Convergence plots for the Newton iterations using an approximate
inverse with one and two interior measurements.

Compared to the previous algorithm, the use of an approximate inverse really
simpli�es the implementation, but the computational complexity is higher, be-
cause of the additional arithmetic operations. In our case, each iteration takes
around 3.0 seconds.

5.3.4 Newton-type algorithm for the full linearised system

Fig. 5.8 shows plots of the reconstructions produced after ten iterations using
the norm minimising LSFEM formulation (Algorithm 4). Again we make recon-
structions using a single measurement (Fig. 5.8a - 5.8c) and two measurements
(Fig. 5.8d - 5.8f).

In all six reconstructions we see that the three perturbations are clearly visible.
For p = 0.5 we get good reconstructions, which are comparable with all the
other algorithms. Again, since the problem only needs a single measurement to
be elliptic, the additional measurement is in some way redundant. For p = 1
we get reconstructions that are comparable to ones we got using the Newton
algorithm for square subsystems and for p = 2 they are comparable to the ones
we got using an approximate inverse. Again, the artifacts that are visible for
p = 1, J = 1 and p = 2, J = 1 can be explained by the fact that we solve a
non-elliptic problem; see also Sec. 5.4.1.

On the convergence plots in Fig. 5.9, we see how the algorithm converges for
all ten problems. When p < 1, the convergence rate is similar to the two other
algorithms for the linearised inverse problems, and when J = 1 we now get
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(a) p = 0.5, J = 1 (b) p = 1, J = 1 (c) p = 2, J = 1

(d) p = 0.5, J = 2 (e) p = 1, J = 2 (f) p = 2, J = 2

Figure 5.8: Plots of reconstructions of σ after ten norm minimising least
squares iterations, with a single interior measurement (J = 1)
and two interior measurements (J = 2).

convergence for all �ve values of p. For J = 2 the reconstructions are comparable
to the ones we got using the approximate inverse. For p = 1 the convergence
is comparable to the ones we got using Newton method for square subsystems.
In some sense, this reconstruction method captures the best features of both
methods. However, a drawback is that it is computationally more expensive.
In our case, each iteration takes around 8 seconds when J = 1 and around 25
seconds when J = 2.
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Figure 5.9: Convergence plots for the norm minimising least squares algorithm
with one and two interior measurements.

5.3.5 Comparison of reconstruction methods and noisy

data

In this section we present a summery of the numerical results, along with results
for noisy data; see Tab. 2-5.

For each of the four algorithms we list the relative L2(Ω)-error after ten iter-
ations, for noise-free data and when the data is corrupted by noise using the
presented noise model (5.15). All errors in the tables are rounded to four decimal
places. If no number is present is the table, it means that the algorithm was not
converging, which here is de�ned by the criteria, that the relative error after ten
iterations is larger than the initial relative error. We also list the classi�cation of
the problem for a given p and J . This should be understood, as the classi�cation
of the inverse problem that the algorithm solves in each iteration.

As we see from Tab. 2-5, Algorithm 1 and Algorithm 3 perform well on the
problems that they were initially designed to solve, that is p = 1, J = 2 and
p = 2, J = 2, respectively. This is also true when the data is corrupted by noise.
Algorithm 2 only performs well for elliptic problems. Algorithm 4 seems to be
very robust and is the only algorithm that convergences for all the presented
cases. Also, in most cases, the relative error is the lowest of all the algorithms.
For a more comprehensive analysis of the performance of each algorithm, we
refer to the previous sections.
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Table 2: Summary for Algorithm 1

p J Classi�cation Rel. err.
Rel. err.
(ρ = 0.1)

Rel. err.
(ρ = 0.5)

0.5 1 Elliptic 0.0051 0.0332
0.75 1 Elliptic 0.0118 0.0424
1 1 Deg. elliptic 0.0889
1.5 1 Hyperbolic
2 1 Hyperbolic
0.5 2 Elliptic 0.0042 0.0271 0.1353
0.75 2 Elliptic 0.0063 0.0302 0.1508
1 2 Deg. elliptic 0.0205 0.0401 0.1896
1.5 2 Hyperbolic
2 2 Hyperbolic

Approx. time per iteration: 1.0 s.

Table 3: Summary for Algorithm 2

p J Classi�cation Rel. error
Rel. error
(ρ = 0.1)

Rel. error
(ρ = 0.5)

0.5 1 Elliptic 0.0063 0.0378 0.1876
0.75 1 Elliptic 0.0108 0.0456 0.2286
1 1 Deg. elliptic 0.0455 0.0981
1.5 1 Hyperbolic
2 1 Hyperbolic
0.5 2 Elliptic 0.0054 0.0361 0.1793
0.75 2 Elliptic 0.0086 0.0429 0.2132
1 2 Deg. elliptic 0.0289 0.0811
1.5 2 Hyperbolic
2 2 Hyperbolic

Approx. time per iteration: 1.3 s.
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Table 4: Summary for Algorithm 3

p J Classi�cation Rel. error
Rel. error
(ρ = 0.1)

Rel. error
(ρ = 0.5)

0.5 1 Elliptic 0.0056 0.0385 0.1928
0.75 1 Elliptic 0.0093 0.0478
1.5 1 Hyperbolic
2 1 Hyperbolic 0.0859 0.0963
0.5 2 Elliptic 0.0049 0.0402 0.2016
0.75 2 Elliptic 0.0082 0.0773
1.5 2 Hyperbolic 0.0145 0.0774
2 2 Hyperbolic 0.0079 0.0360 0.1840

Approx. time per iteration: 3 s.

Table 5: Summary for Algorithm 4

p J Classi�cation Rel. error
Rel. error
(ρ = 0.1)

Rel. error
(ρ = 0.5)

0.5 1 Elliptic 0.0049 0.0383 0.1818
0.75 1 Elliptic 0.0124 0.0459 0.1942
1 1 Deg. elliptic 0.0521 0.0681 0.1884
1.5 1 Hyperbolic 0.0438 0.0634 0.1712
2 1 Hyperbolic 0.0488 0.0589 0.1458
0.5 2 DN elliptic 0.0038 0.0265 0.1273
0.75 2 DN elliptic 0.0077 0.0304 0.1339
1 2 DN elliptic 0.0159 0.0354 0.1315
1.5 2 DN elliptic 0.0188 0.0389 0.1232
2 2 DN elliptic 0.0167 0.0327 0.1023

Approx. time per iteration: 8 s. (J = 1) and 25 s. (J = 2)

5.4 Additional numerical results

In this section we present some additional numerical results based on Algo-
rithm 4. In Sec. 5.4.1 we give a �ner characterisation of the artifacts the appear
when we solve the non-elliptic linearised inverse problem, and relate this to the
theretical results on the prorogation of singularities. In Sec. 5.4.2 and 5.4.3
we present reconstructions based on the inverse problem with partial data and
limited-view data, respectively.
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5.4.1 Propagation of singularities

We have already seen examples of artifacts in the presented reconstructions that
are related to the loss of ellipticity. Algorithm 1,2, and 4 all showed artifacts in
the reconstruction for the degenerate elliptic problem, which is closely related
to the direction in which the problems are degenerate; see Fig. 5.2b, 5.4b,
and 5.8b. However, this situation is not covered by the theoretical results on
the propagation of singularities.

In this section we will visualise how the propagation of singularities aligns with
the directions predicted by theory. In Fig. 5.10 we have plotted reconstructions
after ten iterations with Algorithm 4 for four values of p which renders the
linearised inverse problem hyperbolic. In all reconstructions we use a single
boundary condition, such that the gradient of the solution to the reference
problem is in the horizontal direction, at least for the �rst iteration.

According to the results of Thm. 4.14 and 4.20, the propagation should happen
along curves for which the angle between the curve and the gradient of the
reference potential should be sin−1(p−1/2). For the four chosen values of p,
1.1, 1.5, 2 and 3, this corresponds to curves at angles about 72◦, 55◦, 45◦ and 35◦

to the horizontal axis, respectively. Therefore, on each plot in Fig. 5.10 we have
added arrows which show two directions in which the theoretical results state
that singularities propagate. We clearly see that the artifacts seem to align in
exactly these directions.

Thm. 4.21 implies that the wave front set of the right-hand of the governing
equation at most includes the points in the smoothing layer around the pertur-
bations and the associated singular directions, which in this case are normals to
this layer. The propagation of singularities should then happen from points, for
which the direction of the singularity aligns with the loss of ellipticity. Indeed,
on the plots we see that the artifacts seem to be curves that are tangent to
the perturbations, exactly at points for which the normal is cos−1(p−1/2) to the
horizontal axis.

The propagation of singularities is a distinct nature of the inverse problem and
not related to the chosen reconstruction method. For instance, note that the
reconstruction made by Algorithm 3 for p = 2, J = 1 (Fig. 5.6b) shows artifacts
that seem to align at angles about 45◦ to horizontal. This algorithm is based
on the original formulation of the square linearised system, and these artifacts
are therefore explained by the results of Thm. 4.13 and 4.17.
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(a) p = 1.1, J = 1 (b) p = 1.5, J = 1

(c) p = 2, J = 1 (d) p = 3, J = 1

Figure 5.10: Plots of reconstructions of σ after ten norm minimising least
squares iterations, with a single interior measurement (J = 1)
and four di�erent values of p. The arrows visualise directions in
which the theoretical results state that singularities propagate.

5.4.2 Partial data

For the numerical test with partial data we de�ne Γ as a disc with radius 0.5
centred at the point (0.1, 0); see Fig. 5.11.

In Fig. 5.12 we show six reconstructions produced with ten norm minimising
least squares iterations in the partial data case. We see that elliptic problems
(p = 0.5 or J = 2) allow for a good reconstruction in Γ. In the non-elliptic case,
it seems that the reconstruction captures the presence of the two perturbations
in Γ, but the contrast and shape is not precise. When p = 1 the reconstructions
seem to have a lower contrast than the reconstructions for p = 2. This was also
the case for the problem with full data; see Fig. 5.9.

The reconstruction in the domain outside Γ is very blurred, however it seems
that there are low values in the top left area, most likely due to the top left
perturbation in the phantom. Also, when J = 1 the blurring seems to be in
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Figure 5.11: The partial data in only availavle within the disc shaped area Γ
whose boundary is visualised by the dashed circle.

the horizontal direction, most likely due to the fact that ∇u1 is close to being
horizontal. For J = 2 the blurring seems to be from the center towards the
boundary of the domain. Since no interior data is available outside Γ, the
mathematical formulation is in this area limited to the Fréchet derivative of the
solution operator for the problem (1.3); see Lem. 3.2. The blurring outside Γ is
most likely a result of (1.3) being an elliptic problem.

On Fig. 5.13 we present convergence plots for the partial data problem. Note
that the relative errors on these plots are calculated in Γ, and that the second
axis is di�erent from the one used on the previous convergence plots. We see
that the relative errors for the non-elliptic problems p ≥ 1, J = 1 seem to
increase after a few iterations. When the problem is (DN) elliptic, we see that
the relative error becomes smaller, and the method seem to convergence for any
p. In this case, we see that the reconstruction algorithm is able to provide a
reasonable reconstruction in the area where the partial data is given.
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(a) p = 0.5, J = 1 (b) p = 1, J = 1 (c) p = 2, J = 1

(d) p = 0.5, J = 2 (e) p = 1, J = 2 (f) p = 2, J = 2

Figure 5.12: Plots of reconstructions of σ after ten norm minimising least
squares iterations with partial data.
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Figure 5.13: Convergence plots for the norm minimising least squares algo-
rithm with one and two interior measurements using partial data.
Note that the relative error is calculated only in the domain where
the partial is available.
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5.4.3 Limited-view data

We end the numerical analysis with the case of limited-view data. Here we
restrict the imposed boundary conditions to the top half of the boundary. In
this analysis we use the set of boundary conditions

f1 = sin(θ) and f2 = sin(2θ), θ ∈ [0, π],

where θ denotes the usual polar angle. On the bottom part of the boundary, we
impose a homogeneous Neumann condition, as explained in Sec. 4.5.2.

On Fig. 5.14 we show plots of six reconstructions using limited-view data. We
see that for p = 0.5 we get a nearly prefect reconstruction. For p = 1 we get a
good reconstruction in the top part of the domain, and adding a second data
set results in a much better reconstruction in the lower part. For p = 2 we have
a similar behaviour, but the overall quality of the reconstruction is not as good.

A visual inspection of ∇uk1 and ∇uk2 reveals that both are small in magnitude
and nearly horizontal in the lower part of the domain. Therefore, for p ≥ 1 the
system is close to being non-elliptic in the lower part of the domain, and this
can explain why the reconstructions clearly have artifacts in this area. Also, uk1
seems to have a critical point at the bottom, near (0,−1). This can explain the
high values in the reconstruction near the bottom for p = 2, J = 1. To a less
extend, the critical point also seems to a�ect the reconstitution for p = 1, J = 1.
The visual inspection also reveals that uk2 probably has critical points at (±1, 0),
but this does not seem to a�ect the reconstructions; most likely because ∇uk1
does not vanish at the same points. Note that both Algorithm 1 and 3 would
fail to work for this problem, because they rely on a division by |∇ukj |p in each
iteration.

On the convergence plots in Fig. 5.15, we see that convergence seems to be
limited to the cases where p < 1 or J = 2. For p > 1, J = 2 we get slow
convergence, most likely due to the fact that ∇uk1 and ∇uk2 are nearly parallel
in the lower part of Ω and the problem is therefore close to not being DN elliptic.
Note that for p = 1.5, the use of an additional data set does not improve the
relative error after ten iterations.
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(a) p = 0.5, J = 1 (b) p = 1, J = 1 (c) p = 2, J = 1

(d) p = 0.5, J = 2 (e) p = 1, J = 2 (f) p = 2, J = 2

Figure 5.14: Plots of reconstructions of σ after ten norm minimising least
squares iterations with limited-view data.
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Figure 5.15: Convergence plots for the norm minimising least squares algo-
ithm with one and two interior measurements using limited-view
data.
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Chapter 6

Contributions, limitations,
and perspectives

Hybrid inverse problems are mathematical descriptions of imaging procedures
that utilise multiple existing imaging techniques to recover an interior physical
property. In this thesis we studied a general hybrid inverse problem in imped-
ance tomography. Mathematically, the inverse problem was the reconstruction
of a coe�cient in a linear elliptic partial di�erential equation from non-linear
interior data given as a point-wise functional dependent on the coe�cient and
the solution to a corresponding boundary value problem. From reading the
previous chapters, it should be apparent to the reader that a theoretical analysis,
based on pseudo-di�erential operator theory, gives important insight into the
qualitative properties of solutions to such hybrid inverse problems, and as a
natural implication, closely connected is the design and performance of the
related iterative reconstruction methods.

In this �nal chapter we summarise the thesis in a broader context, and discuss
the most important results and observations from the previous chapters. This
is done on several levels. First we list the most important contributions and
results, and discuss their implications. We will then re�ect on certain limitations
in the mathematical model and treatment, and give ideas on how to extent or
modify the analysis. Finally, we shortly discuss the perspectives and guidelines
for related research within the �eld of hybrid inverse problems.
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6.1 Contributions

The individual contributions are discussed in their speci�c context in the pre-
vious chapters. In addition, we give here a more general discussion of the
contributions in a wider context.

The purpose of the study was to describe the qualitative properties of solutions
to a class of hybrid inverse problems in impedance tomography, and relate
these �nding with the development and performance of iterative reconstruction
methods. Additionally, the ambition was to extend the analysis to examples
with partial and limited-view data.

The main theoretical contributions are Thm. 4.17 and 4.20. Here we presented
novel result regarding the propagation of singularities for the linearised hybrid
inverse problem and a similar result for the corresponding normal form, both
expressed as scalar pseudo-di�erential operator equations. The latter result is
based on the theory for operators of constant multiplicity. To the author's
knowledge, this is the �rst time that such an analysis has been conducted and
therefore these are the �rst precise results about the distinctive features of the
solutions to a non-elliptic linearised hybrid inverse problem.

The classi�cation of the linearised hybrid inverse problem, Thm. 4.2, is consis-
tent with that of Kuchment and Steinhauer [57] and Bal [13], who both found
similar results. The associated stability results for the (DN) elliptic problem,
Thm. 4.5, were derived using theory for determined and overdetermined systems
of linear partial di�erential equations, and the related boundary value problems.
This is much inspired by the work of Bal [13], yet our approach treated a more
general type of interior data and some parts of the analysis is explained a
bit more in depth; an example is the proof that the Lopatinskii condition is
satis�ed for the elliptic problem, see Thm. 4.3 and Rem. 4.4. Kuchment and
Steinhauer [57] showed similar stability results relying entirely on theory from
pseudo-di�erential calculus, but we think that this approach is less elegant,
since boundary conditions cannot be included in the pseudo-di�erential analysis
in an obvious way. The equivalent ellipticity and stability results for the �rst-
order system and the scalar operator, found in Thm. 4.6, 4.11, 4.13 and 4.14
seem to be new, or at least generalisations of previous work, but they are not
that surprising, since they are concerned with a reformulation of the original
second-order di�erential system.

In Chap. 5, we presented a thorough analysis of iterative reconstruction methods
for hybrid inverse problem in impedance tomography. To the authors knowl-
edge, this is the �rst time that this has been done. It was explained how
mathematical theory can be used to design reconstruction methods for inverse
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problems described by non-linear PDEs or maps. Based on this theory, we
developed four iterative reconstruction algorithms for a general class of hybrid
inverse problems in impedance tomography and explained how these could be
implemented using the �nite element method. One algorithm was also extended
to the cases of partial and limited-view data. Some of the numerical methods
are inspired by existing work, but they were all rede�ned on the general class
of hybrid inverse problems. The only exception was the Newton-type algorithm
using an approximate inverse, which is not de�ned for p = 1.

The numerical results veri�ed that a theoretical analysis of the inverse problem
can predict the performance of the developed iterative reconstruction methods.
For p < 1, all algorithms performed well, due to the optimal stability properties
associated with ellipticity. In the non-elliptic case, some algorithms did not
converge, while others produced reconstructions with clearly visible propagating
singularities. This aligned perfectly with the results from the theoretical part.
Of the presented methods, we would like to point out the Newton-type algorithm
for the full linearised system, based on the least squares �nite element method.
It gave the best reconstructions in all of the non-elliptic cases, and it is a
general reconstruction framework which is de�ned independently on the number
of measurements. It is the �rst time this type of algorithm has been developed
for, and used on, the general inverse problem; yet some related methods have
previously been used on the inverse problem from UMEIT [16, 22]. In the �nal
part of Chap. 5, we also presented novel numerical results using partial and
limited-view data. The qualitative features of these reconstructions could also
be explained by theoretical considerations.

A common thread in this thesis has been the attempt to explain the close
connection between the theoretical and numerical analysis of such problems;
in particular the connection between the classi�cation of the inverse problem
and the performance of related iterative reconstruction algorithms. There has
been a need for such an analysis, because several reconstruction algorithms
for hybrid inverse problems have been developed and implemented in the last
few years, but the motivation behind the choice of method and the choice of
implementation is often not entirely accounted for. Furthermore, the qualitative
features of the produced reconstructions are not always explained in relation to
the mathematical problem it tries to solve.

6.2 Limitations

Although the study has successfully demonstrated several connections between
the theoretical and numerical results, the presented work has a number of
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limitations that need to be mentioned and addressed in future studies. It is
important to be aware of such limitations, because it means that the results
and observations need to be interpreted accordingly.

First of all, the presented mathematical model for electrical impedance tomo-
graphy is way too simple to model any real physical system. A two-dimensional
model of electric �elds is clearly a simpli�cation, since it is well-known that
electric �elds propagate in three dimensions. The assumption that conductivity
is an isotropic property is also false, at least for tissues that have an anisotropic
physical structure [20].

As mentioned in the introduction, the interior data functional is a generalisation
of a functional that models a physical property. Even when the hybrid inverse
problem is related to a imaging method, such as MREIT or UMEIT, it is
only theoretically possible to obtain this interior data, and an exact point-wise
data acquisition without any noise relies on an unrealistic experimental set-
up. An example is the data acquisition model for UMEIT, which is explained in
Sec. 1.2.2. Here one of the assumptions is that any type of plane ultrasonic wave
can be generated. In any application, there is of course practical limitations on
the ultrasonic wave, which in this data acquisition model correspond to a certain
�ltering of the interior data. For instance, the magnitude of the wave number
has a practical upper bound, and as a result the interior data will always be
low-pass �ltered.

Many of the theoretical results that relies on pseudo-di�erential calculus, re-
quires the PDE coe�cients of the linearised hybrid inverse problem to be suf-
�ciently smooth. It is not di�cult to satisfy this requirement, by choosing a
smooth reference conductivity, but when an iterative reconstruction method is
applied to a problem, the smoothness requirement is most likely not satis�ed
after the �rst iteration. Therefore, it would be interesting to investigate in which
way non-smooth PDE coe�cients change the theoretical and numerical results.

In this thesis, the intention has been to consider a simple inverse problem and
simple algorithms. This also means that the numerical implementations merely
works as proofs-of-concept, and they could de�nitely be improved. One could
certainly make a more advanced �nite element implementation by a di�erent
choice of element functions, di�erent meshing, �ne-tuning parameters for the
linear solver and so on. However, since the hybrid inverse problem is based on a
very simpli�ed model of reality, it only seem relevant to improve the numerical
implementation if a more realistic mathematical model is used.

For the iterative methods, we have also not been concerned with a theoretical
analysis of the associated convergence properties. It is probably very di�cult
to obtain general convergence results, that does not depend on a su�ciently
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good choice of reference conductivity. However, for practical applications within
applied mathematics it seems that many iterative algorithms are used with
great success, even when there does not exist any theoretical justi�cation for
the observed convergence.

6.3 Perspectives

Advances in the �eld of hybrid imaging within the last decade, have resulted
in many interesting problems, both related to mathematical and practical chal-
lenges. Some hybrid methods, such as Photoacoustic Tomography [97] and
MREIT [84], look promising as future imaging techniques. Other methods are
less likely to work in practise, often because the underlying physical model is
inadequate or based on wrong assumptions. Nevertheless, there is an increasing
need for safe, cheap and e�cient imaging techniques, which is a motivational
factor for the continuous development of hybrid imaging methods and the corre-
sponding formulation, analysis and numerical implementation of hybrid inverse
problems.

The �ndings of this study have a number of possibly important implications
for future practice and we have gone some way towards enhancing our under-
standing of hybrid inverse problems in impedance tomography. As mentioned
previously, we have focused on simplicity throughout the theoretical and numer-
ical analysis. This implies that most of the presented results and observations
are general, and the ideas and techniques can most likely be used on similar
problems described by PDEs or maps between Banach spaces.

Many mathematical problems from hybrid imaging are closely related. Often
the description is based on a PDE model of the physical system and additional
interior data expressed by a point-wise functional of one or more PDE coe�-
cients and the corresponding solution to the PDE problem. In this case, the
presented analysis work as an example of how to treat such problems. For
instance, it seems natural to try to extend the analysis of the propagation of
singularities to the inverse problems from Quantitative Elastography and Ultra-
sound Modulated Optical Tomography, for which the reconstruction considers
several PDE coe�cients. For these inverse problems, ellipticity and stability
have already been analysed [15, 96].

It is still the author's opinion, that the analysis should be systematic, kept
simple, and not be too focused on speci�c applications. However, there is
still room to reformulate the inverse problem to include a better model of the
physical system. In relation to EIT, a choice could be to use a model that takes
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into account the presence of boundary electrodes and contact impedances; for
example the so-called complete electrode model [90]. Also, the three-dimensional
case should be treated numerically.

If the hybrid inverse problem is related to a physical coupling, the interior data
acquisition is related to a certain experimental procedure. It is often di�cult,
if not impossible, to �nd information about exactly what can be measured in
such experiments. Real experimental data would of course be of �nite precision
and include measurement noise, and from a practical perspective, it would
also be interesting to include this in the mathematical model. This could
be based on both empirical and non-empirical reasoning, but it should be
done in a systematic way. In relation the UMEIT, we have already mentioned
several examples of the impracticability of the data acquisition model. A better
understanding and modelling of the acoustic-electric e�ect and the ultrasonic
wave propagation is therefore an important topic for future research in relation
to this modality.



Appendix A

Notation and symbols

The following appendix contains a brief review of the notation used in the previ-
ous chapters. Most notation is standard, but we include it here for completeness.

We use lower case bold letters for vectors and vector functions (such as u); the
only exceptions being x (the spatial variable in Ω), k (the wave number), and
ξ (the Fourier variable). Calligraphic upper case fonts are often used for maps
and operators (such as L) and upper case bold letters for matrices (such as A).
In the numerical treatment, the latter is also used for matrices of operators.

The tilde accent (̃ ) is used to denote mathematical objects associated to the
reference problem, see also p. 36, and the acute accent (́ ) to denote mathemat-
ical objects associated to the �rst order boundary value problem; see also (4.4).
All constants are generally denoted by c, including subscripts when necessary.
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List of symbols

A Matrix of operators in the linearised inverse problem; see (5.6).

b Right-hand side in the linearised inverse problem; see (5.6).

B Boundary operator in the linearised inverse problem; see (3.12).

B́ Boundary operator in the �rst order linearised inverse prob-
lem; see (4.4).

C∞(Ω) Smooth functions on Ω.

C∞0 (Ω) Smooth functions with compact support on Ω. Also denoted
the test functions.

C∞+ (Ω) Smooth functions on Ω uniformly bounded below by a positive
constant.

Dα Di�erential operator for a multi-index α de�ned by

Dαu := (−i)|α| ∂|α|u(x)

∂xα1
1 · · · ∂x

αn
n

= (−i)|α|∂α1
x1
· · · ∂αnxn u,

where i denotes the imaginary unit.

�ξ Measure used in the Fourier transform, �ξ := (2π)−ndξ.

D ′(Ω) Distributions on Ω.

dF|u Fréchet derivative of F at u; see Def. 2.1.

E ′(Ω) Distributions with compact support in Ω.
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fj Boundary condition for the forward problem; see (1.3).

f Right-hand side in the linearised inverse problem; see (3.12).

f́ Right-hand side in the �rst order linearised inverse problem;
see (4.4).

Hj Interior data; see (1.4).

Ḣj Noisy counterpart of Hj ; see (4.22).

Hj Discrete representation of Hj .

Ḣj Noisy counterpart of Hj ; see (5.15).

H1
0 (Ω) Functions in the Sobolev space H1(Ω) with zero trace.

Hdiv(Ω) Hilbert space of vector functions in [L2(Ω)]n for which the
divergence is also an L2(Ω) function; see [92, Chap. 20].

J Number of boundary conditions and measurements.

k Iteration number.

[·]k The k'th iterate of [·].

L∞+ (Ω) Functions on Ω uniformly bounded below and above by posi-
tive constants.

L Linear operator in the linearised inverse problem; see (3.12).

Ĺ Linear operator in the �rst order linearised inverse problem;
see (4.4).

Ĺ∗ Adjoint of Ĺ; see Def. 4.7.

mod Modulo operator.

p(x, ξ) Symbol of the pseudo-di�erential operator P (x,D).

p(0)(x, ξ) Principal symbol of the classical pseudo-di�erential operator
P (x,D).

p Exponent in the interior data; see (1.4).

Sm(Ω× Rn) Class of classical symbols of degree m; see Def. 2.7.

Sm1,0(Ω× Rn) Standard class of symbols of degree m and type 1, 0; see
Def. 2.3.

sing suppu Singular support of u ∈ D ′(Ω); see Def. 2.17.
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S (Rn) Schwartz space of functions with rapidly decreasing deriva-
tives; see [38, Chap. 5].

û Fourier transform of the function u ∈ S (Ω); see (2.2).

uj Solution to the forward problem; see (1.3).

ú Solution to the �rst order linearised inverse problem; see (4.4).

u Solution to the linearised inverse problem; see (3.12).

W k,p(Ω) Sobolev space on Ω; see e.g. Adams [2]. For non-integer order
spaces, these spaces should be understood as Bessel potential
spaces [1].

WF(u) Wave front set of u ∈ D ′(Ω); see Def. 2.19.

x Spatial variable, x ∈ Ω.

x Solution to the linearised inverse problem; see (5.6).

∂Ω The boundary of Ω.

∂ν The normal derivative, i.e. ∂νu := ν · ∇u.

ν Exterior normal to ∂Ω.

Ω An open subset of Rn, n = 2, 3.

Ψm(Ω) The class of classical pseudo-di�erential operators of order m.

Ψm
1,0(Ω) The class of pseudo-di�erential operators of order m and type

1, 0.

ρ The noise level; see (4.22) and (5.15).

σ Function modelling the conductivity.

Γ Simply connected subset of Ω. The data is limited to Γ in the
partial data setting.

ξ Fourier variable, ξ ∈ Rn.

Υ The part of ∂Ω which is not available in the limited-view
setting.
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